Details

RF and Microwave Circuit Design


RF and Microwave Circuit Design

Theory and Applications
Microwave and Wireless Technologies Series 1. Aufl.

von: Charles E. Free, Colin S. Aitchison

83,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 31.08.2021
ISBN/EAN: 9781119114673
Sprache: englisch
Anzahl Seiten: 375

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>RF and Microwave Circuit Design</b> <p><b>Provides up-to-date coverage of the fundamentals of high-frequency microwave technology, written by two leading voices in the field </b> <p><i>RF and Microwave Circuit Design: Theory and Applications</i> is an authoritative, highly practical introduction to basic RF and microwave circuits. With an emphasis on real-world examples, the text explains how distributed circuits using microstrip and other planar transmission lines can be designed and fabricated for use in modern high-frequency passive and active circuits and sub-systems. The authors provide clear and accurate guidance on each essential aspect of circuit design, from the theory of transmission lines to the passive and active circuits that form the basis of modern high-frequency circuits and sub-systems. <p>Assuming a basic grasp of electronic concepts, the book is organized around first principles and includes an extensive set of worked examples to guide student readers with no prior grounding in the subject of high-frequency microwave technology. Throughout the text, detailed coverage of practical design using distributed circuits demonstrates the influence of modern fabrication processes. Filling a significant gap in literature by addressing RF and microwave circuit design with a central theme of planar distributed circuits, this textbook: <ul><li>Provides comprehensive discussion of the foundational concepts of RF and microwave transmission lines introduced through an exploration of wave propagation along a typical transmission line</li> <li>Describes fabrication processes for RF and microwave circuits, including etched, thick-film, and thin-film RF circuits</li> <li>Covers the Smith Chart and its application in circuit design, S-parameters, Mason???s non-touching loop rule, transducer power gain, and stability</li> <li>Discusses the influence of noise in high-frequency circuits and low-noise amplifier design</li> <li>Features an introduction to the design of high-frequency planar antennas </li> <li>Contains supporting chapters on fabrication, circuit parameters, and measurements</li> <li>Includes access to a companion website with PowerPoint slides for instructors, as well as supplementary resources</li></ul> <p>Perfect for senior undergraduate students and first-year graduate students in electrical engineering courses, <i>RF and Microwave Circuit Design: Theory and Applications</i> will also earn a place in the libraries of RF and microwave professionals looking for a useful reference to refresh their understanding of fundamental concepts in the field.
<p>Preface</p> <p>1. RF Transmission lines</p> <p>1.0 Introduction</p> <p>1.1 Voltage, current and impedance relationships on a transmission line</p> <p>1.2 Propagation constant</p> <p>1.2.1 Dispersion</p> <p>1.2.2 Amplitude distortion</p> <p>1.3 Lossless transmission lines</p> <p>1.4 Matched and mismatched transmission lines</p> <p>1.5 Waves on a transmission line</p> <p>1.6 The Smith chart</p> <p>1.6.1 Derivation of the chart</p> <p>1.6.2 Properties of the chart</p> <p>1.7 Stubs</p> <p>1.8 Distributed matching circuits</p> <p>1.9 Manipulation of lumped impedance using the Smith chart</p> <p>1.10 Lumped impedance matching</p> <p>1.10.1 Matching a complex load impedance to a real source impedance</p> <p>1.10.2 Matching a complex load impedance to a complex source impedance</p> <p>1.11 Equivalent lumped circuit of a lossless transmission line</p> <p>1.12 Supplementary problems</p> <p>1.13 Appendices</p> <p>Appendix A1.1 Coaxial cable</p> <p>A1.1.1  Electromagnetic field patterns in coaxial cable</p> <p>A1.1.2  Essential properties of coaxial cables</p> <p>Appendix A1.2 Coplanar waveguide</p> <p>A1.2.1 Structure of coplanar waveguide (CPW)</p> <p>A1.2.2  Electromagnetic field distribution on a CPW line</p> <p>A1.2.3 Essential properties of coplanar (CPW) lines</p> <p>A1.2.4  Summary of key points relating to CPW lines</p> <p>Appendix A1.3 Metal waveguide</p> <p>A1.3.1  Waveguide principles</p> <p>A1.3.2 Waveguide propagation</p> <p>A1.3.3 Rectangular waveguide modes</p> <p>A1.3.4  The waveguide equation</p> <p>A1.3.5 Phase and group velocities</p> <p>A1.3.6  Field theory analysis of rectangular waveguides</p> <p>A1.3.7 Waveguide impedance</p> <p>A1.3.8  Higher-order rectangular waveguide modes</p> <p>A1.3.9  Waveguide attenuation</p> <p>A1.3.10  Sizes of rectangular waveguide, and waveguide designation</p> <p>A1.3.11 Circular waveguide</p> <p>Appendix A1.4 Microstrip</p> <p>Appendix A1.5 Equivalent lumped circuit representation of a transmission line</p> <p>References</p> <p>2. Planar Circuit Design I: Designing using Microstrip</p> <p>2.0 Introduction</p> <p>2.1 Electromagnetic field distribution across a microstrip line</p> <p>2.2 Effective relative permittivity,  </p> <p>2.3 Microstrip design graphs and CAD software</p> <p>2.4 Operating frequency limitations</p> <p>2.5 Skin depth</p> <p>2.6 Examples of microstrip components</p> <p>2.6.1 Branch-line coupler</p> <p>2.6.2 Quarter-wave transformer</p> <p>2.6.3 Wilkinson power divider</p> <p>2.7 Microstrip coupled-line structures</p> <p>2.7.1  Analysis of microstrip coupled lines</p> <p>2.7.2 Microstrip directional couplers</p> <p>2.7.2.1 Design of microstrip directional couplers</p> <p>2.7.2.2 Directivity of microstrip directional couplers</p> <p>  2.7.2.3 Improvements to microstrip directional couplers</p> <p> 2.7.3 Examples of other common microstrip coupled-line structures</p> <p>  2.7.3.1 Microstrip DC break</p> <p>  2.7.3.2 Edge-coupled microstrip band-pass filter</p> <p>  2.7.3.3 Lange coupler</p> <p>2.8 Summary</p> <p>2.9 Supplementary problems</p> <p>2.10 Appendix A2.1: Microstrip design graphs</p> <p>References</p> <p>3. Fabrication processes for RF and microwave circuits</p> <p>3.1 Introduction</p> <p>3.2 Review of essential materials parameters</p> <p>3.2.1 Dielectrics</p> <p>3.2.2 Conductors</p> <p>3.3 Requirements for RF circuit materials</p> <p>3.4 Fabrication of planar high-frequency circuits</p> <p>3.4.1 Etched circuits</p> <p>3.4.2 Thick-film circuits (direct screen printed)</p> <p>3.4.3 Thick-film circuits (using photoimageable materials)</p> <p>3.4.4 LTCC (low temperature co-fired ceramic) circuits</p> <p>3.4.5 Use of ink jet technology</p> <p>3.5 Characterization of materials for RF and microwave circuits</p> <p>3.5.1 Measurement of dielectric loss and dielectric constant</p> <p> 3.5.1.1 Cavity resonators</p> <p> 3.5.1.2 Dielectric characterization by cavity perturbation</p> <p> 3.5.1.3 Use of  the split post dielectric resonator (SPDR)</p> <p> 3.5.1.4 Open-resonator</p> <p>3.5.1.5 Free-space transmission measurements</p> <p>3.5.2 Measurement of planar line properties </p> <p> 3.5.2.1 The microstrip resonant ring</p> <p> 3.5.2.2 Non-resonant lines</p> <p>3.5.3 Physical properties of microstrip lines</p> <p>3.6 Supplementary problems</p> <p>references</p> <p>4. Planar Circuit Design II:  Refinements to basic designs</p> <p>4.1 Introduction</p> <p>4.2  Discontinuities in microstrip</p> <p>4.2.1 Open-end effect</p> <p>4.2.2 Step width</p> <p>4.2.3 Corners</p> <p>4.2.4 Gaps</p> <p>4.2.5 T-junctions</p> <p>4.3 Microstrip enclosures</p> <p>4.4  Packaged lumped-element passive components</p> <p>4.4.1 Typical packages for RF passive components</p> <p>4.4.2 Lumped-element resistors</p> <p>4.4.3 Lumped-element capacitors</p> <p>4.4.4 Lumped-element inductors</p> <p>4.5  Miniature planar components</p> <p>4.5.1 Spiral inductors</p> <p>4.5.2 Loop inductors</p> <p>4.5.3 Interdigitated capacitors</p> <p>4.5.4 MIM (metal-insulator-metal) capacitors</p> <p>4.6 Appendix 4.1: Insertion loss due to a microstrip gap</p> <p>References</p> <p>5. S-parameters</p> <p>5.1 Introduction</p> <p>5.2 S-parameter definitions</p> <p>5.3 Signal flow graphs</p> <p>5.4 Mason’s non-touching loop rule</p> <p>5.5 Reflection coefficient of a 2-port network</p> <p>5.6 Power gains of two-port networks</p> <p>5.7 Stability</p> <p>5.8 Supplementary Problems  </p> <p>5.9 Appendix A5.1  Relationships between network parameters    </p> <p> A5.1.1 Transmission parameters (ABCD parameters)</p> <p> A5.1.2 Admittance parameters (Y-parameters)</p> <p> A5.1.3 Impedance parameters (Z-parameters)</p> <p>References</p> <p>6. Microwave Ferrites</p> <p>6.1 Introduction</p> <p>6.2 Basic properties of ferrite materials</p> <p>6.2.1 Ferrite materials</p> <p>6.2.2 Precession in ferrite materials</p> <p>6.2.3 Permeability tensor</p> <p>6.2.4 Faraday rotation</p> <p>6.3 Ferrites in metallic waveguide</p> <p>6.3.1 Resonance isolator</p> <p> 6.3.2 Field displacement isolator</p> <p> 6.3.3 Waveguide circulator</p> <p>6.4 Ferrites in planar circuits</p> <p>6.4.1 Planar circulators</p> <p> 6.4.2 Edge-guided-mode propagation</p> <p> 6.4.3 Edge-guided-mode isolator</p> <p> 6.4.4 Phase shifters</p> <p>6.5 Self-biased ferrites</p> <p>6.6 Supplementary problems</p> <p>References</p> <p>7. Measurements</p> <p>7.1 Introduction</p> <p>7.2 RF and Microwave connectors</p> <p>7.2.1 Maintenance of connectors</p> <p>7.2.2 Connecting to planar circuits   </p> <p>7.3 Microwave vector network analyzers</p> <p>7.3.1 Description and configuration</p> <p>7.3.2 Error models representing a VNA</p> <p>7.3.3 Calibration of a VNA</p> <p>7.4 On-wafer measurements</p> <p>7.5 Summary</p> <p> </p> <p>References</p> <p>8. RF Filters</p> <p>8.1 Introduction</p> <p>8.2 Review of filter responses</p> <p>8.3 Filter parameters</p> <p>8.4 Design strategy for RF and microwave filters</p> <p>8.5 Multi-element low-pass filter</p> <p>8.6 Practical filter responses</p> <p>8.7 Butterworth (or maximally-flat) response</p> <p> 8.7.1 Butterworth low-pass filter</p> <p>8.7.3 Butterworth band-pass filter</p> <p>8.7.3 Butterworth band-pass filter</p> <p>8.8 Chebyshev (equal ripple) response</p> <p>8.9 Microstrip low-pass filter, using stepped impedances</p> <p>8.10 Microstrip low-pass filter, using stubs</p> <p>8.11     Microstrip edge-coupled band-pass filters  </p> <p>8.12      Microstrip end-coupled band-pass filters</p> <p>8.13      Practical points associated with filter design</p> <p>8.14      Summary</p> <p>8.15   Supplementary problems</p> <p>8.16 Appendix A8.1 Equivalent lumped T-network representation of a transmission line</p> <p>References</p> <p>9. Microwave Small-Signal Amplifiers</p> <p>9.1 Introduction</p> <p>9.2 Conditions for matching</p> <p>9.3 Distributed (microstrip) matching networks</p> <p>9.4 DC biasing circuits</p> <p>9.5 Microwave transistor packages</p> <p>9.6 Typical hybrid amplifier</p> <p>9.7 DC finger breaks</p> <p>9.8 Constant gain circles</p> <p>9.9 Stability circles</p> <p>9.10  Noise circles</p> <p>9.11 Low-noise amplifier design</p> <p>9.12  Simultaneous conjugate match</p> <p>9.13 Broadband matching</p> <p>9.14 Summary</p> <p>9.15 Supplementary problems</p> <p>References</p> <p>10. Switches and Phase Shifters</p> <p>10.1 Introduction</p> <p>10.2 Switches</p> <p> 10.2.1 PIN diodes</p> <p> 10.2.2 FETs (Field Effect Transistors)</p> <p> 10.2.3 MEMS (Microelectromechanical Systems)</p> <p> 10.2.4 IPCS (Inline Phase Change Switch) devices</p> <p>10.3 Digital phase shifters</p> <p> 10.3.1 Switched-path phase shifter</p> <p> 10.3.2 Loaded-line phase shifter</p> <p> 10.3.3 Reflection-type phase shifter</p> <p> 10.3.4 Schiffman 90 phase shifter</p> <p> 10.3.5 Single switch phase shifter</p> <p>10.4 Supplementary problems</p> <p>References</p> <p>11. Oscillators</p> <p>11.1 Introduction</p> <p>11.2 Criteria for oscillation in a feedback circuit</p> <p>11.3 RF (transistor) oscillators</p> <p>11.3.1 Colpitts oscillator</p> <p>11.3.2 Hartley Oscillator</p> <p>11.3.3 Clapp-Gouriet Oscillator</p> <p> </p> <p>11.4 Voltage controlled oscillator (VCO)</p> <p>11.5 Crystal-controlled oscillators</p> <p>11.5.1 Crystals</p> <p> 11.5.2 Crystal-controlled oscillators</p> <p>11.6 Frequency synthesizers</p> <p>11.6.1 The phase-locked loop</p> <p>11.6.1.1 Principle of a phase-locked loop</p> <p>  11.6.1.2 Main components of a phase-locked loop</p> <p>  11.6.1.3 Gain of a phase-locked loop</p> <p>  11.6.1.4 Transient analysis of a phase-locked loop</p> <p>11.6.2 Indirect frequency synthesizer circuits </p> <p>11.7 Microwave oscillators</p> <p>11.7.1 Dielectric resonator oscillator</p> <p> 11.7.2 Delay line stabilized oscillator</p> <p> 11.7.3 Diode oscillators</p> <p>  11.7.3.1 Gunn diode oscillator</p> <p>  11.7.3.2 IMPATT diode oscillator</p> <p>11.8 Oscillator noise</p> <p>11.9 Measurement of oscillator noise</p> <p>11.10 Supplementary problems</p> <p>References</p> <p>12. RF and Microwave Antennas</p> <p>12.1 Introduction</p> <p>12.2 Antenna parameters</p> <p>12.3 Spherical polar coordinates</p> <p>12.4 Radiation from a Hertzian dipole</p> <p>12.4.1 Basic principles</p> <p> 12.4.2 Gain of a Hertzian dipole</p> <p>12.5 Radiation from a half-wave dipole</p> <p> 12.5.1 Basic principles</p> <p> 12.5.2 Gain of a half-wave dipole</p> <p> 12.5.3 Summary of the properties of a half-wave dipole</p> <p>12.6 Antenna arrays</p> <p>12.7 Mutual impedance</p> <p>12.8 Arrays containing parasitic elements</p> <p>12.9 Yagi-Uda array</p> <p>12.10 Log-periodic array</p> <p>12.11 Loop antenna</p> <p>12.12 Planar antennas</p> <p>12.12.1 Linearly polarized patch antennas</p> <p>12.12.2 Circularly polarized planar antennas </p> <p>12.13  Horn antennas</p> <p>12.14 Parabolic reflector antennas</p> <p>12.15 Slot radiators</p> <p>12.16 Supplementary problems</p> <p>12.17 Appendix:  Microstrip design graphs for substrates with r = 2.3</p> <p>References</p> <p>13. Power Amplifiers and Distributed Amplifiers</p> <p>13.1 Introduction</p> <p>13.2 Power amplifiers</p> <p> 13.2.1 Overview of power amplifier parameters</p> <p>  13.2.1.1  Power gain</p> <p> 13.2.1.2  Power added efficiency (PAE)</p> <p>  13.2.1.3 Input and output impedances</p> <p> 13.2.2 Distortion</p> <p>  13.2.2.1 Gain compression</p> <p>  13.2.2.2 Third-order intercept point</p> <p>13.2.3 Linearization</p> <p>13.2.3.1 Pre-distortion</p> <p>13.2.3.2 Negative feedback</p> <p>13.2.3.3 Feedforward</p> <p> </p> <p>13.2.4 Power combining</p> <p>13.2.5 Doherty amplifier</p> <p>13.3 Load matching of power amplifiers</p> <p>13.4 Distributed amplifiers</p> <p> 13.4.1 Description and principle of operation</p> <p> 13.4.2 Analysis</p> <p>13.5 Developments in materials and packaging for power amplifiers</p> <p>References</p> <p>14. Receivers and Sub-Systems</p> <p>14.1 Introduction</p> <p>14.2 Receiver noise sources</p> <p>14.2.1 Thermal noise</p> <p>14.2.2 Semiconductor noise</p> <p>14.3 Noise measures</p> <p>14.3.1 Noise figure (F)</p> <p>14.3.2 Noise temperature (Te)</p> <p>14.4 Noise figure of cascaded networks</p> <p>14.5 Antenna noise temperature</p> <p>14.6 System noise temperature</p> <p>14.7 Noise figure of a matched attenuator</p> <p>14.8 Superhet receiver</p> <p>14.8.1 Single-conversion superhet receiver</p> <p>14.8.2 Image frequency</p> <p> 14.8.3 Key figures-of-merit for a superhet receiver</p> <p> 14.8.4 Double-conversion superhet receiver</p> <p>14.8.5  Noise budget graph for a superhet receiver</p> <p>14.9 Mixers</p> <p> 14.9.1 Basic mixer principles</p> <p> 14.9.2 Mixer parameters</p> <p> 14.9.3 Active and passive mixers</p> <p> 14.9.4 Single-ended diode mixer</p> <p> 14.9.5 Single balanced mixer</p> <p> 14.9.6 Double balanced mixer</p> <p> 14.9.7 Active FET mixers</p> <p>14.10 Supplementary problems</p> <p>14.11 Appendices</p> <p> Appendix A14.1 Error function table</p> <p> Appendix A14.2 Measurement of noise figure</p> <p>References<br /> Answers to selected supplementary problems</p>
<p><b>Dr. Charles E. Free</b> was formerly a Reader in Microwave Technology at the University of Surrey, United Kingdom. He specializes in RF electronics and microwave engineering and has contributed to approximately 150 scholarly publications.</p> <p><b>Professor Colin S. Aitchison</b> was previously Chair of the European Microwave Conference and has contributed to approximately 185 scholarly publications. He was formerly Dean of the Technology faculty at Brunel University, United Kingdom.</p>
<p><b>Provides up-to-date coverage of the fundamentals of high-frequency microwave technology, written by two leading voices in the field </b></p> <p><i>RF and Microwave Circuit Design: Theory and Applications</i> is an authoritative, highly practical introduction to basic RF and microwave circuits. With an emphasis on real-world examples, the text explains how distributed circuits using microstrip and other planar transmission lines can be designed and fabricated for use in modern high-frequency passive and active circuits and sub-systems. The authors provide clear and accurate guidance on each essential aspect of circuit design, from the theory of transmission lines to the passive and active circuits that form the basis of modern high-frequency circuits and sub-systems. <p>Assuming a basic grasp of electronic concepts, the book is organized around first principles and includes an extensive set of worked examples to guide student readers with no prior grounding in the subject of high-frequency microwave technology. Throughout the text, detailed coverage of practical design using distributed circuits demonstrates the influence of modern fabrication processes. Filling a significant gap in literature by addressing RF and microwave circuit design with a central theme of planar distributed circuits, this textbook: <ul><li>Provides comprehensive discussion of the foundational concepts of RF and microwave transmission lines introduced through an exploration of wave propagation along a typical transmission line</li> <li>Describes fabrication processes for RF and microwave circuits, including etched, thick-film, and thin-film RF circuits</li> <li>Covers the Smith Chart and its application in circuit design, S-parameters, Mason???s non-touching loop rule, transducer power gain, and stability</li> <li>Discusses the influence of noise in high-frequency circuits and low-noise amplifier design</li> <li>Features an introduction to the design of high-frequency planar antennas </li> <li>Contains supporting chapters on fabrication, circuit parameters, and measurements</li> <li>Includes access to a companion website with PowerPoint slides for instructors, as well as supplementary resources</li></ul> <p>Perfect for senior undergraduate students and first-year graduate students in electrical engineering courses, <i>RF and Microwave Circuit Design: Theory and Applications</i> will also earn a place in the libraries of RF and microwave professionals looking for a useful reference to refresh their understanding of fundamental concepts in the field.

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €