Details

High Temperature Corrosion


High Temperature Corrosion

Fundamentals and Engineering
Wiley Series in Corrosion 1. Aufl.

von: César A. C. Sequeira

164,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 14.12.2018
ISBN/EAN: 9781119474449
Sprache: englisch
Anzahl Seiten: 656

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Reviews the science and engineering of high-temperature corrosion and provides guidelines for selecting the best materials for an array of system processes</b></p> <p>High-temperature corrosion (HTC) is a widespread problem in an array of industries, including power generation, aerospace, automotive, and mineral and chemical processing, to name a few. This book provides engineers, physicists, and chemists with a balanced presentation of all relevant basic science and engineering aspects of high-temperature corrosion. It covers most HTC types, including oxidation, sulfidation, nitridation, molten salts, fuel-ash corrosion, H<sub>2</sub>S/H<sub>2</sub> corrosion, molten fluoride/HF corrosion, and carburization. It also provides corrosion data essential for making the appropriate choices of candidate materials for high-temperature service in process conditions.</p> <p>A form of corrosion that does not require the presence of liquids, high-temperature corrosion occurs due to the interaction at high temperatures of gases, liquids, or solids with materials. HTC is a subject is of increasing importance in many areas of science and engineering, and students, researchers, and engineers need to be aware of the nature of the processes that occur in high-temperature materials and equipment in common use today, especially in the chemical, gas, petroleum, electric power, metal manufacturing, automotive, and nuclear industries.</p> <ul> <li>Provides engineers and scientists with the essential data needed to make the most informed decisions on materials selection</li> <li>Includes up-to-date information accompanied by more than 1,000 references, 80% of which from within the past fifteen years</li> <li>Includes details on systems of critical engineering importance, especially the corrosion induced by low-energy radionuclides</li> <li>Includes practical guidelines for testing and research in HTC, along with both the European and International Standards for high-temperature corrosion engineering</li> </ul> <p>Offering balanced, in-depth coverage of the fundamental science behind and engineering of HTC<i>, </i><i>High Temperature Corrosion: Fundamentals and Engineering</i> is a valuable resource for academic researchers, students, and professionals in the material sciences, solid state physics, solid state chemistry, electrochemistry, metallurgy, and mechanical, chemical, and structural engineers. </p>
<p>Preface xi</p> <p>Acknowledgments xvii</p> <p><b>1 Introduction </b><b>1</b></p> <p>1.1 Definition of High Temperature Corrosion 1</p> <p>1.2 Historical Development 1</p> <p>1.3 High Temperature Corrosion Phenomena 3</p> <p>1.4 High Temperature Materials 3</p> <p>1.5 Corrosive Environments 27</p> <p>1.6 Films and Scales 31</p> <p>1.7 Academic Impact of High Temperature Corrosion 33</p> <p>1.8 Industrial Impact of High Temperature Corrosion 38</p> <p>1.9 Questions 46</p> <p>References 46</p> <p>Further Reading 47</p> <p><b>2 Metallurgical Structure and Metals </b><b>48</b></p> <p>2.1 Imperfections in an Essentially Perfect Structure 48</p> <p>2.2 Solidification 56</p> <p>2.3 Alloys 62</p> <p>2.4 Iron and Steel 72</p> <p>2.5 Deformation and Recrystallization 79</p> <p>2.6 Fracture and Fatigue 91</p> <p>2.7 Questions and Problems 97</p> <p>References 98</p> <p>Further Reading 99</p> <p><b>3 High Temperature Equilibria </b><b>100</b></p> <p>3.1 Introduction 100</p> <p>3.2 Thermochemical Analysis 100</p> <p>3.3 Electrochemical Analysis 119</p> <p>References 128</p> <p>Further Reading 129</p> <p><b>4 Lattice Defects in Metal Compounds </b><b>130</b></p> <p>4.1 Introduction 130</p> <p>4.2 Defect Reactions 133</p> <p>4.3 Defect Equilibria 135</p> <p>4.4 Equilibrium Constants 141</p> <p>4.5 Questions 144</p> <p>References 144</p> <p>Further Reading 145</p> <p><b>5 Diffusion in Solid-State Systems </b><b>146</b></p> <p>5.1 Introduction 146</p> <p>5.2 General Theory of Diffusion 146</p> <p>5.3 Diffusion Coefficients 150</p> <p>5.4 Matano–Boltzmann Analysis 153</p> <p>5.5 Kirkendall Effect 154</p> <p>5.6 Darken Analysis 155</p> <p>5.7 Factors Influencing Diffusion 156</p> <p>5.8 Impurity Diffusion in Metals 158</p> <p>5.9 Grain Boundary Diffusion in Metals 158</p> <p>5.10 Diffusion in Solid Oxides 160</p> <p>5.11 Morphology of Reaction Products 163</p> <p>5.12 Measurement of Diffusion Parameters 164</p> <p>5.13 Questions and Problems 168</p> <p>References 168</p> <p>Further Reading 169</p> <p><b>6 High Temperature Electrochemistry </b><b>171</b></p> <p>6.1 Introduction 171</p> <p>6.2 Electrochemical Nature of Molten Salt Corrosion 171</p> <p>6.3 The Single Potential of an Electrode 172</p> <p>6.4 Equilibrium Diagrams 173</p> <p>6.5 The Tafel Relationship 173</p> <p>6.6 Corrosion Potential–<i>p</i>O2−Relationship 175</p> <p>6.7 Electrochemical Polarization and Monitoring 177</p> <p>6.8 Electrochemical Nature of Metal Oxidation 179</p> <p>6.9 Usefulness of Electrochemical Cells 181</p> <p>6.10 Current–Potential Measurements on Solid Electrodes 182</p> <p>6.11 Simple Concepts of Oxide Semiconductors 183</p> <p>6.12 Conduction Processes in Ionic Oxides 186</p> <p>6.13 Common Solid-State Electrochemical Situations 190</p> <p>References 194</p> <p>Further Reading 195</p> <p><b>7 Oxidation </b><b>196</b></p> <p>7.1 Introduction 196</p> <p>7.2 Thermodynamic Considerations 197</p> <p>7.3 Kinetic Considerations 199</p> <p>7.4 Defect Structures 201</p> <p>7.5 Compact Scale Growth 208</p> <p>7.6 Multilayered Scale Growth 212</p> <p>7.7 Oxidation Resistance 214</p> <p>7.8 Oxidation of Engineering Materials 224</p> <p>7.9 Conclusions 228</p> <p>7.10 Questions 229</p> <p>References 229</p> <p>Further Reading 231</p> <p><b>8 Sulfidation </b><b>233</b></p> <p>8.1 Introduction 233</p> <p>8.2 The Process of Sulfidation 233</p> <p>8.3 Sulfidation Kinetics 235</p> <p>8.4 Sulfidation of Selected Materials 236</p> <p>8.5 Defect Structures of Metal Sulfides 240</p> <p>8.6 Questions 243</p> <p>References 243</p> <p>Further Reading 244</p> <p><b>9 Carburization and Metal Dusting </b><b>245</b></p> <p>9.1 Introduction 245</p> <p>9.2 Carburization 245</p> <p>9.3 Alloy Resistance to Carburization 251</p> <p>9.4 Metal Dusting Problem 255</p> <p>9.5 Metal Dusting Mechanisms 256</p> <p>9.6 Alloy Resistance to Metal Dusting 260</p> <p>References 262</p> <p>Further Reading 263</p> <p><b>10 Nitridation </b><b>264</b></p> <p>10.1 Introduction 264</p> <p>10.2 Nitridation Mechanisms 264</p> <p>10.3 Nitridation in Industrial Media 265</p> <p>10.4 Questions and Problems 273</p> <p>References 274</p> <p>Further Reading 275</p> <p><b>11 Halogenation </b><b>276</b></p> <p>11.1 Introduction 276</p> <p>11.2 Metal–Halogen Reactions 277</p> <p>11.3 Alloy–Halogen Reactions 279</p> <p>11.4 Laboratory Studies 280</p> <p>11.5 Conclusions 282</p> <p>11.6 Questions 282</p> <p>References 282</p> <p>Further Reading 283</p> <p><b>12 Corrosion by Hydrogen and Water Vapor </b><b>284</b></p> <p>12.1 Introduction 284</p> <p>12.2 Corrosion by Hydrogen 284</p> <p>12.3 Corrosion by Water Vapor 290</p> <p>12.4 Conclusions 293</p> <p>References 294</p> <p>Further Reading 295</p> <p><b>13 Corrosion in Molten Salts </b><b>296</b></p> <p>13.1 Introduction 296</p> <p>13.2 Corrosion Process 296</p> <p>13.3 Thermodynamic Diagrams 298</p> <p>13.4 Corrosion Rate Measurements 299</p> <p>13.5 Test Methods 299</p> <p>13.6 Fluorides 303</p> <p>13.7 Chlorides 304</p> <p>13.8 Nitrates/nitrites 305</p> <p>13.9 Hydroxides 309</p> <p>13.10 Carbonates 309</p> <p>13.11 Vanadates 312</p> <p>13.12 Sulfates 314</p> <p>13.13 Prevention of Molten Salt Corrosion 321</p> <p>13.14 Summary 321</p> <p>References 322</p> <p>Further Reading 324</p> <p><b>14 Corrosion in Molten Metals </b><b>325</b></p> <p>14.1 Introduction 325</p> <p>14.2 Corrosive Processes 326</p> <p>14.3 Industrial Liquid Metals 332</p> <p>14.4 Conclusions 338</p> <p>References 339</p> <p>Further Reading 339</p> <p><b>15 Hot Corrosion </b><b>340</b></p> <p>15.1 Introduction 340</p> <p>15.2 Engine Description and Materials 340</p> <p>15.3 Early Studies 341</p> <p>15.4 Mechanisms of Hot Corrosion 349</p> <p>15.5 Hot Corrosion of Gas Turbine Alloys 351</p> <p>15.6 Methods of Evaluating Hot Corrosion 354</p> <p>15.7 Prevention of Corrosion 356</p> <p>15.8 Conclusions 358</p> <p>15.9 Questions 358</p> <p>References 359</p> <p>Further Reading 360</p> <p><b>16 Fireside Corrosion </b><b>361</b></p> <p>16.1 Introduction 361</p> <p>16.2 Coal-Fired Boilers 362</p> <p>16.3 Coal-ash Corrosion 371</p> <p>16.4 Oil-Fired Boilers 373</p> <p>16.5 Corrosion in Waste Incinerators 379</p> <p>16.6 Plant Experience with Fireside Corrosion 380</p> <p>16.7 Conclusions 388</p> <p>References 389</p> <p>Further Reading 389</p> <p><b>17 Testing and Evaluation </b><b>391</b></p> <p>17.1 Introduction 391</p> <p>17.2 Testing Equipment and Monitoring 392</p> <p>17.3 Optical Microscopy 394</p> <p>17.4 Thermogravimetry 395</p> <p>17.5 Spectroscopy 398</p> <p>17.6 Diffraction Techniques 402</p> <p>17.7 Electron Microscopy 409</p> <p>17.8 Electron Spectroscopy and Ion Scattering 416</p> <p>17.9 Surface Microscopy 424</p> <p>17.10 Optical Spectroscopy 428</p> <p>17.11 Nondestructive Inspection Techniques 439</p> <p>17.12 Traditional Electrochemical Methods 445</p> <p>17.13 Nontraditional Electrochemical Methods 453</p> <p>17.14 Combined Electrochemical Methods 459</p> <p>References 472</p> <p>Further Reading 475</p> <p><b>18 Protective Coatings </b><b>477</b></p> <p>18.1 Introduction 477</p> <p>18.2 Coating Systems 477</p> <p>18.3 Coating Processes 480</p> <p>18.4 Coating Degradation 496</p> <p>18.5 Summary and Future Trends 499</p> <p>18.6 Questions 500</p> <p>References 500</p> <p>Further Reading 501</p> <p><b>19 Examples of Engineering Importance </b><b>502</b></p> <p>19.1 Introduction 502</p> <p>19.2 Molten Carbonate Fuel Cells 504</p> <p>19.3 Solid Oxide Fuel Cells 516</p> <p>19.4 Direct Carbon Fuel Cells 524</p> <p>19.5 Nuclear Power Plants 531</p> <p>References 546</p> <p>Further Reading 549</p> <p><b>20 Case Studies </b><b>551</b></p> <p>20.1 Making Stainless Steels 551</p> <p>20.2 Corrosion Protection of Turbine Blades 551</p> <p>20.3 Oxidation of Silicides for VLSI Applications 556</p> <p>20.4 Naphthenic Acid Corrosion in Petrochemical Plants 560</p> <p>20.5 Oxidation of Ceramic Matrix Composites 562</p> <p>20.6 Shell Corrosion of Rotary Cement Kilns 563</p> <p>20.7 Corrosion of Steels in a Linear <i>𝛼</i>Olefin Plant 564</p> <p>References 565</p> <p>Further Reading 565</p> <p>Appendix A 566</p> <p>List of Acronyms 591</p> <p>Glossary of Selected Terms Used in High Temperature Corrosion 596</p> <p>Author Index 615</p> <p>Subject Index 629</p>
<p><b>CÉSAR A. C. SEQUEIRA, P<small>H</small>D,</b> has been a member of the faculty staff of Instituto Superior Técnico (Univ. of Lisbon), maintaining his academic career in fundamental and technological electrochemistry for more than 40 years. He is the author/co-author of over 250 professional papers, 500 scientific communications, 20 book chapters, and 12 books in the areas of corrosion science and technology, electrochemistry, and materials science. He has directed numerous workshops, including three on Microbial Corrosion of the European Federation of Corrosion. He is a Fellow of the Royal Society of Chemistry (U.K.) and of the Institute of Materials (U.K.), and is an Active Member of the Electrochemical Society. Currently, he is the Senior Research Leader on Electrochemistry of Materials at CeFEMA (Center of Physics and Engineering of Advanced Materials) in Lisbon.
<p><b>Reviews the science and engineering of high-temperature corrosion and provides guidelines for selecting the best materials for an array of system processes</b> <p>High-temperature corrosion (HTC) is a widespread problem in an array of industries, including power generation, aerospace, automotive, and mineral and chemical processing, to name a few. This book provides engineers, physicists, and chemists with a balanced presentation of all relevant basic science and engineering aspects of high-temperature corrosion. It covers most HTC types, including oxidation, sulfidation, nitridation, molten salts, fuel-ash corrosion, H<sub>2</sub>S/H<sub>2 </sub>corrosion, molten fluoride/HF corrosion, and carburization. It also provides corrosion data essential for making the appropriate choices of candidate materials for high-temperature service in process conditions. <p>HTC is a subject of increasing importance in many areas of science and engineering. Students, researchers, and engineers need to understand the processes that occur in high-temperature materials and equipment in common use today, especially in the chemical, gas, petroleum, electric power, metal manufacturing, automotive, and nuclear industries. <ul> <li>Provides engineers and scientists with the essential data needed to make the most informed decisions on materials selection</li> <li>Includes up-to-date information accompanied by more than 1,000 references, 80% of which from within the past fifteen years</li> <li>Presents details on systems of critical engineering importance, including corrosion induced by low- energy radionuclides</li> <li>Includes practical guidelines for testing and research in HTC, along with both the European and International Standards for high-temperature corrosion engineering</li> </ul> <p>Offering balanced, in-depth coverage of the fundamental science behind and engineering of HTC, <i>High Temperature Corrosion: Fundamentals and Engineering</i> is a valuable resource for academic researchers, students, and professionals in materials science, solid state physics, solid state chemistry, electrochemistry, metallurgy, and mechanical, chemical, and structural engineers.

Diese Produkte könnten Sie auch interessieren:

Fundamentals of Electrochemical Deposition
Fundamentals of Electrochemical Deposition
von: Milan Paunovic, Mordechay Schlesinger
PDF ebook
141,99 €
The Quantum in Chemistry
The Quantum in Chemistry
von: Roger Grinter
PDF ebook
45,99 €
Physical Chemistry
Physical Chemistry
von: Paul M. S. Monk
PDF ebook
59,95 €