Details

Epigenetics and Human Health


Epigenetics and Human Health

Linking Hereditary, Environmental and Nutritional Aspects
1. Aufl.

von: Alexander Haslberger, Sabine Greßler

142,99 €

Verlag: Wiley-Blackwell
Format: PDF
Veröffentl.: 24.09.2009
ISBN/EAN: 9783527628391
Sprache: englisch
Anzahl Seiten: 316

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

After first introducing the concept of epigenetics, this handbook and ready reference provides an overview of the main research on epigenetics. It adopts a multidisciplinary approach, involving molecular biology, molecular epidemiology and nutritional science, with a special focus of the book is on disease prevention and treatment. <br> Of interest to all healthcare-related professionals as well as nutritionists, and the medical community focusing on disease prevention.<br>
<p>Preface xv</p> <p>List of Contributors xvii</p> <p><b>Part I General Introduction</b></p> <p><b>1 The Research Program in Epigenetics: The Birth of a New Paradigm 3<br /> </b><i>Paolo Vineis</i></p> <p>References 5</p> <p><b>2 Interactions Between Nutrition and Health 7<br /> </b><i>Ibrahim Elmadfa</i></p> <p>2.1 Introduction 7</p> <p>2.2 Epigenetic Effects of the Diet 8</p> <p>2.3 Current Nutrition Related Health Problems 8</p> <p>References 9</p> <p><b>3 Epigenetics: Comments from an Ecologist 11<br /> </b><i>Fritz Schiemer</i></p> <p>References 12</p> <p><b>4 Interaction of Hereditary and Epigenetic Mechanisms in the Regulation of Gene Expression 13<br /> </b><i>Thaler Roman, Eva Aumüller, Carolin Berner, and Alexander G. Haslberger</i></p> <p>4.1 Hereditary Dispositions 13</p> <p>4.2 The Epigenome 14</p> <p>4.3 Epigenetic Mechanisms 15</p> <p>4.3.1 Methylation 15</p> <p>4.3.2 Histone Modifications 18</p> <p>4.3.3 Micro RNAs 20</p> <p>4.4 Environmental Influences 20</p> <p>4.4.1 Nutritional and Environmental Effects in Early Life Conditions 20</p> <p>4.4.2 Environmental Pollution and Toxins 22</p> <p>4.5 Dietary Effects 22</p> <p>4.5.1 Nutrition and the Immune System 26</p> <p>4.5.2 Nutrition and Aging 26</p> <p>4.6 Inheritance and Evolutionary Aspects 28</p> <p>4.7 Conclusion 29</p> <p>References 30</p> <p><b>Part II Hereditary Aspects</b></p> <p><b>5 Methylenetetrahydrofolate Reductase C677T and A1298C Polymorphisms and Cancer Risk: A Review of the Published Meta-Analyses 37<br /> </b><i>Stefania Boccia</i></p> <p>5.1 Key Concepts of Population-Based Genetic Association Studies 37</p> <p>5.1.1 Definition and Goals of Genetic Epidemiology 37</p> <p>5.1.2 Study Designs in Genetic Epidemiology 38</p> <p>5.1.3 The Human Genome 38</p> <p>5.1.4 Meta-Analysis in Genetic Epidemiology 39</p> <p>5.1.5 Human Genome Epidemiology Network 40</p> <p>5.1.6 “Mendelian Randomization” 41</p> <p>5.2 Methylenetetrahydrofolate Reductase Gene Polymorphisms (C677T and A1298C) and Its Association with Cancer Risk 41</p> <p>5.2.1 Gene and Function 41</p> <p>5.2.2 C677T and A1298C Gene Variants 43</p> <p>5.2.3 Gene–Environment Interaction 43</p> <p>5.3 Meta-Analyses of Methylenetetrahydrofolate Reductase C677T and A1298C Polymorphisms and Cancer 44</p> <p>References 47</p> <p><b>6 The Role of Biobanks for the Understanding of Gene–Environment Interactions 51<br /> </b><i>Christian Viertler, Michaela Mayrhofer, and Kurt Zatloukal</i></p> <p>6.1 Background 51</p> <p>6.1.1 What Purpose Do Different Biobank Formats Serve? 52</p> <p>6.1.2 Why Do We Need Networks of Biobanks? 53</p> <p>6.2 The Investigation of Gene–Environment Interactions as a Challenge for Biobanks 55</p> <p>6.2.1 How to Evaluate Risk Factors for Metabolic Syndrome and Steatohepatitis? 58</p> <p>6.2.2 Why Are Biobanks Needed in This Context and What Challenges Do They Have to Face? 58</p> <p>References 60</p> <p><b>7 Case Studies on Epigenetic Inheritance 63<br /> </b><i>Gunnar Kaati</i></p> <p>7.1 Introduction 64</p> <p>7.2 Methodology 65</p> <p>7.2.1 On the Study of Epigenetic Inheritance 65</p> <p>7.2.2 The Ideal Study Design 66</p> <p>7.2.3 The Överkalix Cohorts of 1890, 1905 and 1920 67</p> <p>7.2.4 The ALSPAC Data Set 68</p> <p>7.2.5 The Proband’s Childhood 68</p> <p>7.2.6 Food Availability 69</p> <p>7.2.7 Ancestors’ Experience of Crises 69</p> <p>7.2.8 Growth Velocity 69</p> <p>7.3 Patterns of Transgenerational Responses 70</p> <p>7.3.1 The Social Context 70</p> <p>7.3.2 The Ancestors’ Nutrition 71</p> <p>7.3.3 Longevity and Paternal Ancestors’ Nutrition 71</p> <p>7.3.4 The Influence of Nutrition During the Slow Growth Period on Cardiovascular and Diabetes Mortality 72</p> <p>7.3.5 Is Human Epigenetic Inheritance Mediated by the Sex Chromosomes? 73</p> <p>7.3.5.1 Paternal Initiation of Smoking and Pregnancy Outcome 75</p> <p>7.3.6 Epigenetic Inheritance, Early Life Circumstances and Longevity 75</p> <p>7.3.7 How to Explain the Effects of Food Availability During SGP on Human Health? 76</p> <p>7.3.7.1 Genetic Selection Through Differential Survival or Fertility? 76</p> <p>7.3.7.2 Chromosomal Transmission of Nutritionally Induced Epigenetic Modifications 76</p> <p>7.4 Epigenetic Inheritance 77</p> <p>7.4.1 Fetal Programming and Epigenetic Inheritance 78</p> <p>7.5 Future Directions 80</p> <p>7.6 Conclusions 81</p> <p>References 83</p> <p><b>Part III Environmental and Toxicological Aspects</b></p> <p><b>8 Genotoxic, Non-Genotoxic and Epigenetic Mechanisms in Chemical Hepatocarcinogenesis: Implications for Safety Evaluation 89<br /> </b><i>Wilfried Bursch</i></p> <p>8.1 Introduction 90</p> <p>8.2 Genotoxic and Non-Genotoxic Chemicals in Relation to the Multistage Model of Cancer Development 91</p> <p>8.2.1 Tumor Initiation 91</p> <p>8.2.2 Tumor Promotion 92</p> <p>8.2.3 Tumor Progression 93</p> <p>8.2.4 Cellular and Molecular Mechanisms of Tumor Initiation and Promotion 93</p> <p>8.2.5 Epigenetic Effects of Genotoxic and Non-Genotoxic Hepatocarcinogens 96</p> <p>8.2.6 How Carcinogens Alter the Microenvironment – Crucial Roles of Inflammation 97</p> <p>8.3 Concluding Remarks 97</p> <p>References 99</p> <p><b>9 Carcinogens in Foods: Occurrence, Modes of Action and Modulation of Human Risks by Genetic Factors and Dietary Constituents 105<br /> </b><i>M. Mišík, A. Nersesyan, W. Parzefall, and S. Knasmüller</i></p> <p>9.1 Introduction 105</p> <p>9.2 Genotoxic Carcinogens in Human Foods 106</p> <p>9.2.1 Polycyclic Aromatic Hydrocarbons 107</p> <p>9.2.2 Nitrosamines 107</p> <p>9.2.3 Heterocyclic Aromatic Amines (HAAs) and Other Thermal Degradation Products 108</p> <p>9.2.4 Mycotoxins 109</p> <p>9.2.5 Food Additives and Carcinogens in Plant-Derived Foods 109</p> <p>9.2.6 Alcohol 111</p> <p>9.3 Contribution of Genotoxic Dietary Carcinogens to Human Cancer Risks 111</p> <p>9.4 Protective Effects of Dietary Components Towards DNA-Reactive Carcinogens 112</p> <p>9.5 Gene Polymorphisms Affecting the Metabolism of Genotoxic Carcinogens 114</p> <p>9.6 Concluding Remarks, Epigenetics and Outlook 118</p> <p>References 118</p> <p><b>Part IV Nutritional Aspects</b></p> <p><b>10 From Molecular Nutrition to Nutritional Systems Biology 127<br /> </b><i>Guy Vergères</i></p> <p>10.1 Impact of Life Sciences on Molecular Nutrition Research 127</p> <p>10.2 Nutrigenomics 129</p> <p>10.2.1 Genomics and Nutrition Research 129</p> <p>10.2.2 Transcriptomics and Nutrition Research 130</p> <p>10.2.3 Proteomics and Nutrition Research 131</p> <p>10.2.4 Metabolomics and Nutrition Research 132</p> <p>10.3 Nutrigenetics 133</p> <p>10.4 Nutri-Epigenetics 135</p> <p>10.5 Nutritional Systems Biology 137</p> <p>10.6 Ethics and Socio-Economics of Modern Nutrition Research 137</p> <p>References 139</p> <p><b>11 Effects of Dietary Natural Compounds on DNA Methylation Related to Cancer Chemoprevention and Anticancer Epigenetic Therapy 141<br /> </b><i>Barbara Maria Stefanska and Krystyna Fabianowska-Majewska</i></p> <p>11.1 Introduction 141</p> <p>11.2 DNA Methylation Reaction 142</p> <p>11.3 Implication of the Selected Natural Compounds in DNA Methylation Regulation 144</p> <p>11.3.1 ATRA, Vitamin D<sub>3</sub> , Resveratrol, and Genistein 144</p> <p>11.3.1.1 Involvement of p21 WAF1/CIP1 and Rb/E2F Pathway in Regulation of DNMT1 147</p> <p>11.3.1.2 Involvement of the AP-1 Transcriptional Complex in Regulation of DNMT1 148</p> <p>11.3.2 Polyphenols with a Catechol Group 149</p> <p>11.4 Conclusions and Future Perspectives 151</p> <p>References 152</p> <p><b>12 Health Determinants Throughout the Life Cycle 157<br /> </b><i>Petra Rust</i></p> <p>12.1 Introduction 157</p> <p>12.2 Pre- and Postnatal Determinants 159</p> <p>12.3 Determinants During Infancy and Adulthood 160</p> <p>12.4 Determinants in Adults and Older People 160</p> <p>12.5 Interactions Throughout the Lifecycle 161</p> <p>12.6 Intergenerational Effects 161</p> <p>References 162</p> <p><b>Part V Case Studies</b></p> <p><b>13 Viral Infections and Epigenetic Control Mechanisms 167<br /> </b><i>Klaus R. Huber</i></p> <p>13.1 The Evolutionary Need for Control Mechanisms 167</p> <p>13.2 Control by RNA Silencing 168</p> <p>13.3 Viral Infections and Epigenetic Control Mechanisms 169</p> <p>13.3.1 RNA Silencing in Plants 169</p> <p>13.3.2 RNA Silencing in Fungi 170</p> <p>13.3.3 RNA Silencing in Mammals 170</p> <p>13.4 Epigenetics and Adaptive Immune Responses 171</p> <p>References 171</p> <p><b>14 Epigenetics Aspects in Gyneacology and Reproductive Medicine 173<br /> </b><i>Alexander Just and Johannes Huber</i></p> <p>References 178</p> <p><b>15 Epigenetics and Tumorigenesis 179<br /> </b><i>Heidrun Karlic and Franz Varga</i></p> <p>15.1 Introduction 179</p> <p>15.2 Role of Metabolism Within the Epigenetic Network 181</p> <p>15.3 Epigenetic Modification by DNA Methylation During Lifetime 183</p> <p>15.4 Interaction of Genetic and Epigenetic Mechanisms in Cancer 184</p> <p>15.5 DNA Methylation in Normal and Cancer Cells 185</p> <p>15.6 Promoter Hypermethylation in Hematopoietic Malignancies 186</p> <p>15.7 Hypermethylated Gene Promoters in Solid Cancers 187</p> <p>15.8 Interaction DNA Methylation and Chromatin 188</p> <p>References 190</p> <p><b>16 Epigenetic Approaches in Oncology 195<br /> </b><i>Sabine Zöchbauer-Müller and Robert M. Mader</i></p> <p>16.1 Introduction 195</p> <p>16.2 DNA Methylation, Chromatin and Transcription 196</p> <p>16.3 Methods for Detecting Methylation 197</p> <p>16.4 The Paradigm of Lung Cancer 198</p> <p>16.4.1 Frequently Methylated Tumor Suppressor Genes and Other Cancer-Related Genes in Lung Carcinomas 199</p> <p>16.4.2 Monitoring of DNA Methylation in Blood Samples 200</p> <p>16.5 Epigenetics and Therapy 200</p> <p>16.6 Epigenetic Alterations Under Cytotoxic Stress 201</p> <p>16.7 Therapeutic Applications of Inhibitors of DNA Methylation 202</p> <p>16.8 How May Methylation Become Relevant to Clinical Applications? 203</p> <p>16.9 Conclusions 204</p> <p>References 205</p> <p><b>17 Epigenetic Dysregulation in Aging and Cancer 209<br /> </b><i>Despina Komninou and John P. Richie</i></p> <p>17.1 Introduction 210</p> <p>17.2 The Cancer-Prone Metabolic Phenotype of Aging 210</p> <p>17.3 Age-Related Epigenetic Silencing Via DNA Methylation 212</p> <p>17.4 Inflammatory Control of Age-Related Epigenetic Regulators 214</p> <p>17.5 Lessons from Anti-Aging Modalities 215</p> <p>17.6 Conclusions 217</p> <p>References 218</p> <p><b>18 The Impact of Genetic and Environmental Factors in Neurodegeneration: Emerging Role of Epigenetics 225<br /> </b><i>Lucia Migliore and Fabio Coppedè</i></p> <p>18.1 Neurodegenerative Diseases 225</p> <p>18.2 The Role of Causative and Susceptibility Genes in Neurodegenerative Diseases 226</p> <p>18.3 The Contribution of Environmental Factors to Neurodegenerative Diseases 231</p> <p>18.4 Epigenetics, Environment and Susceptibility to Human Diseases 233</p> <p>18.5 Epigenetics and Neurodegenerative Diseases 234</p> <p>18.6 The Epigenetic Role of the Diet in Neurodegenerative Diseases 237</p> <p>18.7 Concluding Remarks 238</p> <p>References 239</p> <p><b>19 Epigenetic Biomarkers in Neurodegenerative Disorders 245<br /> </b><i>Borut Peterlin</i></p> <p>19.1 Introduction 245</p> <p>19.2 Epigenetic Marks in Inherited Neurological and Neurodegenerative Disorders 246</p> <p>19.3 Epigenetic Dysregulation in Neurodegenerative Disorders 247</p> <p>19.4 Gene Candidates for Epigenetic Biomarkers 248</p> <p>19.5 Conclusions 249</p> <p>References 250</p> <p><b>20 Epigenetic Mechanisms in Asthma 253<br /> </b><i>Rachel L. Miller and Julie Herbstman</i></p> <p>20.1 Introduction 253</p> <p>20.2 Epigenetic Mechanisms 255</p> <p>20.3 Fetal Basis of Adult Disease 255</p> <p>20.4 Fetal Basis of Asthma 256</p> <p>20.5 Experimental Evidence 257</p> <p>20.6 Epigenetic Mechanisms in Asthma 257</p> <p>20.7 Cell-Specific Responses 259</p> <p>20.8 Conclusion 259</p> <p>References 260</p> <p><b>Part VI Ways to Translate the Concept</b></p> <p><b>21 Public Health Genomics – Integrating Genomics and Epigenetics into National and European Health Strategies and Policies 267<br /> </b><i>Tobias Schulte in den Bäumen and Angela Brand</i></p> <p>21.1 Public Health and Genomics 267</p> <p>21.2 The Bellagio Model of Public Health Genomics 268</p> <p>21.3 The Public Health Genomics European Network 271</p> <p>21.4 From Public Health Genomics to Public Health and Epigenetics/ Epigenomics 272</p> <p>21.5 Health in All Policies – Translating Epigenetics/Epigenomics into Policies and Practice 272</p> <p>21.6 Health in All Policies as a Guiding Concept for European Policies 273</p> <p>21.7 Relative Risk and Risk Regulation – A Model for the Regulation of Epigenetic Risks? 274</p> <p>21.8 Attributable Risks and Risk Regulation 275</p> <p>21.9 Translating Attributable Risks into Policies 275</p> <p>21.10 Limits to the Concept of Health in All Policies in Genomics and Epigenetics 277</p> <p>21.11 Conclusion 278</p> <p>References 278</p> <p><b>22 Taking a First Step: Epigenetic Health and Responsibility 281<br /> </b><i>Astrid H. Gesche</i></p> <p>22.1 Introduction 281</p> <p>22.2 Responding to Epigenetic Challenges 282</p> <p>22.3 Responsibility and Public Health Care Policy 283</p> <p>22.4 Conclusion 284</p> <p>References 285</p> <p>Index 287</p>
Alexander G Haslberger is group leader at the Department for Nutritional Sciences at the University of Vienna where he also received his academic degrees. He worked in research groups of the Sandoz Research Inst., the University of Minnesota, the WHO in Geneva and headed a group at the Fed. Ministry of Health, Vienna. He participated in the preparation of the WHO report on modern food biotechnology, the UN Millennium Ecosystem Assessment, the preparation of the OECD conference on genetic testing, Vienna 2000, the Public Health Genomic EC network, EC research projects and in WHO expert groups.

Diese Produkte könnten Sie auch interessieren:

Automatische genetische Analytik
Automatische genetische Analytik
von: Jörg vom Stein, Thomas Schäfer, Günter Mertes
PDF ebook
67,99 €
Grüne Gentechnik im Widerstreit
Grüne Gentechnik im Widerstreit
von: Wolfgang van den Daele, Herbert Sukopp, Alfred Pühler
PDF ebook
53,99 €