Details

Donor-Acceptor Cyclopropanes in Organic Synthesis


Donor-Acceptor Cyclopropanes in Organic Synthesis


1. Aufl.

von: Prabal Banerjee, Akkattu T. Biju

133,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 09.02.2024
ISBN/EAN: 9783527835645
Sprache: englisch
Anzahl Seiten: 464

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Donor-Acceptor Cyclopropanes in Organic Synthesis</b> <p><b>Facilitate milder, simpler reactions in organic synthesis with this cutting-edge family of building blocks</b> <p>Donor-Accepted Cyclopropanes, or DACs, have attracted a resurgence of interest from organic chemists in recent decades for their role in facilitating various reactions such as cycloadditions, annulations, ring-opening and enantioselective transformations. The structural arrangement of DACs leads to milder, simpler reaction conditions, which have made them indispensable for a range of fundamentally and industrially important processes. <p><i>Donor-Acceptor Cyclopropanes in Organic Synthesis</i> covers comprehensively the chemistry and applications of this compound class. The result is an invaluable guide for any researcher looking to bring DACs to bear in their own areas of research or development. <p>Readers will also find: <ul><li>A brief introduction of the history and reactivity of DACs</li> <li>Detailed discussion of reactions including Lewis acid-catalyzed cycloadditions, metal-free activation, asymmetric transformations, organocatalysis, and many more</li> <li>Application of DACs in natural product synthesis and pharmaceutical/agrochemical research</li></ul> <p><i>Donor-Acceptor Cyclopropanes in Organic Synthesis</i> is ideal for organic chemists, experts in catalysis, pharmaceutical researchers, and any other scientists interested in facilitating milder, simpler reactions.
<p>Preface xiii</p> <p><b>1 Introduction to the Chemistry of Donor–Acceptor Cyclopropanes: A Historical and Personal Perspective 1<br /> </b><i>Hans-Ulrich Reissig</i></p> <p>1.1 Introduction 1</p> <p>1.2 My Personal Entry to Donor–Acceptor Cyclopropanes 3</p> <p>1.3 A Few Principles of the Chemistry of Donor–Acceptor Cyclopropanes 6</p> <p>1.4 Remarks Regarding the Terminology Applied to the Use of Donor–Acceptor Cyclopropanes 10</p> <p>1.5 Conclusions 12</p> <p>Abbreviations 12</p> <p>References 13</p> <p><b>2 Understanding the Reactivity of Donor–Acceptor Cyclopropanes: Structural and Electronic Analysis 15<br /> </b><i>Anu Jacob, Gwyndaf A. Oliver, and Daniel B. Werz</i></p> <p>2.1 Introduction 15</p> <p>2.2 Activated Cyclopropanes 17</p> <p>2.3 Donor–Acceptor Cyclopropanes (DACs) 19</p> <p>2.4 Computational and Kinetic Investigations 22</p> <p>2.5 Concluding Remarks 32</p> <p>References 32</p> <p><b>3 Cycloaddition and Annulation Reactions of Donor–Acceptor Cyclopropanes 37<br /> </b><i>Roman A. Novikov, Denis D. Borisov, and Yury V. Tomilov</i></p> <p>3.1 Introduction 37</p> <p>3.2 Formal [3+2]-Cycloaddition with Carbon–Carbon Multiple Bonds 39</p> <p>3.2.1 General Aspects 39</p> <p>3.2.2 Formal [3+2]-Cycloaddition with C=C Double Bond 40</p> <p>3.2.3 Formal [3+2]-Cycloaddition with Triple C≡C Bond 50</p> <p>3.2.4 [3+2]-Annulation with Aromatic C=C Bond 53</p> <p>3.2.5 [3+2]-Annulation of D–A Cyclopropanes Involving Aryl/Heteroaryl Donor Substituent 57</p> <p>3.3 Formal [3+2]-Cycloaddition with C=O and C=N Double Bond 59</p> <p>3.3.1 Formal [3+2]-Cycloaddition with C=O Double Bond 59</p> <p>3.3.2 Formal [3+2]-Cycloaddition with C=N Double Bond 66</p> <p>3.4 Formal [3+2]-Cycloaddition with Other Heteroatom X=Y Double Bonds 73</p> <p>3.4.1 Formal [3+2]-Cycloaddition with Cumulenes and Heterocumulenes 73</p> <p>3.4.2 Formal [3+2]-Cycloaddition with SCN and SeCN 76</p> <p>3.4.3 Formal [3+2]-Cycloaddition with C=S and C=Se Double Bonds 77</p> <p>3.4.4 Formal [3+2]-Cycloaddition with N=O and N=N Double Bonds 78</p> <p>3.4.5 Formal [3+2]-Cycloaddition with C≡N Triple Bonds in Nitriles 80</p> <p>3.4.6 Formal [3+2]-Cycloaddition and Other Reactions with Three-Membered Heterocycles 80</p> <p>3.5 Formal [3+3]-Cycloaddition and Annulation Reactions of D–A Cyclopropanes 83</p> <p>3.5.1 General Aspects 83</p> <p>3.5.2 [3+3]-Annulation with Aromatic Substrates as 1,3-Synthons 84</p> <p>3.5.3 [3+3]-Annulation with Allenes, Allyl, and Propargyl Derivatives 87</p> <p>3.5.4 [3+3]-Annulation with Mercaptoacetaldehyde 88</p> <p>3.5.5 [3+3]-Cycloaddition with Nitrones and Nitronates 89</p> <p>3.5.6 [3+3]-Annulation/Cycloaddition with Dinitrogen Substrates 93</p> <p>3.5.7 Formal [3+3]-Cycloaddition with Azides and Diazo Compounds 94</p> <p>3.6 Reactions of Formal [4+3]-Cycloaddition and Annulation with Diene and Heterodiene Systems 96</p> <p>3.6.1 Dienes as Traps for 1,3-Zwitterions 97</p> <p>3.6.2 Reactions of [4+3]-Cyclization with Heterodiene Systems and Their Analogs 99</p> <p>3.7 Other Formal [n+m]-Cycloaddition and Annulation Processes 102</p> <p>3.7.1 Formal [8+3]-Cycloaddition Reactions 102</p> <p>3.7.2 Other Formal Stepwise “High-Order” Cycloaddition/Annulation Reactions 103</p> <p>3.7.3 Formal [3+1]- and [3+1+1]-Cycloadditions 105</p> <p>3.7.4 Cycloaddition/Annulation Reactions Proceed via Generation of β-Styrylmalonates 106</p> <p>3.7.5 GaCl 3 -Mediated Cycloaddition/Annulation Reactions via Generation of 1,2-Zwitterionic Intermediates 109</p> <p>3.8 Cyclodimerization Reactions of D–A Cyclopropanes 112</p> <p>3.9 Miscellaneous Reactions, Stepwise Cyclization Reactions, Cyclizations with Involvement of Functional Groups 118</p> <p>3.9.1 Stepwise Cyclization Using Substrates with Two Nitrogen Atoms 118</p> <p>3.9.2 Some Other Cascade and Miscellaneous Formal Cycloaddition Reactions for Cyclopropanedicarboxylates 119</p> <p>3.9.3 Formal Cycloaddition and Cyclization Reactions for 2-Aryl D–A Cyclopropanes Containing Active Substituent in Ortho-Position 122</p> <p>3.9.4 Cyclization Reactions of D–A Cyclopropanes with Additional CHO Group in Donor Part 123</p> <p>3.9.5 Miscellaneous Cyclizations with Phenols and Nitrogen-Containing Heterocycles 124</p> <p>3.9.6 Some Cyclization Reactions of 1,1-Dicyano Cyclopropanes 125</p> <p>3.9.7 Miscellaneous Cyclizations with Sulfur Reagents 126</p> <p>3.9.8 Cyclizations of Cyclopropanes Containing Carbonyl Group as an Acceptor with Amine Reagents 127</p> <p>3.9.9 Miscellaneous Reactions 128</p> <p>References 129</p> <p><b>4 Activation of Donor–Acceptor Cyclopropanes under Covalent Organocatalysis: Enamine, Iminium, NHC, Phosphine and Tertiary Amine Catalysis 139<br /> </b><i>Efraim Reyes, Liher Prieto, Luisa Carrillo, Uxue Uria, and Jose L. Vicario</i></p> <p>4.1 Introduction 139</p> <p>4.2 Secondary Amine Catalysis: Enamine Activation 141</p> <p>4.3 Secondary Amine Catalysis: Iminium Ion Activation 144</p> <p>4.4 NHC Catalysis: Activation Through Breslow Intermediates 148</p> <p>4.5 Phosphine or Tertiary Amine Catalysis 157</p> <p>4.6 Conclusion 162</p> <p>References 162</p> <p><b>5 Ring-Opening 1,3-Bisfunctionalization of Donor–Acceptor Cyclopropanes 167<br /> </b><i>Avishek Guin and Akkattu T. Biju</i></p> <p>5.1 Introduction 168</p> <p>5.2 Enantioselective 1,3-Dichlorination of Formyl Group-Containing Cyclopropanes 168</p> <p>5.3 Ring-Opening 1,3-Dichlorination of D–A Cyclopropanes 169</p> <p>5.4 1,3-Chlorochalcogenation of Cyclopropyl Carbaldehydes 170</p> <p>5.5 1,3-Bisfunctionalization of D–A Cyclopropanes with Arenes and Nitrosoarenes 172</p> <p>5.6 1-Amino-3-Aminomethylation of D–A Cyclopropanes 173</p> <p>5.7 1,3-Halochalcogenation of D–A Cyclopropanes 174</p> <p>5.8 1,3-Aminobromination of D–A Cyclopropanes 175</p> <p>5.9 Reaction of D–A Cyclopropanes with 4,5-Diazaspiro[2.4] hept-4-enes 176</p> <p>5.10 Four-Component Coupling of D–A Cyclopropanes 177</p> <p>5.11 1,3-Aminochalcogenation of Donor–Acceptor Cyclopropanes 178</p> <p>5.12 1,3-Bisfunctionalization of Donor–Acceptor Containing Cyclopropyl Boronic Ester 178</p> <p>5.13 1,3-Halogenation–Peroxidation of D–A Cyclopropanes 178</p> <p>5.14 1,3-Aminothiolation of D–A Cyclopropanes Using Sulfenamides 180</p> <p>5.15 1,3-Bisarylation of D–A Cyclopropanes with Electron-Rich Arenes and Hypervalent Arylbismuth Reagents 181</p> <p>5.16 Conversion of D–A Cyclopropanes to β-Hydroxy Ketones 182</p> <p>5.17 1,3-Carbothiolation of D–A Cyclopropanes 183</p> <p>5.18 1,3-Haloamination of D–A Cyclopropanes Employing Copper Salt and <i>N-Fluorobenzenesulfonimide 184</i></p> <p>5.19 Ring-Opening 1,3-Carbocarbonation of D–A Cyclopropanes 185</p> <p>5.20 1,3-Aminofunctionalization of D–A Cyclopropanes 187</p> <p>5.21 Conclusion 188</p> <p>References 188</p> <p><b>6 Molecular Rearrangements in Donor–Acceptor Cyclopropanes 191<br /> </b><i>Igor V. Trushkov and Olga A. Ivanova</i></p> <p>6.1 Introduction 191</p> <p>6.2 Donor–Acceptor Cyclopropane Isomerizations to Alkenes (Cyclopropane–Propene Rearrangement) 192</p> <p>6.3 Vinylcyclopropane–Cyclopentene Rearrangement 197</p> <p>6.4 Cloke–Wilson Rearrangement and Related Processes 202</p> <p>6.4.1 Rearrangement of Acyl-substituted Cyclopropanes to 2,3-dihydrofurans 202</p> <p>6.4.2 The Cloke–Wilson Rearrangements Affording Pyrrole Derivatives 208</p> <p>6.4.3 The Related Rearrangements Affording Other Heterocycles 209</p> <p>6.5 Nazarov Reaction and its Homo-Version 210</p> <p>6.6 The Cope Rearrangement and Related Isomerizations of Donor– Acceptor Cyclopropanes 215</p> <p>6.7 Intramolecular Nucleophilic Ring Opening/Ring Closure and Related Processes 218</p> <p>References 221</p> <p><b>7 Donor–Acceptor Cyclopropanes with an Amino Group as Donor 227<br /> </b><i>Ming-Ming Wang and Jerome Waser</i></p> <p>7.1 Introduction 227</p> <p>7.2 Synthesis of DA Aminocyclopropanes 229</p> <p>7.2.1 Synthesis of DA Aminocyclopropanes from β-Dehydroamino Acids (Route A) 231</p> <p>7.2.2 Synthesis of DA Aminocyclopropanes from Enamines (Route B) 231</p> <p>7.2.3 Synthesis of DA Aminocyclopropanes from Acrylates (Route C) 233</p> <p>7.2.4 Synthesis of DA Aminocyclopropanes from Cyclopropene (Route D1) 233</p> <p>7.2.5 Synthesis of DA Aminocyclopropanes from 2-Haloethylidene Malonates (Route D2) 233</p> <p>7.2.6 Synthesis of DA Aminocyclopropanes from Cyclopropylamines (Route E) 234</p> <p>7.3 Ring-Opening Reactions of DA Aminocyclopropanes 235</p> <p>7.3.1 Intramolecular Ring-Opening of DA Aminocyclopropanes 236</p> <p>7.3.2 Intermolecular Ring-Opening of DA Aminocyclopropanes 240</p> <p>7.4 Formal Cycloaddition of DA Aminocyclopropanes 244</p> <p>7.5 Conclusion 250</p> <p>Abbreviations 250</p> <p>References 251</p> <p><b>8 Reactivity of Cyclopropyl Monocarbonyls 255<br /> </b><i>Pankaj Kumar, Irshad Maajid Taily, Priyanka Singh, and Prabal Banerjee</i></p> <p>8.1 Introduction 255</p> <p>8.2 Associated Challenges 256</p> <p>8.2.1 Reduced Reactivity 256</p> <p>8.2.2 Diastereomers and Controlled Reactivity 257</p> <p>8.3 Perks of Having a Monocarbonyl Substituent on Cyclopropane 258</p> <p>8.3.1 DAC Monocarbonyls— Not Merely a Three-Carbon Synthon 258</p> <p>8.3.2 Two Nucleophilic and Two Electrophilic Sites 258</p> <p>8.3.3 Cyclopropane Mono-Carbonyls in Organocatalysis 259</p> <p>8.4 Methods for the Preparation of Cyclopropyl Monocarbonyls 260</p> <p>8.4.1 From Olefins 260</p> <p>8.4.1.1 Corey–Chaykovsky Reaction 260</p> <p>8.4.1.2 Hydroformylation of Cyclopropenes 261</p> <p>8.4.1.3 Ozonolysis of Vinyl Cyclopropanes 261</p> <p>8.4.2 From Homoaldol Adducts 261</p> <p>8.4.3 From Arylthio Cyclopropyl Carbaldehydes 262</p> <p>8.4.4 From Diazo Compounds 262</p> <p>8.4.5 From 1,2-Dicarbonyl Compounds 263</p> <p>8.5 Cyclopropyl Monocarbonyls in Important Heterocyclic Synthesis 264</p> <p>8.5.1 Metal Catalyzed Annulation Reactions of Cyclopropyl Monocarbonyls 264</p> <p>8.5.2 Ring Expansion and Ring-Opening Reactions of Cyclopropyl Monocarbonyls 267</p> <p>8.6 Application in Total Synthesis 270</p> <p>References 270</p> <p><b>9 Chemistry of Aroyl- and Nitro-Substituted Donor–Acceptor Cyclopropanes 273<br /> </b><i>Thangavel Selvi and Kannupal Srinivasan</i></p> <p>9.1 Introduction 273</p> <p>9.2 Synthesis of Aroyl-Substituted D–A Cyclopropanes 274</p> <p>9.3 Synthetic Applications of Aroyl-Substituted D–A Cyclopropanes 276</p> <p>9.3.1 AlCl 3 or SnCl 4 -Mediated Ring-Opening Reactions 276</p> <p>9.3.2 TiCl 4 -Mediated Ring-Opening Reactions 278</p> <p>9.3.3 Ring-Opening Reactions with Hydrazines 278</p> <p>9.3.4 Ring-Opening Reactions with 1-Naphthylamines 280</p> <p>9.3.5 (3 + 2) Annulations with Nitriles 280</p> <p>9.3.6 (3 + 3) Annulation with Mercaptoacetaldehyde 282</p> <p>9.3.7 Conversion of Aroyl-Substituted D–A Cyclopropanes into γ-Butyrolactone-Fused D–A Cyclopropanes and their Synthetic Applications 285</p> <p>9.3.8 Works from Yang and Sekar Research Groups 286</p> <p>9.4 Synthesis of Nitro-Substituted D–A Cyclopropanes 289</p> <p>9.5 Synthetic Applications of Nitro-Substituted D–A Cyclopropanes 291</p> <p>9.5.1 BF 3 -Mediated Ring-Opening Reactions 291</p> <p>9.5.2 Reactions with Nitriles 292</p> <p>9.5.3 Reactions with Activated Aromatics 293</p> <p>9.5.4 Reaction with Mercaptoacetaldehyde Dimer 293</p> <p>9.5.5 Ring-Opening Reactions with 2-Aminopyridines 294</p> <p>9.5.6 Works from He, Xia, and Asahara Groups 296</p> <p>9.6 Conclusion 297</p> <p>References 298</p> <p><b>10 Metal-Free Activation of the Donor–Acceptor Cyclopropanes: Protic Acids, Bases, and Thermal Reactions 301<br /> </b><i>Lijia Wang and Yong Tang</i></p> <p>10.1 Introduction 301</p> <p>10.2 Metal-Free Electrophilic Activation of D–A Cyclopropanes 302</p> <p>10.3 Metal-Free Nucleophilic Activation of D–A Cyclopropanes 313</p> <p>10.4 Catalyst-Free Activation of D–A Cyclopropanes 319</p> <p>10.5 Metal-Free Activation of D–A Cyclopropanes via Radical, SET, and Photopromoted Process 327</p> <p>10.6 Conclusion 329</p> <p>References 330</p> <p><b>11 Asymmetric Catalytic Activation of Donor–Acceptor Cyclopropanes 333<br /> </b><i>Yong Xia, Xiaohua Liu, and Xiaoming Feng</i></p> <p>11.1 Introduction 333</p> <p>11.2 Chiral Lewis Acid-Catalyzed Reactions of D–A Cyclopropanes 334</p> <p>11.2.1 Asymmetric Reactions of Two-Substituted Cyclopropane-1,1-Dicarboxylates 334</p> <p>11.2.1.1 Ring-Opening Reactions 334</p> <p>11.2.1.2 [3 + n] Annulations 337</p> <p>11.2.2 Asymmetric Reactions of 2-Substituted Cyclopropane-1,1-Diketones 341</p> <p>11.3 Chiral Low-Valent Transition Metal Promoted Reactions of Vinyl Cyclopropanes 343</p> <p>11.3.1 Ring-Opening Reactions 344</p> <p>11.3.2 [3 + n] Annulations 345</p> <p>11.4 Chiral Organocatalytic Reactions of D–A Cyclopropanes and Miscellaneous 349</p> <p>11.4.1 Enamine/Iminium Catalysis Activation 349</p> <p>11.4.2 Brønsted Base Catalyst Activation 350</p> <p>11.4.3 Nucleophilic Catalyst Activation 351</p> <p>11.4.4 Brønsted Acid Catalyst Activation 352</p> <p>11.4.5 Radical Pathway 353</p> <p>11.5 Conclusion 355</p> <p>References 355</p> <p><b>12 Application of Donor–Acceptor Cyclopropanes in Total Synthesis of Natural Products 359<br /> </b><i>Amrita Saha, Karuna Mahato, Satysen Yadav, and Manas K. Ghorai</i></p> <p>12.1 Introduction 359</p> <p>12.2 Synthesis of Alkaloids 360</p> <p>12.3 Synthesis of Terpene/Terpenoids 379</p> <p>12.4 Synthesis of Miscellaneous Natural Products 403</p> <p>12.5 Conclusion 427</p> <p>References 427</p> <p>Index 433</p>
<p><i><b>Prabal Banerjee, PhD,</b> is an Associate Professor in the Department of Chemistry at the Indian Institution of Technology Ropar, Bara Phool, India. His research focuses on cycloaddition reactions, asymmetric catalysis, and related subjects. </i> <p><i><b>Akkattu T. Biju, PhD,</b> is a Professor in the Department of Organic Chemistry at the Indian Institute of Science, Bangalore, India. His research focuses on developing transition-metal-free reactions and asymmetric catalysis using N-heterocyclic carbenes. </i>
<p><b>Facilitate milder, simpler reactions in organic synthesis with this cutting-edge family of building blocks</b> <p>Donor-Accepted Cyclopropanes, or DACs, have attracted a resurgence of interest from organic chemists in recent decades for their role in facilitating various reactions such as cycloadditions, annulations, ring-opening and enantioselective transformations. The structural arrangement of DACs leads to milder, simpler reaction conditions, which have made them indispensable for a range of fundamentally and industrially important processes. <p><i>Donor-Acceptor Cyclopropanes in Organic Synthesis</i> covers comprehensively the chemistry and applications of this compound class. The result is an invaluable guide for any researcher looking to bring DACs to bear in their own areas of research or development. <p>Readers will also find: <ul><li>A brief introduction of the history and reactivity of DACs</li> <li>Detailed discussion of reactions including Lewis acid-catalyzed cycloadditions, metal-free activation, asymmetric transformations, organocatalysis, and many more</li> <li>Application of DACs in natural product synthesis and pharmaceutical/agrochemical research</li></ul> <p><i>Donor-Acceptor Cyclopropanes in Organic Synthesis</i> is ideal for organic chemists, experts in catalysis, pharmaceutical researchers, and any other scientists interested in facilitating milder, simpler reactions.

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €