Details

An Introduction to Optimization


An Introduction to Optimization

With Applications to Machine Learning
5. Aufl.

von: Edwin K. P. Chong, Wu-Sheng Lu, Stanislaw H. Zak

101,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 06.09.2023
ISBN/EAN: 9781119877646
Sprache: englisch
Anzahl Seiten: 672

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>An Introduction to Optimization</b> <p><b>Accessible introductory textbook on optimization theory and methods, with an emphasis on engineering design, featuring MATLAB<sup>®</sup> exercises and worked examples</b> <p>Fully updated to reflect modern developments in the field, the Fifth Edition of <i>An Introduction to Optimization</i> fills the need for an accessible, yet rigorous, introduction to optimization theory and methods, featuring innovative coverage and a straightforward approach. The book begins with a review of basic definitions and notations while also providing the related fundamental background of linear algebra, geometry, and calculus. <p>With this foundation, the authors explore the essential topics of unconstrained optimization problems, linear programming problems, and nonlinear constrained optimization. In addition, the book includes an introduction to artificial neural networks, convex optimization, multi-objective optimization, and applications of optimization in machine learning. <p>Numerous diagrams and figures found throughout the book complement the written presentation of key concepts, and each chapter is followed by MATLAB<sup>®</sup> exercises and practice problems that reinforce the discussed theory and algorithms. <p>The Fifth Edition features a new chapter on Lagrangian (nonlinear) duality, expanded coverage on matrix games, projected gradient algorithms, machine learning, and numerous new exercises at the end of each chapter. <p><i>An Introduction to Optimization</i> includes information on: <ul><li>The mathematical definitions, notations, and relations from linear algebra, geometry, and calculus used in optimization</li> <li>Optimization algorithms, covering one-dimensional search, randomized search, and gradient, Newton, conjugate direction, and quasi-Newton methods</li> <li>Linear programming methods, covering the simplex algorithm, interior point methods, and duality <li>Nonlinear constrained optimization, covering theory and algorithms, convex optimization, and Lagrangian duality</li> <li>Applications of optimization in machine learning, including neural network training, classification, stochastic gradient descent, linear regression, logistic regression, support vector machines, and clustering.</li></ul> <p><i>An Introduction to Optimization</i> is an ideal textbook for a one- or two-semester senior undergraduate or beginning graduate course in optimization theory and methods. The text is also of value for researchers and professionals in mathematics, operations research, electrical engineering, economics, statistics, and business.
<p>Preface xv</p> <p>About the Companion Website xviii</p> <p><b>Part I Mathematical Review 1</b></p> <p><b>1 Methods of Proof and Some Notation 3</b></p> <p>1.1 Methods of Proof 3</p> <p>1.2 Notation 5</p> <p>Exercises 5</p> <p><b>2 Vector Spaces and Matrices 7</b></p> <p>2.1 Vector and Matrix 7</p> <p>2.2 Rank of a Matrix 11</p> <p>2.3 Linear Equations 16</p> <p>2.4 Inner Products and Norms 18</p> <p>Exercises 20</p> <p><b>3 Transformations 23</b></p> <p>3.1 Linear Transformations 23</p> <p>3.2 Eigenvalues and Eigenvectors 24</p> <p>3.3 Orthogonal Projections 26</p> <p>3.4 Quadratic Forms 27</p> <p>3.5 Matrix Norms 32</p> <p>Exercises 35</p> <p><b>4 Concepts from Geometry 39</b></p> <p>4.1 Line Segments 39</p> <p>4.2 Hyperplanes and Linear Varieties 39</p> <p>4.3 Convex Sets 41</p> <p>4.4 Neighborhoods 43</p> <p>4.5 Polytopes and Polyhedra 44</p> <p>Exercises 45</p> <p><b>5 Elements of Calculus 47</b></p> <p>5.1 Sequences and Limits 47</p> <p>5.2 Differentiability 52</p> <p>5.3 The Derivative Matrix 54</p> <p>5.4 Differentiation Rules 57</p> <p>5.5 Level Sets and Gradients 58</p> <p>5.6 Taylor Series 61</p> <p>Exercises 65</p> <p><b>Part II Unconstrained Optimization 67</b></p> <p><b>6 Basics of Set-Constrained and Unconstrained Optimization 69</b></p> <p>6.1 Introduction 69</p> <p>6.2 Conditions for Local Minimizers 70</p> <p>Exercises 78</p> <p><b>7 One-Dimensional Search Methods 87</b></p> <p>7.1 Introduction 87</p> <p>7.2 Golden Section Search 87</p> <p>7.3 Fibonacci Method 91</p> <p>7.4 Bisection Method 97</p> <p>7.5 Newton’s Method 98</p> <p>7.6 Secant Method 101</p> <p>7.7 Bracketing 103</p> <p>7.8 Line Search in Multidimensional Optimization 103</p> <p>Exercises 105</p> <p><b>8 Gradient Methods 109</b></p> <p>8.1 Introduction 109</p> <p>8.2 Steepest Descent Method 110</p> <p>8.3 Analysis of Gradient Methods 117</p> <p>Exercises 126</p> <p><b>9 Newton’s Method 133</b></p> <p>9.1 Introduction 133</p> <p>9.2 Analysis of Newton’s Method 135</p> <p>9.3 Levenberg–Marquardt Modification 138</p> <p>9.4 Newton’s Method for Nonlinear Least Squares 139</p> <p>Exercises 142</p> <p><b>10 Conjugate Direction Methods 145</b></p> <p>10.1 Introduction 145</p> <p>10.2 Conjugate Direction Algorithm 146</p> <p>10.2.1 Basic Conjugate Direction Algorithm 146</p> <p>10.3 Conjugate Gradient Algorithm 151</p> <p>10.4 Conjugate Gradient Algorithm for Nonquadratic Problems 154</p> <p>Exercises 156</p> <p><b>11 Quasi-Newton Methods 159</b></p> <p>11.1 Introduction 159</p> <p>11.2 Approximating the Inverse Hessian 160</p> <p>11.3 Rank One Correction Formula 162</p> <p>11.4 DFP Algorithm 166</p> <p>11.5 BFGS Algorithm 170</p> <p>Exercises 173</p> <p><b>12 Solving Linear Equations 179</b></p> <p>12.1 Least-Squares Analysis 179</p> <p>12.2 Recursive Least-Squares Algorithm 187</p> <p>12.3 Solution to a Linear Equation with Minimum Norm 190</p> <p>12.4 Kaczmarz’s Algorithm 191</p> <p>12.5 Solving Linear Equations in General 194</p> <p>Exercises 201</p> <p><b>13 Unconstrained Optimization and Neural Networks 209</b></p> <p>13.1 Introduction 209</p> <p>13.2 Single-Neuron Training 211</p> <p>13.3 Backpropagation Algorithm 213</p> <p>Exercises 222</p> <p><b>14 Global Search Algorithms 225</b></p> <p>14.1 Introduction 225</p> <p>14.2 Nelder–Mead Simplex Algorithm 225</p> <p>14.3 Simulated Annealing 229</p> <p>14.3.1 Randomized Search 229</p> <p>14.3.2 Simulated Annealing Algorithm 229</p> <p>14.4 Particle Swarm Optimization 231</p> <p>14.4.1 Basic PSO Algorithm 232</p> <p>14.4.2 Variations 233</p> <p>14.5 Genetic Algorithms 233</p> <p>14.5.1 Basic Description 233</p> <p>14.5.1.1 Chromosomes and Representation Schemes 234</p> <p>14.5.1.2 Selection and Evolution 234</p> <p>14.5.2 Analysis of Genetic Algorithms 238</p> <p>14.5.3 Real-Number Genetic Algorithms 243</p> <p>Exercises 244</p> <p><b>Part III Linear Programming 247</b></p> <p><b>15 Introduction to Linear Programming 249</b></p> <p>15.1 Brief History of Linear Programming 249</p> <p>15.2 Simple Examples of Linear Programs 250</p> <p>15.3 Two-Dimensional Linear Programs 256</p> <p>15.4 Convex Polyhedra and Linear Programming 258</p> <p>15.5 Standard Form Linear Programs 260</p> <p>15.6 Basic Solutions 264</p> <p>15.7 Properties of Basic Solutions 267</p> <p>15.8 Geometric View of Linear Programs 269</p> <p>Exercises 273</p> <p><b>16 Simplex Method 277</b></p> <p>16.1 Solving Linear Equations Using Row Operations 277</p> <p>16.2 The Canonical Augmented Matrix 283</p> <p>16.3 Updating the Augmented Matrix 284</p> <p>16.4 The Simplex Algorithm 285</p> <p>16.5 Matrix Form of the Simplex Method 291</p> <p>16.6 Two-Phase Simplex Method 294</p> <p>16.7 Revised Simplex Method 297</p> <p>Exercises 301</p> <p><b>17 Duality 309</b></p> <p>17.1 Dual Linear Programs 309</p> <p>17.2 Properties of Dual Problems 316</p> <p>17.3 Matrix Games 321</p> <p>Exercises 324</p> <p><b>18 Nonsimplex Methods 331</b></p> <p>18.1 Introduction 331</p> <p>18.2 Khachiyan’s Method 332</p> <p>18.3 Affine Scaling Method 334</p> <p>18.3.1 Basic Algorithm 334</p> <p>18.3.2 Two-Phase Method 337</p> <p>18.4 Karmarkar’s Method 339</p> <p>18.4.1 Basic Ideas 339</p> <p>18.4.2 Karmarkar’s Canonical Form 339</p> <p>18.4.3 Karmarkar’s Restricted Problem 341</p> <p>18.4.4 From General Form to Karmarkar’s Canonical Form 342</p> <p>18.4.5 The Algorithm 345</p> <p>Exercises 349</p> <p><b>19 Integer Linear Programming 351</b></p> <p>19.1 Introduction 351</p> <p>19.2 Unimodular Matrices 351</p> <p>19.3 The Gomory Cutting-Plane Method 358</p> <p>Exercises 366</p> <p><b>Part IV Nonlinear Constrained Optimization 369</b></p> <p><b>20 Problems with Equality Constraints 371</b></p> <p>20.1 Introduction 371</p> <p>20.2 Problem Formulation 373</p> <p>20.3 Tangent and Normal Spaces 374</p> <p>20.4 Lagrange Condition 379</p> <p>20.5 Second-Order Conditions 387</p> <p>20.6 Minimizing Quadratics Subject to Linear Constraints 390</p> <p>Exercises 394</p> <p><b>21 Problems with Inequality Constraints 399</b></p> <p>21.1 Karush–Kuhn–Tucker Condition 399</p> <p>21.2 Second-Order Conditions 406</p> <p>Exercises 410</p> <p><b>22 Convex Optimization Problems 417</b></p> <p>22.1 Introduction 417</p> <p>22.2 Convex Functions 419</p> <p>22.3 Convex Optimization Problems 426</p> <p>22.4 Semidefinite Programming 431</p> <p>22.4.1 Linear Matrix Inequalities and Their Properties 431</p> <p>22.4.2 LMI Solvers 435</p> <p>22.4.2.1 Finding a Feasible Solution Under LMI Constraints 436</p> <p>22.4.2.2 Minimizing a Linear Objective Under LMI Constraints 438</p> <p>22.4.2.3 Minimizing a Generalized Eigenvalue Under LMI Constraints 440</p> <p>Exercises 442</p> <p><b>23 Lagrangian Duality 449</b></p> <p>23.1 Overview 449</p> <p>23.2 Notation 449</p> <p>23.3 Primal–Dual Pair 450</p> <p>23.4 General Duality Properties 451</p> <p>23.4.1 Convexity of Dual Problem 451</p> <p>23.4.2 Primal Objective in Terms of Lagrangian 451</p> <p>23.4.3 Minimax Inequality Chain 452</p> <p>23.4.4 Optimality of Saddle Point 452</p> <p>23.4.5 Weak Duality 453</p> <p>23.4.6 Duality Gap 453</p> <p>23.5 Strong Duality 454</p> <p>23.5.1 Strong Duality ⇔ Minimax Equals Maximin 454</p> <p>23.5.2 Strong Duality ⇒ Primal Unconstrained Minimization 455</p> <p>23.5.3 Strong Duality ⇒ Optimality 455</p> <p>23.5.4 Strong Duality ⇒ KKT (Including Complementary Slackness) 455</p> <p>23.5.5 Strong Duality ⇒ Saddle Point 456</p> <p>23.6 Convex Case 456</p> <p>23.6.1 Convex Case: KKT ⇒ Strong Duality 456</p> <p>23.6.2 Convex Case: Regular Optimal Primal ⇒ Strong Duality 457</p> <p>23.6.3 Convex Case: Slater’s Condition ⇒ Strong Duality 457</p> <p>23.7 Summary of Key Results 457</p> <p>Exercises 458</p> <p><b>24 Algorithms for Constrained Optimization 459</b></p> <p>24.1 Introduction 459</p> <p>24.2 Projections 459</p> <p>24.3 Projected Gradient Methods with Linear Constraints 462</p> <p>24.4 Convergence of Projected Gradient Algorithms 465</p> <p>24.4.1 Fixed Points and First-Order Necessary Conditions 466</p> <p>24.4.2 Convergence with Fixed Step Size 468</p> <p>24.4.3 Some Properties of Projections 469</p> <p>24.4.4 Armijo Condition 470</p> <p>24.4.5 Accumulation Points 471</p> <p>24.4.6 Projections in the Convex Case 472</p> <p>24.4.7 Armijo Condition in the Convex Case 474</p> <p>24.4.8 Convergence in the Convex Case 480</p> <p>24.4.9 Convergence Rate with Line-Search Step Size 481</p> <p>24.5 Lagrangian Algorithms 483</p> <p>24.5.1 Lagrangian Algorithm for Equality Constraints 484</p> <p>24.5.2 Lagrangian Algorithm for Inequality Constraints 486</p> <p>24.6 Penalty Methods 489</p> <p>Exercises 495</p> <p><b>25 Multiobjective Optimization 499</b></p> <p>25.1 Introduction 499</p> <p>25.2 Pareto Solutions 499</p> <p>25.3 Computing the Pareto Front 501</p> <p>25.4 From Multiobjective to Single-Objective Optimization 505</p> <p>25.5 Uncertain Linear Programming Problems 508</p> <p>25.5.1 Uncertain Constraints 508</p> <p>25.5.2 Uncertain Objective Function Coefficients 511</p> <p>25.5.3 Uncertain Constraint Coefficients 513</p> <p>25.5.4 General Uncertainties 513</p> <p>Exercises 513</p> <p><b>Part V Optimization in Machine Learning 517</b></p> <p><b>26 Machine Learning Problems and Feature Engineering 519</b></p> <p>26.1 Machine Learning Problems 519</p> <p>26.1.1 Data with Labels and Supervised Learning 519</p> <p>26.1.2 Data Without Labels and Unsupervised Learning 521</p> <p>26.2 Data Normalization 522</p> <p>26.3 Histogram of Oriented Gradients 524</p> <p>26.4 Principal Component Analysis and Linear Autoencoder 526</p> <p>26.4.1 Singular Value Decomposition 526</p> <p>26.4.2 Principal Axes and Principal Components of a Data Set 527</p> <p>26.4.3 Linear Autoencoder 529</p> <p>Exercises 530</p> <p><b>27 Stochastic Gradient Descent Algorithms 537</b></p> <p>27.1 Stochastic Gradient Descent Algorithm 537</p> <p>27.2 Stochastic Variance Reduced Gradient Algorithm 540</p> <p>27.3 Distributed Stochastic Variance Reduced Gradient 542</p> <p>27.3.1 Distributed Learning Environment 542</p> <p>27.3.2 SVRG in Distributed Optimization 543</p> <p>27.3.3 Communication Versus Computation 545</p> <p>27.3.4 Data Security 545</p> <p>Exercises 546</p> <p><b>28 Linear Regression and Its Variants 553</b></p> <p>28.1 Least-Squares Linear Regression 553</p> <p>28.1.1 A Linear Model for Prediction 553</p> <p>28.1.2 Training the Model 554</p> <p>28.1.3 Computing Optimal ̂w 554</p> <p>28.1.4 Optimal Predictor and Performance Evaluation 555</p> <p>28.1.5 Least-Squares Linear Regression for Data Sets with Vector Labels 556</p> <p>28.2 Model Selection by Cross-Validation 559</p> <p>28.3 Model Selection by Regularization 562</p> <p>Exercises 564</p> <p><b>29 Logistic Regression for Classification 569</b></p> <p>29.1 Logistic Regression for Binary Classification 569</p> <p>29.1.1 Least-Squares Linear Regression for Binary Classification 569</p> <p>29.1.2 Logistic Regression for Binary Classification 570</p> <p>29.1.3 Interpreting Logistic Regression by Log Error 572</p> <p>29.1.4 Confusion Matrix for Binary Classification 573</p> <p>29.2 Nonlinear Decision Boundary via Linear Regression 575</p> <p>29.2.1 Least-Squares Linear Regression with Nonlinear Transformation 576</p> <p>29.2.2 Logistic Regression with Nonlinear Transformation 578</p> <p>29.3 Multicategory Classification 580</p> <p>29.3.1 One-Versus-All Multicategory Classification 580</p> <p>29.3.2 Softmax Regression for Multicategory Classification 581</p> <p>Exercises 584</p> <p><b>30 Support Vector Machines 589</b></p> <p>30.1 Hinge-Loss Functions 589</p> <p>30.1.1 Geometric Interpretation of the Linear Model 589</p> <p>30.1.2 Hinge Loss for Binary Data Sets 590</p> <p>30.1.3 Hinge Loss for Multicategory Data Sets 592</p> <p>30.2 Classification by Minimizing Hinge Loss 593</p> <p>30.2.1 Binary Classification by Minimizing Average Hinge Loss 593</p> <p>30.2.2 Multicategory Classification by Minimizing E hww or E hcs 594</p> <p>30.3 Support Vector Machines for Binary Classification 596</p> <p>30.3.1 Hard-Margin Support Vector Machines 596</p> <p>30.3.2 Support Vectors 598</p> <p>30.3.3 Soft-Margin Support Vector Machines 599</p> <p>30.3.4 Connection to Hinge-Loss Minimization 602</p> <p>30.4 Support Vector Machines for Multicategory Classification 602</p> <p>30.5 Kernel Trick 603</p> <p>30.5.1 Kernels 603</p> <p>30.5.2 Kernel Trick 604</p> <p>30.5.3 Learning with Kernels 605</p> <p>30.5.3.1 Regularized Logistic Regression with Nonlinear Transformation for Binary Classification 605</p> <p>30.5.3.2 Regularized Hinge-Loss Minimization for Binary Classification 606</p> <p>Exercises 607</p> <p><b>31 K-Means Clustering 611</b></p> <p>31.1 K-Means Clustering 611</p> <p>31.2 K-Means++ forCenterInitialization 615</p> <p>31.3 Variants of K-Means Clustering 617</p> <p>31.3.1 K-Means Clustering Based on 1-Norm Regularization 617</p> <p>31.3.2 PCA-Guided K-Means Clustering 619</p> <p>31.4 Image Compression by Vector Quantization and K-Means Clustering 622</p> <p>Exercises 623</p> <p>References 627</p> <p>Index 635</p>
<p><b>Edwin K. P. Chong, PhD,</b> is Professor and Head of Electrical and Computer Engineering and Professor of Mathematics at Colorado State University. He is a Fellow of the IEEE and AAAS, and was Senior Editor of the IEEE Transactions on Automatic Control. <p><b>Wu-Sheng Lu, PhD,</b> is Professor Emeritus of Electrical and Computer Engineering at the University of Victoria, Canada. He is a Fellow of the IEEE and former Associate Editor of the IEEE Transactions on Circuits and??Systems. <p><b>Stanislaw H. Żak, PhD,</b> is Professor in the School of Electrical and Computer Engineering at Purdue University. He is former Associate Editor of Dynamics and Control and the IEEE Transactions on Neural Networks.
<p><b>Accessible introductory textbook on optimization theory and methods, with an emphasis on engineering design, featuring MATLAB<sup>®</sup> exercises and worked examples</b> <p>Fully updated to reflect modern developments in the field, the Fifth Edition of <i>An Introduction to Optimization</i> fills the need for an accessible, yet rigorous, introduction to optimization theory and methods, featuring innovative coverage and a straightforward approach. The book begins with a review of basic definitions and notations while also providing the related fundamental background of linear algebra, geometry, and calculus. <p>With this foundation, the authors explore the essential topics of unconstrained optimization problems, linear programming problems, and nonlinear constrained optimization. In addition, the book includes an introduction to artificial neural networks, convex optimization, multi-objective optimization, and applications of optimization in machine learning. <p>Numerous diagrams and figures found throughout the book complement the written presentation of key concepts, and each chapter is followed by MATLAB<sup>®</sup> exercises and practice problems that reinforce the discussed theory and algorithms. <p>The Fifth Edition features a new chapter on Lagrangian (nonlinear) duality, expanded coverage on matrix games, projected gradient algorithms, machine learning, and numerous new exercises at the end of each chapter. <p><i>An Introduction to Optimization</i> includes information on: <ul><li>The mathematical definitions, notations, and relations from linear algebra, geometry, and calculus used in optimization</li> <li>Optimization algorithms, covering one-dimensional search, randomized search, and gradient, Newton, conjugate direction, and quasi-Newton methods</li> <li>Linear programming methods, covering the simplex algorithm, interior point methods, and duality <li>Nonlinear constrained optimization, covering theory and algorithms, convex optimization, and Lagrangian duality</li> <li>Applications of optimization in machine learning, including neural network training, classification, stochastic gradient descent, linear regression, logistic regression, support vector machines, and clustering.</li></ul> <p><i>An Introduction to Optimization</i> is an ideal textbook for a one- or two-semester senior undergraduate or beginning graduate course in optimization theory and methods. The text is also of value for researchers and professionals in mathematics, operations research, electrical engineering, economics, statistics, and business.

Diese Produkte könnten Sie auch interessieren:

DPSM for Modeling Engineering Problems
DPSM for Modeling Engineering Problems
von: Dominique Placko, Tribikram Kundu
PDF ebook
159,99 €
Mathematical Analysis
Mathematical Analysis
von: Bernd S. W. Schröder
PDF ebook
114,99 €