Details

Self-Assembling Systems


Self-Assembling Systems

Theory and Simulation
1. Aufl.

von: Li-Tang Yan

131,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 06.10.2016
ISBN/EAN: 9781119113157
Sprache: englisch
Anzahl Seiten: 384

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Provides comprehensive knowledge on concepts, theoretical methods and state-of-the-art computational techniques for the simulation of self-assembling systems</p> <ul> <li>Looks at the field of self-assembly from a theoretical perspective</li> <li>Highlights the importance of theoretical studies and tailored computer simulations to support the design of new self-assembling materials with useful properties</li> <li>Divided into three parts covering the basic principles of self-assembly, methodology, and emerging topics</li> </ul>
<p>List of Contributors xiii</p> <p>Preface xvii</p> <p><b>1 Theoretical Studies and Tailored Computer Simulations in Self-Assembling Systems: A General Aspect 1</b><br /><i>Zihan Huang and Li-Tang Yan</i></p> <p>1.1 Introduction 1</p> <p>1.2 Emerging Self-Assembling Principles 3</p> <p>1.2.1 Predictive Science and Rational Design of Complex Building Blocks 3</p> <p>1.2.2 Entropy-Driven Ordering and Self-Assembly 5</p> <p>1.2.3 Programmable Self-Assembly 10</p> <p>1.2.4 Self-Assembling Kinetics: Supracolloidal Reaction 14</p> <p>Acknowledgments 16</p> <p>References 16</p> <p><b>2 Developing Hybrid ModelingMethods to Simulate Self-Assembly in Polymer Nanocomposites 20</b><br /><i>Xin Yong, Stephen C. Snow, Olga Kuksenok and Anna C. Balazs</i></p> <p>2.1 Introduction 20</p> <p>2.2 Methodology 21</p> <p>2.2.1 Dissipative Particle Dynamics 21</p> <p>2.2.2 Polymer Chains, Gels, and Nanoparticles 22</p> <p>2.2.3 Radical PolymerizationModel 24</p> <p>2.3 Results and Discussions 27</p> <p>2.3.1 Modeling Bulk Polymerization Using FRP and ATRP 27</p> <p>2.3.2 Modeling Regeneration of Severed Polymer Gels with Interfacially Active Nanorods 32</p> <p>2.3.3 Modeling the Formation of Polymer–Clay Composite Gels 43</p> <p>2.4 Conclusions 47</p> <p>Acknowledgments 48</p> <p>References 49</p> <p><b>3 Theory and Simulation Studies of Self-Assembly of Helical Particles 53</b><br /><i>Giorgio Cinacchi, Alberta Ferrarini, Elisa Frezza, Achille Giacometti and Hima Bindu Kolli</i></p> <p>3.1 Introduction: Why Hard Helices? 53</p> <p>3.2 Liquid Crystal Phases 55</p> <p>3.3 Hard Helices: A MinimalModel 56</p> <p>3.4 Numerical Simulations 57</p> <p>3.4.1 Monte Carlo in Various Ensembles 57</p> <p>3.4.1.1 Canonical Monte Carlo simulations (NVT–MC) 59</p> <p>3.4.1.2 Isothermal–IsobaricMonte Carlo Simulations (NPT–MC) 59</p> <p>3.4.2 Details on the MC Simulation of Hard Helices 59</p> <p>3.5 Onsager (Density Functional) Theory 61</p> <p>3.6 Onsager-LikeTheory for the Cholesteric and Screw-Nematic Phases 64</p> <p>3.7 Order Parameters and Correlation Functions 67</p> <p>3.7.1 Nematic Order Parameter ⟨P2⟩ 68</p> <p>3.7.2 Screw-Like Nematic Order Parameter 68</p> <p>3.7.3 Smectic Order Parameter 70</p> <p>3.7.4 Hexatic Order Parameter 70</p> <p>3.7.5 Parallel and Perpendicular Pair Correlation Functions 71</p> <p>3.8 The Physical Origin of Cholesteric and Screw-Like Order 73</p> <p>3.9 The Phase Diagram of Hard Helices 74</p> <p>3.9.1 The Equation of State 75</p> <p>3.9.2 Phase Diagrams in the Volume Fraction–Pitch Plane 76</p> <p>3.9.2.1 Phase Diagram for r = 0.1 77</p> <p>3.9.2.2 Phase Diagram for r = 0.2 78</p> <p>3.9.2.3 Phase Diagram for r = 0.4 79</p> <p>3.10 Helical (Bio)Polymers and Colloidal Particles 79</p> <p>3.11 Conclusions and Perspectives 81</p> <p>Acknowledgments 82</p> <p>References 82</p> <p><b>4 Self-Consistent Field Theory of Self-Assembling Multiblock Copolymers 85</b><br /><i>Weihua Li and An-Chang Shi</i></p> <p>4.1 Introduction 85</p> <p>4.2 Theoretical Framework: Self-Consistent Field Theory of Block Copolymers 88</p> <p>4.3 Numerical Methods of SCFT 90</p> <p>4.3.1 Reciprocal-Space Method 90</p> <p>4.3.2 Real-Space Method 93</p> <p>4.3.3 Pseudo-SpectralMethod 95</p> <p>4.3.4 Fourth-Order Pseudo-Spectral Method 98</p> <p>4.4 Application of SCFT to Multiblock Copolymers 98</p> <p>4.5 Conclusions and Discussions 104</p> <p>Acknowledgments 107</p> <p>References 107</p> <p><b>5 Simulation Models of Soft Janus and Patchy Particles 109</b><br /><i>Zhan-Wei Li, Zhao-Yan Sun and Zhong-Yuan Lu</i></p> <p>5.1 Introduction 109</p> <p>5.2 Soft Janus Particle Models 111</p> <p>5.2.1 Soft One-Patch Janus Particle Model 111</p> <p>5.2.2 Soft ABA-Type Triblock Janus Particle Model 113</p> <p>5.2.3 Soft BAB-Type Triblock Janus Particle Model 114</p> <p>5.2.4 Integration Algorithm 116</p> <p>5.3 Soft Patchy Particle Models 117</p> <p>5.3.1 The Model 117</p> <p>5.3.2 Integration Algorithm 118</p> <p>5.4 Physical Meanings of the Simulation Parameters in Our Models 121</p> <p>5.5 GPU Acceleration 121</p> <p>5.6 Self-Assembly of Soft Janus and Patchy Particles 122</p> <p>5.6.1 Self-Assembly of Soft One-Patch Janus Particles 122</p> <p>5.6.2 The Role of Particle Softness in Self-Assembling Different Supracolloidal Helices 123</p> <p>5.6.3 Self-Assembly of Soft ABA-Type Triblock Janus Particles 124</p> <p>5.6.4 Template-Free Fabrication of Two-Dimensional Exotic Nanostructures through the Self-Assembly of Soft BAB-Type Triblock Janus Particles 125</p> <p>5.6.5 Self-Assembly of Soft Multi-Patch Particles 126</p> <p>5.7 Conclusions 127</p> <p>Acknowledgments 128</p> <p>References 128</p> <p><b>6 Molecular Models for Hepatitis B Virus Capsid Formation, Maturation, and Envelopment 134</b><br /><i>Jehoon Kim and Jianzhong Wu</i></p> <p>6.1 Introduction 134</p> <p>6.2 Molecular Thermodynamics of Capsid Formation 140</p> <p>6.2.1 Energetics of Viral Assembly 141</p> <p>6.2.1.1 Rigid Capsids 141</p> <p>6.2.1.2 Nucleocapsids 144</p> <p>6.2.2 Thermodynamics of Capsid Formation and Stability 147</p> <p>6.2.2.1 Stability of CTD-Free Empty Capsids 147</p> <p>6.2.2.2 Stability of Nucleocapsids 150</p> <p>6.2.3 Modulation Effects 152</p> <p>6.2.4 T3/T4 Dimorphism 153</p> <p>6.3 Electrostatics of Genome Packaging 154</p> <p>6.3.1 Thermodynamics of RNA Encapsidation 155</p> <p>6.3.2 The Optimal Genome Size of an HBV Nucleocapsid 157</p> <p>6.3.3 Charge Balance between Packaged RNA and CTD Tails 157</p> <p>6.4 Dynamic Structure of HBV Nucleocapsids 159</p> <p>6.4.1 Structure ofWT and Mutant Nucleocapsids 159</p> <p>6.4.2 The Location of CTD Residues 161</p> <p>6.4.3 Implication of the CTD Exposure 165</p> <p>6.4.4 The Effect of Phosphorylation of Capsid Structure 165</p> <p>6.5 Capsid Envelopment with Surface Proteins 167</p> <p>6.6 Summary and Outlook 171</p> <p>Acknowledgments 173</p> <p>References 174</p> <p><b>7 Simulation Studies of Metal–Ligand Self-Assembly 186</b><br /><i>Makoto Yoneya</i></p> <p>7.1 Introduction 186</p> <p>7.2 Modeling Metal–Ligand Self-Assembly 187</p> <p>7.2.1 Modeling Metals, Ligands and their Interactions 187</p> <p>7.2.2 Modeling Solvents 189</p> <p>7.2.3 ComputationalMethods 190</p> <p>7.3 Self-Assembly of Supramolecular Coordination Complex 190</p> <p>7.3.1 Self-Assembly of M6L8 Spherical Complex 190</p> <p>7.3.2 Self-Assembly of M12L24 Spherical Complex 194</p> <p>7.4 Self-Assembly of Metal–Organic Frameworks 198</p> <p>7.4.1 Self-Assembly of 2D-Like MOF 198</p> <p>7.4.2 Self-Assembly of 3D-Like MOF 200</p> <p>7.5 Conclusion and Outlook 203</p> <p>Acknowledgments 204</p> <p>References 204</p> <p><b>8 Simulations of Cell Uptake of Nanoparticles: Membrane-Mediated Interaction, Internalization Pathways, and Cooperative Effect 208</b><br /><i>Falin Tian, Tongtao Yue, Ye Li and Xianren Zhang</i></p> <p>8.1 Introduction 208</p> <p>8.2 N-Varied DPD Technique 210</p> <p>8.2.1 Traditional DPD Method 210</p> <p>8.2.2 N-Varied DPD Method 210</p> <p>8.3 The Interaction between NP and Membrane 211</p> <p>8.3.1 Membrane-Mediated Interaction between NPs 211</p> <p>8.3.2 Internalization Pathways of the NPs 214</p> <p>8.3.2.1 NP Properties Affecting the NP–Membrane Interaction 216</p> <p>8.3.2.2 The Effect of Membrane Properties on NP–Membrane Interaction 221</p> <p>8.4 Cooperative Effect between NPs during Internalization 222</p> <p>8.5 Conclusions 226</p> <p>References 226</p> <p><b>9 Theories for PolymerMelts Consisting of Rod–Coil Polymers 230</b><br /><i>Ying Jiang and Jeff Z. Y. Chen</i></p> <p>9.1 Introduction 230</p> <p>9.1.1 Rod–Coil Polymers and Recent Theoretical Progress 230</p> <p>9.1.2 Basic Parameters 235</p> <p>9.1.2.1 Molecular Parameters 235</p> <p>9.1.2.2 Polymer-Melt Parameters 236</p> <p>9.1.2.3 Other Parameters 236</p> <p>9.2 Theoretical Models 237</p> <p>9.2.1 The Ideal Rod–Coil Diblock Model 237</p> <p>9.2.1.1 Comments 237</p> <p>9.2.1.2 Formalism 237</p> <p>9.2.2 The Lattice Model 240</p> <p>9.2.2.1 Comments 240</p> <p>9.2.2.2 Formalism 240</p> <p>9.2.3 TheWormlike–wormlike diblock model 242</p> <p>9.2.3.1 Comments 242</p> <p>9.2.3.2 Formalism 242</p> <p>9.2.3.3 Reduction to the Rod–Coil Problem 244</p> <p>9.2.4 Numerical Algorithms 245</p> <p>9.2.4.1 Comments 245</p> <p>9.2.4.2 Lattice Sampling 245</p> <p>9.2.4.3 Spectral Method 245</p> <p>9.2.4.4 Pseudo-Spectral Method for GSC Propagator and Finite Difference for Rod Probability 246</p> <p>9.2.4.5 Single-Chain Mean-Field Calculation 246</p> <p>9.2.4.6 Finite Difference Method for aWLC Problem 247</p> <p>9.2.4.7 Combined Finite Difference and Spherical Harmonics Expansion 247</p> <p>9.2.4.8 Full Spectral Method for aWLC Problem 247</p> <p>9.2.4.9 PseudospectralMethod for aWLC Problem 248</p> <p>9.2.4.10 Pseudospectral Backward Differentiation Formula Method for aWLC Problem 248</p> <p>9.3 Concluding Remarks 250</p> <p>References 251</p> <p><b>10 Theoretical and Simulation Studies of Hierarchical Nanostructures Self-Assembled fromSoft Matter Systems 254</b><br /><i>Liangshun Zhang and Jiaping Lin</i></p> <p>10.1 Introduction 254</p> <p>10.2 ComputationalModeling and Methods 255</p> <p>10.2.1 Particle-Based Methods 255</p> <p>10.2.2 Field-Based Methods 256</p> <p>10.3 Hierarchical Nanostructures of Block Copolymer Melts 256</p> <p>10.3.1 Hierarchical Structures Self-Assembled from ABC Terpolymers 257</p> <p>10.3.2 Hierarchical Patterns Self-Assembled from Multiblock Copolymers 259</p> <p>10.3.3 Hierarchical Structures Self-Assembled from Supramolecular Polymers 262</p> <p>10.4 Hierarchical Aggregates of Block Copolymer Solutions 264</p> <p>10.4.1 Hierarchical Aggregates Self-Assembled from Block Copolymer Solutions 265</p> <p>10.4.2 Multicompartment Aggregates Self-Assembled from Triblock Terpolymer Solutions 267</p> <p>10.4.3 Multicompartment Aggregates Self-Assembled from Amphiphilic Copolymer Blends 270</p> <p>10.4.3.1 Mixtures of Diblock Copolymers 270</p> <p>10.4.3.2 Blends of Terpolymers and Copolymers 270</p> <p>10.4.3.3 Blends of Distinct Terpolymers 271</p> <p>10.4.3.4 Multicomponent Rigid Homopolymer/Rod–Coil Diblock Copolymer Systems 272</p> <p>10.5 Hierarchically Ordered Nanocomposites Self-Assembled from Organic–Inorganic Systems 272</p> <p>10.5.1 Hierarchical Self-Assembly of Block Copolymer/Nanoparticle Mixtures 273</p> <p>10.5.2 Hierarchical Self-Assembly of Polymer/Nanoparticle/Solvent Systems 275</p> <p>10.6 Conclusions and Perspectives 277</p> <p>10.6.1 New Theoretical Insights 277</p> <p>10.6.2 Horizontal MultiscaleModeling 278</p> <p>10.6.3 Inverse Design Strategy 278</p> <p>10.6.4 Element–Structure–Property Relationships 278</p> <p>Acknowledgments 278</p> <p>References 279</p> <p><b>11 Nucleation in Colloidal Systems: Theory and Simulation 288</b><br /><i>Ran Ni</i></p> <p>11.1 Introduction 288</p> <p>11.2 Theory of Nucleation 289</p> <p>11.2.1 Free Energy Barrier 291</p> <p>11.2.2 Kinetics of Nucleation 293</p> <p>11.2.3 Equilibrium Distribution of Cluster Sizes 295</p> <p>11.3 Order Parameter 296</p> <p>11.4 SimulationMethods for Studying Nucleation 298</p> <p>11.4.1 Brute Force Molecular Dynamics Simulations 299</p> <p>11.4.2 Umbrella Sampling 299</p> <p>11.4.3 Forward Flux Sampling 301</p> <p>11.5 Crystal Nucleation of Hard Spheres: Debates and Progress 304</p> <p>11.6 Two-Step Nucleation in Systems of Attractive Colloids 308</p> <p>11.7 Nucleation of Anisotropic Colloids 310</p> <p>11.8 Crystal Nucleation in Binary Mixtures 313</p> <p>11.9 Concluding Remarks and Future Directions 316</p> <p>Acknowledgments 316</p> <p>References 316</p> <p><b>12 Atomistic and Coarse-Grained Simulation of Liquid Crystals 320</b><br /><i>Saientan Bag, Suman Saurabh, Yves Lansac and Prabal K. Maiti</i></p> <p>12.1 Introduction 320</p> <p>12.2 Thermotropic Liquid Crystal 321</p> <p>12.2.1 Fully Atomistic Simulation 321</p> <p>12.2.2 Coarse-Grained Model 328</p> <p>12.3 Discotic Liquid Crystals 339</p> <p>12.4 Chromonic Liquid Crystals 344</p> <p>12.5 Conclusion and Outlook 347</p> <p>Acknowledgment 347</p> <p>References 348</p> <p>Index 353</p>
<b>Professor Li-Tang Yan, Tsinghua University, China</b><br />Professor Yan’s research focuses on computational macromolecular science, materials design and self-assembly. He uses multiscale modeling and simulation methods as well as theoretical analysis to explore the basic science and the fundamental principles in studies spanning polymer science, nanoscience, biomacromolecules and biomembranes.<br />Professor Yan has published more than 60 papers in peer reviewed journals such as Nano Letters, ACS Nano, Biomaterials, Scientific Reports, JPC Lett, Nanoscale; these articles cover some important directions in the field of self-assembling systems, e.g., polymer nanocomposites, self-assembly in biomembranes, and self-assembly of nanoparticles to various suprastructures. In 2013 he published an invited review articles in Progress in Polymer Science, entitled "Computational Modeling and Simulation of Nanoparticle Self-Assembly in Polymeric Systems: Structures, Properties and External Field Effects".<br />In 2014 he received an Excellent Young Investigator Award from NSFC (Natural Science Foundation of China).

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €