Details

Name Reactions in Heterocyclic Chemistry


Name Reactions in Heterocyclic Chemistry


Comprehensive Name Reactions, Band 3 1. Aufl.

von: Jie Jack Li

199,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 27.12.2004
ISBN/EAN: 9780471704140
Sprache: englisch
Anzahl Seiten: 592

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Covers important name reactions relevant to heterocyclic chemistry <p>The field of heterocyclic chemistry has long presented a special challenge for chemists. Because of the enormous amount and variety of information, it is often a difficult topic to cover for undergraduate and graduate chemistry students, even in simplified form. Yet the chemistry of heterocyclic compounds and methods for their synthesis form the bedrock of modern medicinal chemical and pharmaceutical research. Thus there is a great need for high quality, up-to-date, and authoritative books on heterocyclic synthesis helpful to both the professional research chemist as well as the advanced student.</p> <p><i>Name Reactions in Heterocyclic Chemistry</i> provides a one-stop repository for this important field of organic chemistry. The primary topics include three- and four-membered heterocycles, five-membered heterocycles including indoles, furans, thiophenes, and oxazoles, six-membered heterocycles including quinolines, isoquinolines, and pyrimidines, and other heterocycles.</p> <p>Each name reaction is summarized in seven sections:</p> <ul> <li>Description</li> <li>Historical perspective</li> <li>Mechanism</li> <li>Variations and improvements</li> <li>Synthetic utility</li> <li>Experimental</li> <li>References</li> </ul> Authored by a team of world-renowned contributors - some of whom have discovered the very reactions they describe - <i>Name Reactions in Heterocyclic Chemistry</i> represents a state-of-the-art resource for students and researchers alike.
<p>Foreword x</p> <p>Preface xi</p> <p>Acronyms and abbreviations xiv</p> <p><b>Part 1 Three- And Four-Membered Heterocycles 1</b></p> <p><b>Chapter 1 Epoxides and Aziridines 1</b></p> <p>1.1 Corey-Chaykovsky reaction 2</p> <p>1.2 Darzens glycidic ester condensation 15</p> <p>1.3 Hoch-Campbell aziridine synthesis 22</p> <p>1.4 Jacobsen-Katsuki epoxidation 29</p> <p>1.5 Paterno-Büchi reaction 44</p> <p>1.6 Sharpless-Katsuki epoxidation 50</p> <p>1.7 Wenker aziridine synthesis 63</p> <p><b>Part 2 Five-Membered Heterocycles 69</b></p> <p><b>Chapter 2 </b><b>Pyrroles and Pyrrolidines 69</b></p> <p>2.1 Barton-Zard reaction 70</p> <p>2.2 Knorr and Paal-Knorr pyrrole syntheses 79</p> <p>2.3 Hofmann-Löffler-Freytag reaguo 90</p> <p><b>Chapter 3 Indoles 99</b></p> <p>3.1 Bartoli indole synthesis 100</p> <p>3.2 Batcho-Leimgruber indole synthesis 104</p> <p>3.3 Bucherer carbazole synthesis 110</p> <p>3.4 Fischer indole synthesis 116</p> <p>3.5 Gassman indole synthesis 128</p> <p>3.6 Graebe-Ullman carbazole synthesis 132</p> <p>3.7 Hegedus indole synthesis 135</p> <p>3.8 Madelung indole synthesis 140</p> <p>3.9 Nenitzescu indole synthesis 145</p> <p>3.10 Reissert indole synthesis 154</p> <p><b>Chapter 4 Furans</b></p> <p>4.1 Feist-Bénary furan synthesis 160</p> <p>4.2 Paal-Knorr furan synthesis 168</p> <p><b>Chapter 5 Thiophenes 183</b></p> <p>5.1 Fiesselmann thiophene synthesis 184</p> <p>5.2 Gewald aminothiophene synthesis 193</p> <p>5.3 Hinsberg synthesis of thiophene derivatives 199</p> <p>5.4 Paal thiophene synthesis 207</p> <p><b>Chapter 6 Oxazoles and Isoxazoles 219</b></p> <p>6.1 Claisen isoxazole synthesis 220</p> <p>6.2 Cornforth rearrangement 225</p> <p>6.3 Erlenmeyer-Plöchl azlactone synthesis 229</p> <p>6.4 Fischer oxazole synthesis 234</p> <p>6.5 Meyers oxazoline method 237</p> <p>6.6 Robinson-Gabriel synthesis 249</p> <p>6.7 van Leusen oxazole Synthesis 254</p> <p><b>Chapter 7 Other Five-Membered Heterocycles 261</b></p> <p>7.1 Auwers flavone synthesis 262</p> <p>7.2 Bucherer-Bergs reaction 266</p> <p>7.3 Cook-Heilbron 5-amino-thiazole synthesis 275</p> <p>7.4 Hurd-Mori 1,2,3-thiadiazole synthesis 284</p> <p>7.5 Knorr pyrazole synthesis 392</p> <p><b>Part 3 Six-Membered Heterocycles 301</b></p> <p><b>Chapter 8 </b><b>Pyridines 302</b></p> <p><b>8.1 Preparation via condensation reactions 303</b></p> <p>8.1.1 Hantzsch (dihydro)-pyridine synthesis 304</p> <p>8.1.1.1 Description 304</p> <p>8.1.1.2 Historical perspective 304</p> <p>8.1.1.3 Mechanism 305</p> <p>8.1.1.4 Variations 307</p> <p>8.1.1.4.1 Guareschi-Thorpe pyridine synthesis 307</p> <p>8.1.1.4.2 Chichibabin (Tschitschibabin) pyridine synthesis 308</p> <p>8.1.1.4.3 Bohlmann-Rahtz pyridine synthesis 309</p> <p>8.1.1.4.4 Kröhnke pyridine synthesis 311</p> <p>8.1.1.4.5 Petrenko-Kritschenko piperidone synthesis 313</p> <p>8.1.1.5 Improvement or modifications 314</p> <p>8.1.1.6 Experimental 320</p> <p>8.1.1.6.1 Three-component coupling 320</p> <p>8.1.1.6.2 Two-component coupling 320</p> <p>8.1.1.7 References 321</p> <p><b>8.2 Preparation via cycloaddition reactions </b><b>323</b></p> <p>8.2.1 Boger reaction 323</p> <p><b>8.3 </b><b>Preparation via rearrangement reactions</b><b> 340</b></p> <p>8.3.1 Boekelheide reaction 340</p> <p>8.3.2 Ciamician-Dennstedt rearrangement 350</p> <p>8.4 Zincke reaction 355</p> <p><b>Chapter 9 Quinolines and Isoquinolines </b><b>375</b></p> <p>9.1 Bischler-Napieralski reaction 376</p> <p>9.2 Camps quinoline synthesis 386</p> <p>9.3 Combes quinoline synthesis 390</p> <p>9.4 Conrad-Limpach reaction 398</p> <p>9.5 Doebner quinoline synthesis 407</p> <p>9.6 Friedländer synthesis 411</p> <p>9.7 Gabriel-Colman rearrangement 416</p> <p>9.8 Gould-Jacobs reaction 423</p> <p>9.9 Knorr quinoline synthesis 437</p> <p>9.10 Meth-Cohn quinoline synthesis 443</p> <p>9.11 Pfitzinger quinoline synthesis 451</p> <p>9.12 Pictet-Gams isoquinoline synthesis 457</p> <p>9.13 Pictet-Hubert reaction 465</p> <p>9.14 Pictet-Spengler isoquinoline synthesis 469</p> <p>9.15 Pomeranz-Fritsch reaction 480</p> <p>9.16 Riehm quinoline synthesis 487</p> <p>9.17 Skraup/Doebner-von Miller reaction 488</p> <p><b>Chapter 10 Other Six-Membered Heterocycles</b></p> <p>10.1 Algar-Flynn-Oyamada reaction 496</p> <p>10.2 Beirut reaction 504</p> <p>10.3 Biginelli reaction 509</p> <p>10.4 Kostanecki-Robinson reaction 521</p> <p>10.5 Pinner pyrimidine synthesis 536</p> <p>10.6 von Richter cinnoline reaction 540</p> <p>Subject Index 545</p>
"...is not only an indispensable resource for senior undergraduate and graduate students....but also a good reference for all chemists interested in the chemistry of heterocyclic compounds…" (<i>Drug Development and Industrial Pharmacy</i>, No. 10, 2005) <p>"...a major contribution to the field and is highly recommended." (<i>Journal of Medicinal Chemistry</i>, June 30, 2005)</p>
<b>JIE JACK LI</b> is a medicinal chemist at Pf izer Global Research and Development in Ann Arbor, Michigan. His research interests include medicinal chemistry, heterocyclic chemistry, transition metal-catalyzed reactions, and radical chemistry. He is author of <i>Name Reactions: A Collection of Detailed Reaction Mechanisms</i>, and coauthor of <i>Palladium in Heterocyclic Chemistry and Contemporary Drug Synthesis</i>, also published by Wiley.
<b>Covers important name reactions relevant to heterocyclic chemistry</b> <p>The field of heterocyclic chemistry has long presented a special challenge for chemists. Because of the enormous amount and variety of information, it is often a difficult topic to cover for undergraduate and graduate chemistry students, even in simplified form. Yet the chemistry of heterocyclic compounds and methods for their synthesis form the bedrock of modern medicinal chemical and pharmaceutical research. Thus there is a great need for high quality, up-to-date, and authoritative books on heterocyclic synthesis helpful to both the professional research chemist as well as the advanced student.</p> <p><i>Name Reactions in Heterocyclic Chemistry</i> provides a one-stop repository for this important field of organic chemistry. The primary topics include three- and four-membered heterocycles, five-membered heterocycles including indoles, furans, thiophenes, and oxazoles, six-membered heterocycles including quinolines, isoquinolines, and pyrimidines, and other heterocycles.</p> <p><b>Each name reaction is summarized in seven sections:</b></p> <ul> <li>Description</li> <li>Historical perspective</li> <li>Mechanism</li> <li>Variations and improvements</li> <li>Synthetic utility</li> <li>Experimental</li> <li>References</li> </ul> <p>Authored by a team of world-renowned contributors–some of whom have discovered the very reactions they describe–<i>Name Reactions in Heterocyclic Chemistry</i> represents a state-of-the-art resource for students and researchers alike.</p>

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €