Details

Morphing Aerospace Vehicles and Structures


Morphing Aerospace Vehicles and Structures


, Band 57 2. Aufl.

von: John Valasek, Peter Belobaba, Jonathan Cooper, Roy Langton, Allan Seabridge

125,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 24.02.2012
ISBN/EAN: 9781119940302
Sprache: englisch
Anzahl Seiten: 312

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Morphing Aerospace Vehicles and Structures provides a highly timely presentation of the state-of-the-art, future directions and technical requirements of morphing aircraft. Divided into three sections it addresses morphing aircraft, bio-inspiration, and smart structures with specific focus on the flight control, aerodynamics, bio-mechanics, materials, and structures of these vehicles as well as power requirements and the use of advanced piezo materials and smart actuators. The tutorial approach adopted by the contributors, including underlying concepts and mathematical formulations, unifies the methodologies and tools required to provide practicing engineers and applied researchers with the insight to synthesize morphing air vehicles and morphing structures, as well as offering direction for future research.
<b>List of Contributors xiii</b> <p><b>Foreword xv</b></p> <p><b>Series Preface xvii</b></p> <p><b>Acknowledgments xix</b></p> <p><b>1 Introduction 1<br /> </b><i>John Valasek</i></p> <p>1.1 Introduction 1</p> <p>1.2 The Early Years: Bio-Inspiration 2</p> <p>1.3 The Middle Years: Variable Geometry 5</p> <p>1.4 The Later Years: A Return to Bio-Inspiration 9</p> <p>1.5 Conclusion 10</p> <p>References 10</p> <p><b>Part I BIO-INSPIRATION</b></p> <p><b>2 Wing Morphing in Insects, Birds and Bats: Mechanism and Function 13<br /> </b><i>Graham K. Taylor, Anna C. Carruthers, Tatjana Y. Hubel, and Simon M. Walker</i></p> <p>2.1 Introduction 13</p> <p>2.2 Insects 14</p> <p><i>2.2.1 Wing Structure and Mechanism</i> 15</p> <p><i>2.2.2 Gross Wing Morphing</i> 18</p> <p>2.3 Birds 25</p> <p><i>2.3.1 Wing Structure and Mechanism</i> 25</p> <p><i>2.3.2 Gross Wing Morphing</i> 28</p> <p><i>2.3.3 Local Feather Deflections</i> 30</p> <p>2.4 Bats 32</p> <p><i>2.4.1 Wing Structure and Mechanism</i> 33</p> <p><i>2.4.2 Gross Wing Morphing</i> 35</p> <p>2.5 Conclusion 37</p> <p>Acknowledgements 37</p> <p>References 38</p> <p><b>3 Bio-Inspiration of Morphing for Micro Air Vehicles 41<br /> </b><i>Gregg Abate and Wei Shyy</i></p> <p>3.1 Micro Air Vehicles 41</p> <p>3.2 MAV Design Concepts 43</p> <p>3.3 Technical Challenges for MAVs 46</p> <p>3.4 Flight Characteristics of MAVs and NAVs 47</p> <p>3.5 Bio-Inspired Morphing Concepts for MAVs 48</p> <p><i>3.5.1 Wing Planform</i> 50</p> <p><i>3.5.2 Airfoil Shape</i> 50</p> <p><i>3.5.3 Tail Modulation</i> 50</p> <p><i>3.5.4 CG Shifting</i> 50</p> <p><i>3.5.5 Flapping Modulation</i> 51</p> <p>3.6 Outlook for Morphing at the MAV/NAV scale 51</p> <p>3.7 Future Challenges 51</p> <p>3.8 Conclusion 53</p> <p>References 53</p> <p><b>Part II CONTROL AND DYNAMICS</b></p> <p><b>4 Morphing Unmanned Air Vehicle Intelligent Shape and  Flight Control 57<br /> </b><i>John Valasek, Kenton Kirkpatrick, and Amanda Lampton</i></p> <p>4.1 Introduction 57</p> <p>4.2 A-RLC Architecture Functionality 58</p> <p>4.3 Learning Air Vehicle Shape Changes 59</p> <p><i>4.3.1 Overview of Reinforcement Learning</i> 59</p> <p><i>4.3.2 Implementation of Shape Change Learning Agent</i> 62</p> <p>4.4 Mathematical Modeling of Morphing Air Vehicle 63</p> <p><i>4.4.1 Aerodynamic Modeling</i> 63</p> <p><i>4.4.2 Constitutive Equations</i> 64</p> <p><i>4.4.3 Model Grid</i> 67</p> <p><i>4.4.4 Dynamical Modeling</i> 68</p> <p><i>4.4.5 Reference Trajectory</i> 71</p> <p><i>4.4.6 Shape Memory Alloy Actuator Dynamics</i> 71</p> <p><i>4.4.7 Control Effectors on Morphing Wing</i> 73</p> <p>4.5 Morphing Control Law 73</p> <p><i>4.5.1 Structured Adaptive Model Inversion (SAMI) Control for Attitude Control</i> 73</p> <p><i>4.5.2 Update Laws</i> 76</p> <p><i>4.5.3 Stability Analysis</i> 77</p> <p>4.6 Numerical Examples 77</p> <p><i>4.6.1 Purpose and Scope</i> 77</p> <p><i>4.6.2 Example 1: Learning New Major Goals</i> 77</p> <p><i>4.6.3 Example 2: Learning New Intermediate Goals</i> 80</p> <p>4.7 Conclusions 84</p> <p>Acknowledgments 84<br /> </p> <p>References 84</p> <p><b>5 Modeling and Simulation of Morphing Wing Aircraft 87<br /> </b><i>Borna Obradovic and Kamesh Subbarao</i></p> <p>5.1 Introduction 87</p> <p><i>5.1.1 Gull-Wing Aircraft</i> 87</p> <p>5.2 Modeling of Aerodynamics with Morphing 88</p> <p><i>5.2.1 Vortex-Lattice Aerodynamics for Morphing</i> 90</p> <p><i>5.2.2 Calculation of Forces and Moments</i> 92</p> <p><i>5.2.3 Effect of Gull-Wing Morphing on Aerodynamics</i> 92</p> <p>5.3 Modeling of Flight Dynamics with Morphing 93</p> <p><i>5.3.1 Overview of Standard Approaches</i> 93</p> <p><i>5.3.2 Extended Rigid-Body Dynamics</i> 97</p> <p><i>5.3.3 Modeling of Morphing</i> 100</p> <p>5.4 Actuator Moments and Power 105</p> <p>5.5 Open-Loop Maneuvers and Effects of Morphing 109</p> <p><i>5.5.1 Longitudinal Maneuvers</i> 109</p> <p><i>5.5.2 Turn Maneuvers</i> 114</p> <p>5.6 Control of Gull-Wing Aircraft using Morphing 118</p> <p><i>5.6.1 Power-Optimal Stability Augmentation System using Morphing</i> 119</p> <p>5.7 Conclusion 123</p> <p>Appendix 123</p> <p>References 124</p> <p><b>6 Flight Dynamics Modeling of Avian-Inspired Aircraft 127<br /> </b><i>Jared Grauer and James Hubbard Jr</i></p> <p>6.1 Introduction 127</p> <p>6.2 Unique Characteristics of Flapping Flight 129</p> <p><i>6.2.1 Experimental Research Flight Platform</i> 129</p> <p><i>6.2.2 Unsteady Aerodynamics</i> 130</p> <p><i>6.2.3 Configuration-Dependent Mass Distribution</i> 131</p> <p><i>6.2.4 Nonlinear Flight Motions</i> 131</p> <p>6.3 Vehicle Equations of Motion 134</p> <p><i>6.3.1 Conventional Models for Aerospace Vehicles</i> 134</p> <p><i>6.3.2 Multibody Model Configuration</i> 136</p> <p><i>6.3.3 Kinematics</i> 138</p> <p><i>6.3.4 Dynamics</i> 138</p> <p>6.4 System Identification 140</p> <p><i>6.4.1 Coupled Actuator Models</i> 141</p> <p><i>6.4.2 Tail Aerodynamics</i> 143</p> <p><i>6.4.3 Wing Aerodynamics</i> 143</p> <p>6.5 Simulation and Feedback Control 144</p> <p>6.6 Conclusion 148</p> <p>References 148</p> <p><b>7 Flight Dynamics of Morphing Aircraft with Time-Varying Inertias 151<br /> </b><i>Daniel T. Grant, Stephen Sorley, Animesh Chakravarthy, and Rick Lind</i></p> <p>7.1 Introduction 151</p> <p>7.2 Aircraft 152</p> <p><i>7.2.1 Design</i> 152</p> <p><i>7.2.2 Modeling</i> 154</p> <p>7.3 Equations of Motion 156</p> <p><i>7.3.1 Body-Axis States</i> 156</p> <p><i>7.3.2 Influence of Time-Varying Inertias</i> 157</p> <p><i>7.3.3 Nonlinear Equations for Moment</i> 157</p> <p><i>7.3.4 Linearized Equations for Moment</i> 159</p> <p><i>7.3.5 Flight Dynamics</i> 161</p> <p>7.4 Time-Varying Poles 162</p> <p><i>7.4.1 Definition</i> 162</p> <p><i>7.4.2 Discussion</i> 164</p> <p><i>7.4.3 Modal Interpretation</i> 164</p> <p>7.5 Flight Dynamics with Time-Varying Morphing 166</p> <p><i>7.5.1 Morphing</i> 166</p> <p><i>7.5.2 Model</i> 166</p> <p><i>7.5.3 Poles</i> 168</p> <p><i>7.5.4 Modal Interpretation</i> 171</p> <p>References 174</p> <p><b>8 Optimal Trajectory Control of Morphing Aircraft in Perching Maneuvers 177<br /> </b><i>Adam M. Wickenheiser and Ephrahim Garcia</i></p> <p>8.1 Introduction 177</p> <p>8.2 Aircraft Description 179</p> <p>8.3 Vehicle Equations of Motion 181</p> <p>8.4 Aerodynamics 185</p> <p>8.5 Trajectory Optimization for Perching 191</p> <p>8.6 Optimization Results 196</p> <p>8.7 Conclusions 202</p> <p>References 202</p> <p><b>Part III SMART MATERIALS AND STRUCTURES</b></p> <p><b>9 Morphing Smart Material Actuator Control Using Reinforcement Learning 207<br /> </b><i>Kenton Kirkpatrick and John Valasek</i></p> <p>9.1 Introduction to Smart Materials 207</p> <p><i>9.1.1 Piezoelectrics</i> 208</p> <p><i>9.1.2 Shape Memory Alloys</i> 208</p> <p><i>9.1.3 Challenges in Controlling Shape Memory Alloys</i> 209</p> <p>9.2 Introduction to Reinforcement Learning 210</p> <p><i>9.2.1 The Reinforcement Learning Problem</i> 210</p> <p><i>9.2.2 Temporal-Difference Methods</i> 211</p> <p><i>9.2.3 Action Selection</i> 213</p> <p><i>9.2.4 Function Approximation</i> 215</p> <p>9.3 Smart Material Control as a Reinforcement Learning Problem 218</p> <p><i>9.3.1 State-Spaces and Action-Spaces for Smart Material Actuators</i> 218</p> <p><i>9.3.2 Function Approximation Selection</i> 220</p> <p><i>9.3.3 Exploiting Action-Value Function for Control</i> 220</p> <p>9.4 Example 221</p> <p><i>9.4.1 Simulation</i> 222</p> <p><i>9.4.2 Experimentation</i> 225</p> <p>9.5 Conclusion 228</p> <p>References 229</p> <p><b>10 Incorporation of Shape Memory Alloy Actuators into Morphing Aerostructures 231<br /> </b><i>Justin R. Schick, Darren J. Hartl and Dimitris C. Lagoudas</i></p> <p>10.1 Introduction to Shape Memory Alloys 231</p> <p><i>10.1.1 Underlying Mechanisms</i> 232</p> <p><i>10.1.2 Unique Engineering Effects</i> 233</p> <p><i>10.1.3 Alternate Shape Memory Alloy Options</i> 237</p> <p>10.2 Aerospace Applications of SMAs 238</p> <p><i>10.2.1 Fixed-Wing Aircraft</i> 239</p> <p><i>10.2.2 Rotorcraft</i> 245</p> <p><i>10.2.3 Spacecraft</i> 246</p> <p>10.3 Characterization of SMA Actuators and Analysis of Actuator Systems 247</p> <p><i>10.3.1 Experimental Techniques and Considerations</i> 248</p> <p><i>10.3.2 Established Analysis Tools</i> 252</p> <p>10.4 Conclusion 256</p> <p>References 256</p> <p><b>11 Hierarchical Control and Planning for Advanced Morphing Systems 261<br /> </b><i>Mrinal Kumar and Suman Chakravorty</i></p> <p>11.1 Introduction 261</p> <p><i>11.1.1 Hierarchical Control Philosophy</i> 262</p> <p>11.2 Morphing Dynamics and Performance Maps 264</p> <p><i>11.2.1 Discretization of Performance Maps via Graphs</i> 265</p> <p><i>11.2.2 Planning on Morphing Graphs</i> 270</p> <p>11.3 Application to Advanced Morphing Structures 271</p> <p><i>11.3.1 Morphing Graph Construction</i> 273</p> <p><i>11.3.2 Introduction to the Kagom´e Truss</i> 275</p> <p><i>11.3.3 Examples of Morphing with the Kagom´e Truss</i> 277</p> <p>11.4 Conclusion 279</p> <p>References 279</p> <p><b>12 A Collective Assessment 281<br /> </b><i>John Valasek</i></p> <p>12.1 Looking Around: State-of-the-Art 281</p> <p><i>12.1.1 Bio-Inspiration</i> 281</p> <p><i>12.1.2 Aerodynamics</i> 281</p> <p><i>12.1.3 Structures</i> 282</p> <p><i>12.1.4 Automatic Control</i> 282</p> <p>12.2 Looking Ahead: The Way Forward 282</p> <p><i>12.2.1 Materials</i> 282</p> <p><i>12.2.2 Propulsion</i> 283</p> <p>12.3 Conclusion 283</p> <p><b>Index 285</b></p>
<p><strong>John Valasek</strong>, Texas A&M University, USA<br />John Valasek is Associate Professor and Director of the Vehicle Systems & Control Laboratory within the Aerospace Engineering Department at Texas A&M University. He has been actively conducting flight mechanics and controls research of Manned and Unmanned Air Vehicles in both Industry and Academia for 25 years. He was previously a Flight Control Engineer for the Northrop Corporation, Aircraft Division. He has published over 100 peer reviewed articles, and is co-inventor on a patent for autonomous air refueling of unmanned air vehicles. His research is currently focused on bridging the gap between traditional computer science topics and aerospace engineering topics, encompassing machine learning and multi-agent systems, intelligent autonomous control, vision based navigation systems, fault tolerant adaptive control, and cockpit systems and displays.?He teaches courses in Atmospheric Flight Mechanics, Digital Flight Control Systems, Vehicle Management Systems, Cockpit Systems & Displays, and Aircraft Design.
<p>From the earliest times, engineers have been inspired by birds as models for flight vehicles, and more specifically, shape changing or morphing flight vehicles.  A common thematic element has been to gaze upon a bird and imagine "the bird that changes into an airplane", and vice versa.  Now that this vision is within reach, exciting research is investigating the methodologies and technologies required. </p> <p><i>Morphing Aerospace Vehicles and Structures</i> is a synthesis of the relevant disciplines and applications involved in the morphing of fixed wing flight vehicles.  The book is organized into three major sections on Bio-Inspiration, Control and Dynamics, and Smart Materials and Structures.  Most chapters are both tutorial and research oriented in nature, covering elementary concepts through advanced and in many cases novel methodologies.  Insightful numerical and experimental results compliment the technical exposition wherever possible.  To stimulate and encourage further investigation, all chapters discuss further topics for research in particular subject areas, and a summary chapter addresses broad challenges and directions for future research.  </p> <p>Key features:</p> <ul> <li>Features the work of leading researchers in the field of morphing flight. Covers a wide range of morphing technologies that includes Bio-Mechanics, Intelligent Control, Aerodynamics, Flight Mechanics and Control, and Smart Materials and  Structures.</li> <li>Emphasizes the essential technical interdependencies of a variety of disciplines.</li> <li>Delivers practical insights while presenting a comprehensive treatment that maintains engineering and mathematical detail and rigor.</li> <li>Includes a brief history of morphing and bio-inspiration for air vehicles.</li> </ul> <p><i>Morphing Aerospace Vehicles and Structures</i>  is an insightful reference and introduction to morphing that will be invaluable for practicing engineers and researchers in aerospace and mechanical engineering.</p> <p> </p>

Diese Produkte könnten Sie auch interessieren:

Applied Mechanical Design
Applied Mechanical Design
von: Ammar Grous
PDF ebook
144,99 €
Movement Equations 4
Movement Equations 4
von: Michel Borel, Georges Vénizélos
PDF ebook
139,99 €