Details

Mercury Cadmium Telluride


Mercury Cadmium Telluride

Growth, Properties and Applications
Wiley Series in Materials for Electronic & Optoelectronic Applications, Band 34 11. Aufl.

von: Peter Capper, James Garland, Safa O. Kasap, Arthur Willoughby

191,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 02.09.2010
ISBN/EAN: 9780470669457
Sprache: englisch
Anzahl Seiten: 592

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Mercury cadmium telluride (MCT) is the third most well-regarded semiconductor after silicon and gallium arsenide and is the material of choice for use in infrared sensing and imaging. The reason for this is that MCT can be ‘tuned’ to the desired IR wavelength by varying the cadmium concentration. <p><i>Mercury Cadmium Telluride: Growth, Properties and Applications</i> provides both an introduction for newcomers, and a comprehensive review of this fascinating material. Part One discusses the history and current status of both bulk and epitaxial growth techniques, Part Two is concerned with the wide range of properties of MCT, and Part Three covers the various device types that have been developed using MCT. Each chapter opens with some historical background and theory before presenting current research. Coverage includes:</p> <ul> <li>Bulk growth and properties of MCT and CdZnTe for MCT epitaxial growth</li> <li>Liquid phase epitaxy (LPE) growth</li> <li>Metal-organic vapour phase epitaxy (MOVPE)</li> <li>Molecular beam epitaxy (MBE)</li> <li>Alternative substrates</li> <li>Mechanical, thermal and optical properties of MCT</li> <li>Defects, diffusion, doping and annealing</li> <li>Dry device processing</li> <li>Photoconductive and photovoltaic detectors</li> <li>Avalanche photodiode detectors</li> <li>Room-temperature IR detectors</li> </ul>
<b>Series Preface</b> <p/> <b>Preface</b> <p/> <b>Foreword</b> <p/> <b>List of Contributors</b> <p/> <b>Part One - Growth</b> <p/> <b>1</b> <b>Bulk Growth of Mercury Cadmium Telluride (MCT)</b> <p/> P. Capper <p/> <b>1.1</b> Introduction <p/> <b>1.2</b> Phase Equilibria <p/> <b>1.3</b> <st1:City w:st="on"><st1:place w:st="on">Crystal</st1:place></st1:City> Growth <p/> <b>1.4</b> Conclusions <p/> References <p/> <b>2</b> <b>Bulk growth of CdZnTe/CdTe crystals</b> <p/> A. Noda, H. Kurita and R. Hirano <p/> <b>2.1</b> Introduction <p/> <b>2.2</b> High-purity Cd and Te <p/> <b>2.3</b> Crystal Growth <p/> <b>2.4</b> Wafer processing <p/> <b>2.5</b> Summary <p/> Acknowledgements <p/> References <p/> <b>3</b> <b>Properties of Cd(Zn)Te (relevant to use as substrates)</b> <p/> S. Adachi <p/> <b>3.1</b> Introduction <p/> <b>3.2</b> Structural Properties <p/> <b>3.3</b> Thermal Properties <p/> <b>3.4</b> Mechanical and Lattice Vibronic Properties <p/> <b>3.5</b> Collective Effects and Some Response Characteristics <p/> <b>3.6</b> Electronic Energy-band Structure <p/> <b>3.7 Optical Properties</b> <p/> <b>3.8</b> Carrier Transport Properties <p/> References <p/> <b>4</b> <b>Substrates for the Epitaxial growth of MCT</b> <p/> J. Garland and R. Sporken <p/> <b>4.1</b> Introduction <p/> <b>4.2</b> Substrate Orientation <p/> <b>4.3</b> CZT Substrates <p/> <b>4.4</b> Si-based Substrates <p/> <b>4.5</b> Other Substrates <p/> <b>4.6</b> Summary and Comclusions <p/> References <p/> <b>5</b> <b>Liquid phase epitaxy of MCT</b> <p/> P. Capper <p/> <b>5.1</b> Introduction <p/> <b>5.2</b> Growth <p/> <b>5.3</b> Material Characteristics <p/> <b>5.4</b> Device Status <p/> <b>5.5</b> Summary and Future Developments <p/> References <p/> <b>6</b> <b>Metal-Organic Vapor Phase Epitaxy (MOVPE) Growth</b> <p/> C. M. Maxey <p/> <b>6.1</b> Requirement for Epitaxy <p/> <b>6.2</b> History <p/> <b>6.3</b> Substrate Choices <p/> <b>6.4</b> Reactor Design <p/> <b>6.5</b> Process Parameters <p/> <b>6.6</b> Metalorganic Sources <p/> <b>6.7</b> Uniformity <p/> <b>6.8</b> Reproducibility <p/> <b>6.9</b> Doping <p/> <b>6.10</b> Defects <p/> <b>6.11</b> Annealing <p/> <b>6.12</b> In-situ monitoring <p/> <b>6.13</b> Conclusions <p/> References <p/> <b>7</b> <b>MBE growth of Mercury Cadmium Telluride</b> <p/> J. Garland <p/> <b>7.1</b> Introduction <p/> <b>7.2</b> MBE Growth theory and Growth Modes <p/> <b>7.3</b> Substrate Mounting <p/> <b>7.4</b> In-situ Characterization Tools <p/> <b>7.5</b> MCT Nucleation and Growth <p/> <b>7.6</b> Dopants and Dopant Activation <p/> <b>7.7</b> <st1:PersonName w:st="on">Pr</st1:PersonName>operties of MCT epilayers grown by MBE <p/> <b>7.8</b> Conclusions <p/> References <p/> <b>Part Two - Properties</b> <p/> <b>8</b> <b>Mechanical and Thermal Properties</b> <p/> M. Martyniuk, J.M. Dell and L. Faraone <p/> <b>8.1</b> Density of MCT <p/> <b>8.2</b> Lattice Parameter of MCT <p/> <b>8.3</b> Coefficient of Thermal Expansion for MCT <p/> <b>8.4</b> Elastic Parameters of MCT <p/> <b>8.5</b> Hardness and deformation characteristics of HgCdTe <p/> <b>8.6</b> Phase Diagrams of MCT <p/> <b>8.7</b> Viscosity of the MCT melt <p/> <b>8.8</b> Thermal properties of MCT <p/> References <p/> <b>9</b> <b>Optical Properties of MCT</b> <p/> J. Chu and Y. Chang <p/> <b>9.1</b> Introduction <p/> <b>9.2</b> Optical Constants and the Dielectric Function <p/> <b>9.3</b> Theory of Band-to-band Optical Transition <p/> <b>9.4</b> Near Band Gap Absorption <p/> <b>9.5</b> Analytic Expressions and Empirical Formulas for Intrinsic Absorption and Urbach Tail <p/> <b>9.6</b> Dispersion of the Refractive Index <p/> <b>9.7</b> Optical Constants and Related van Hover Singularities above the Energy Gap <p/> <b>9.8</b> Reflection Spectra and Dielectric Function <p/> <b>9.9</b> Multimode Model of Lattice Vibration <p/> <b>9.10</b> Phonon Absorption <p/> <b>9.11</b> Raman Scattering <p/> <b>9.12</b> Photoluminescence Spectroscopy <p/> References <p/> <b>10</b> <b>Diffusion in MCT</b> <p/> D. Shaw <p/> <b>10.1</b> Introduction <p/> <b>10.2</b> Self-Diffusion <p/> <b>10.3</b> Chemical Self-Diffusion <p/> <b>10.4</b> Compositional Interdiffusion <p/> <b>10.5</b> Impurity Diffusion <p/> References <p/> <b>11</b> <b>Defects in HgCdTe – Fundamental</b> <p/> M. A. Berding <p/> <b>11.1</b> Introduction <p/> <b>11.2</b> <i>Ab Initio</i> calculations <p/> <b>11.3</b> Prediction of Native Point Defect Densities in HgCdgTe<a name="OLE_LINK2"></a><a name="OLE_LINK1"></a> <p/> <b>11.4</b> Future Challenges <p/> References <p/> <b>12</b> <b>Band Structure and Related <st1:PersonName w:st="on">Pr</st1:PersonName>operties of HgCdTe</b> <p/> C. R. Becker and S. Krishnamurthy <p/> <b>12.1</b> Introduction <p/> <b>12.2</b> Parameters <p/> <b>12.3</b> Electronic Band Structure <p/> <b>12.4</b> Comparison with Experiment <p/> Acknowledgments <p/> References <p/> <b>13 Conductivity Type Conversion</b> <p/> P. Capper and D. Shaw <p/> <b>13.1</b> Introduction <p/> <b>13.2</b> Native Defects in Undoped MCT <p/> <b>13.3</b> Native Defects in Doped MCT <p/> <b>13.4</b> Defect Concentrations During Cool Down <p/> <b>13.5</b> Change of Conductivity Type <p/> <b>13.6</b> Dry Etching by Ion Beam Milling <p/> <b>13.7</b> Plasma Etching <p/> <b>13.8 Summary</b> <p/> References <p/> <b>14 Extrinsic Doping</b> <p/> D. Shaw and P. Capper <p/> <b>14.1</b> Introduction <p/> <b>14.2</b> Impurity Activity <p/> <b>14.3</b> Thermal Ionization Energies of Impurities <p/> <b>14.4</b> Segregation Properties of Impurities <p/> <b>14.5</b> Traps and Recombination Centers <p/> <b>14.6</b> Donor and Acceptor Doping in LWIR and MWIR MCT <p/> <b>14.7</b> Residual Defects <p/> <b>14.8</b> Conclusions <p/> References <p/> <b>15</b> <a name="_Toc249177539"><b>Structure and electrical characteristics of Metal/MCT interfaces</b></a> <p/> R. J. Westerhout, C. A. Musca, Richard H. Sewell, John M. Dell, and L. Faraone <p/> <b>15.1</b> Introduction <p/> <b>15.2</b> <a name="_Toc249177541">Reactive/intermediately reactive/nonreactive categories</a> <p/> <b>15.3</b> Ultrareactive/reactive categories <p/> <b>15.4</b> Conclusion <p/> <b>15.5</b> Passivation of MCT <p/> <b>15.6</b> Conclusion <p/> <b>15.7</b> Contacts to MCT <p/> <b>15.7</b> Surface Effects on MCT <p/> <b>15.8</b> Surface Structure of CdTe and MCT <p/> References <p/> <b>16</b> <b>MCT Superlattices for VLWIR Detectors and Focal Plane Arrays</b> <p/> James Garland <p/> <b>16.1</b> Introduction <p/> <b>16.2</b> Why HgTe-Based Superlattices <p/> <b>16.3</b> Calculated Properties <p/> <b>16.4</b> Growth <p/> <b>16.5</b> Interdiffusion <p/> <b>16.6</b> Conclusions <p/> Acknowledgements <p/> References <p/> <b>17</b> <b>Dry Plasma <st1:PersonName w:st="on">Pr</st1:PersonName>ocessing of Mercury Cadmium Telluride and related II- VIs</b> <p/> Andrew Stolz <p/> <b>17.1</b> Introduction <p/> <b>17.2</b> Effects of Plasma Gases on MCT <p/> <b>17.3</b> Plasma Parameters <p/> <b>17.4</b> Characterization – Surfaces of Plasma Processed MCT <p/> <b>17.5</b> Manufacturing Issues and Solutions <p/> <b>17.6</b> Plasma Processes in Production of II-VI materials <p/> <b>17.7</b> Conclusions and Future Efforts <p/> References <p/> <b>18</b> <b>MCT Photoconductive Infrared Detectors</b> <p/> I. M. Baker <p/> <b>18.1</b> Introduction <p/> <b>18.2</b> Applications and Sensor Design <p/> <b>18.3</b> Photoconductive Detectors in MCT and Related Alloys <p/> <b>18.4</b> SPRITE Detectors <p/> <b>18.5</b> Conclusions on Photoconductive MCT Detectors <p/> Ackowledgements <p/> References <p/> <b>Part Three – Applications</b> <p/> <b>19</b> <b>HgCdTe Photovoltaic Infrared Detectors</b> <p/> I. M. Baker <p/> <b>19.1</b> Introduction <p/> <b>19.2</b> Advantages of the Photovoltaic Device in MCT <p/> <b>19.3</b> Applications <p/> <b>19.4</b> Fundamentals of MCT Photodiodes <p/> <b>19.5</b> Theoretical Foundations for MCT Array Technology <p/> <b>19.6</b> Manufacturing Technology for MCT Arrays <p/> <b>19.7</b> Towards “GEN III” Detectors <p/> <b>19.8</b> Conclusions and Future Trends for Photovoltaic NCT Arrays <p/> References <p/> <b>20 <a name="_Ref247640634">Nonequilibrium, dual-band and emission devices</a></b> <p/> <b>C. Jones and N. Gordon</b> <p/> <b>20.1</b> Introduction <p/> <b>20.2</b> Nonequilibrium Devices <p/> <b>20.3</b> Dual-Band Devices <p/> <b>20.4</b> Emission devices <p/> <b>20.5</b> Conclusions <p/> References <p/> <b>21 HgCdTe Electron Avalanche Photodiodes (EAPDs)</b> <p/> I. M. Baker and M. Kinch <p/> <b>21.1</b> Introduction and Applications <p/> <b>21.2</b> The Avalanche Multiplication Effect <p/> <b>21.3</b> Physics of MCT EAPDs <p/> <b>21.4</b> Technology of MCT EAPDs <p/> <b>21.5</b> Reported Performance of Arrays of MCT EAPDs <p/> <b>21.6</b> Laser-gated Imaging as a Practical Example of MCT EAPDs <p/> <b>21.7</b> Conclusions and Future Developments <p/> References <p/> <b>22</b> <b>Room-temperature IR photodetectors</b> <p/> Jozef Piotrowski and Adam Piotrowski <p/> <b>22.1</b> Introduction <p/> <b>22.2</b> Performance of Room-Temperature Infrared Photodetectors <p/> <b>22.3</b> MCT as a Material for Room-Temperature Photodetectors <p/> <b>22.4</b> Photoconductive Devices <p/> <b>22.5</b> Photoelectromagnetic, Magnetoconcentration and Dember IR Detectors <p/> <b>22.6</b> Photodiodes <p/> <b>22.7</b> Conclusions <p/> References <p/> <b>Index</b>
<p><b>Dr. Peter Capper</b> is a Materials Team Leader at BAE Systems Infrared Ltd., in Southampton, UK.</p> <p><b>James Garland</b> is the editor of <i>Mercury Cadmium Telluride: Growth, Properties and Applications</i>, published by Wiley.</p>
Mercury cadmium telluride (MCT) is the third most well-regarded semiconductor after silicon and gallium arsenide and is the material of choice for use in infrared sensing and imaging. The reason for this is that MCT can be ‘tuned’ to the desired IR wavelength by varying the cadmium concentration. <p><i>Mercury Cadmium Telluride: Growth, Properties and Applications</i> provides both an introduction for newcomers, and a comprehensive review of this fascinating material. Part One discusses the history and current status of both bulk and epitaxial growth techniques, Part Two is concerned with the wide range of properties of MCT, and Part Three covers the various device types that have been developed using MCT. Each chapter opens with some historical background and theory before presenting current research. Coverage includes:</p> <ul> <li>Bulk growth and properties of MCT and CdZnTe for MCT epitaxial growth</li> <li>Liquid phase epitaxy (LPE) growth</li> <li>Metal-organic vapour phase epitaxy (MOVPE)</li> <li>Molecular beam epitaxy (MBE)</li> <li>Alternative substrates</li> <li>Mechanical, thermal and optical properties of MCT</li> <li>Defects, diffusion, doping and annealing</li> <li>Dry device processing</li> <li>Photoconductive and photovoltaic detectors</li> <li>Avalanche photodiode detectors</li> <li>Room-temperature IR detectors</li> </ul>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €