Details

Materials for Solid State Lighting and Displays


Materials for Solid State Lighting and Displays


Wiley Series in Materials for Electronic & Optoelectronic Applications 1. Aufl.

von: Adrian Kitai

145,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 12.12.2016
ISBN/EAN: 9781119140597
Sprache: englisch
Anzahl Seiten: 384

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>LEDs are in the midst of revolutionizing the lighting industry<br /><br /><br /><br /></p> <ul> <li>Up-to-date and comprehensive coverage of light-emitting materials and devices used in solid state lighting and displays </li> <li>Presents the fundamental principles underlying luminescence</li> <li>Includes inorganic and organic materials and devices</li> <li>LEDs offer high efficiency, long life and mercury free lighting solutions</li> </ul>
List of Contributors xi <p>Series Preface xiii</p> <p>Preface xv</p> <p>Acknowledgments xvii</p> <p>About the Editor xix</p> <p><b>1. Principles of Solid State Luminescence 1</b><br /><i>Adrian Kitai</i></p> <p>1.1 Introduction to Radiation from an Accelerating Charge 1</p> <p>1.2 Radiation from an Oscillating Dipole 4</p> <p>1.3 Quantum Description of an Electron during a Radiation Event 5</p> <p>1.4 The Exciton 7</p> <p>1.5 Two-Electron Atoms 10</p> <p>1.6 Molecular Excitons 16</p> <p>1.7 Band-to-Band Transitions 19</p> <p>1.8 Photometric Units 23</p> <p>1.9 The Light Emitting Diode 28</p> <p>References 30</p> <p><b>2. Quantum Dots for Displays and Solid State Lighting 31</b><br /><i>Jesse R. Manders, Debasis Bera, Lei Qian and Paul H. Holloway</i></p> <p>2.1 Introduction 31</p> <p>2.2 Nanostructured Materials 34</p> <p>2.3 Quantum Dots 35</p> <p>2.3.1 History of Quantum Dots 36</p> <p>2.3.2 Structure and Properties Relationship 36</p> <p>2.3.3 Quantum Confinement Effects on Band Gap 38</p> <p>2.4 Relaxation Process of Excitons 41</p> <p>2.4.1 Radiative Relaxation 42</p> <p>2.4.2 Nonradiative Relaxation Process 45</p> <p>2.5 Blinking Effect 46</p> <p>2.6 Surface Passivation 47</p> <p>2.6.1 Organically Capped QDs 47</p> <p>2.6.2 Inorganically Passivated QDs 48</p> <p>2.7 Synthesis Processes 49</p> <p>2.7.1 Top-Down Synthesis 49</p> <p>2.7.2 Bottom-Up Approach 50</p> <p>2.8 Optical Properties and Applications 53</p> <p>2.8.1 Displays 53</p> <p>2.8.2 Solid State Lighting 73</p> <p>2.8.3 Biological Applications 78</p> <p>2.9 Perspective 81</p> <p>Acknowledgments 82</p> <p>References 82</p> <p><b>3. Color Conversion Phosphors for Light Emitting Diodes 91</b><br /><i>Jack Silver, George R. Fern and Robert Withnall</i></p> <p>3.1 Introduction 91</p> <p>3.2 Disadvantages of Using LEDs Without Color Conversion Phosphors 93</p> <p>3.3 Phosphors for Converting the Color of Light Emitted by LEDs 95</p> <p>3.3.1 General Considerations 95</p> <p>3.3.2 Requirements of Color Conversion Phosphors 95</p> <p>3.3.3 Commonly Used Activators in Color Conversion Phosphors 97</p> <p>3.3.4 Strategies for Generating White Light from LEDs 97</p> <p>3.3.5 Outstanding Problems with Color Conversion Phosphors for LEDs 98</p> <p>3.4 Survey of the Synthesis and Properties of Some Currently Available Color Conversion Phosphors 99</p> <p>3.4.1 Phosphor synthesis 99</p> <p>3.4.2 Metal Oxide Based Phosphors 99</p> <p>3.4.3 Metal Sulfide Based Phosphors 113</p> <p>3.4.4 Metal Nitrides 117</p> <p>3.4.5 Alkaline Earth Metal Oxo-Nitrides 120</p> <p>3.4.6 Metal Fluoride Phosphors 121</p> <p>3.5 Multi-Phosphor pcLEDs 122</p> <p>3.6 Quantum Dots 123</p> <p>3.7 Laser Diodes 124</p> <p>3.8 Conclusions 125</p> <p>Acknowledgments 125</p> <p>References 126</p> <p><b>4. Nitride and Oxynitride Phosphors for Light Emitting Diodes 135</b><br /><i>Le Wang and Rong-Jun Xie</i></p> <p>4.1 Introduction 135</p> <p>4.2 Synthesis of Nitride and Oxynitride Phosphors 138</p> <p>4.2.1 Solid State Reaction Method 138</p> <p>4.2.2 Gas Reduction and Nitridation 139</p> <p>4.2.3 Carbothermal Reduction and Nitridation 140</p> <p>4.2.4 Alloy Nitridation 140</p> <p>4.2.5 Ammonothermal Synthesis 141</p> <p>4.3 Photoluminescence Properties of Nitride and Oxynitride Phosphors 142</p> <p>4.3.1 Luminescence Spectra of Typical Activators 142</p> <p>4.4 Emerging Nitride Phosphors and Their Synthesis 165</p> <p>4.4.1 Narrow-Band Red Nitride Phosphors 165</p> <p>4.4.2 Narrow-Band Green Nitride Phosphors 167</p> <p>4.5 Applications of Nitride Phosphors 169</p> <p>4.5.1 General Lighting 169</p> <p>4.5.2 LCD Backlight 172</p> <p>References 173</p> <p><b>5. Organic Light Emitting Device Materials for Displays 183</b><br /><i>Tyler Davidson-Hall, Yoshitaka Kajiyama and Hany Aziz</i></p> <p>5.1 Introduction to OLEDs and Organic Electroluminscent Materials 184</p> <p>5.2 OLED Light Emitting Materials 186</p> <p>5.2.1 Neat Emitters 187</p> <p>5.2.2 Guest Emitters 192</p> <p>5.2.3 Aggregate-Induced Emission 201</p> <p>5.3 OLED Displays 203</p> <p>5.3.1 RGB Color Patterning Approaches 203</p> <p>5.3.2 Display Addressing Approaches 204</p> <p>5.3.3 FMM Technology 207</p> <p>5.3.4 Alternative Fabrication Techniques 208</p> <p>5.3.5 Outlook on OLED Display Commercialization 212</p> <p>5.4 Quantum Dot Light Emitting Devices 213</p> <p>5.4.1 QD Optimization by Core–Shell Morphology 214</p> <p>5.4.2 Organic Charge Transport QD-LEDs 215</p> <p>5.4.3 Hybrid Organic–Inorganic Charge Transport QD-LEDs 217</p> <p>5.4.4 Energy Transfer Enhanced QD-LEDs 219</p> <p>5.4.5 QD-LED Lifetime 220</p> <p>References 220</p> <p><b>6. White-Light Emitting Materials for Organic Light-Emitting Diode-Based Displays and Lighting 231</b><br /><i>Simone Lenk, Michael Thomschke and Sebastian Reineke</i></p> <p>6.1 Introduction 231</p> <p>6.2 White Organic Light-Emitting Diodes 233</p> <p>6.3 Photometry and Radiometry 236</p> <p>6.3.1 OLED Efficiencies 239</p> <p>6.3.2 Color Stimulus Specification 239</p> <p>6.3.3 Color Correlated Temperature 240</p> <p>6.3.4 Color Rendering Index 241</p> <p>6.3.5 White Light 241</p> <p>6.4 Device Optics 242</p> <p>6.4.1 Optical Properties of Thin Films 242</p> <p>6.4.2 Optical Outcoupling 245</p> <p>6.4.3 Top-Emitting OLEDs 247</p> <p>6.4.4 Simulation Tools 248</p> <p>6.5 Materials for Efficient White Electroluminescence 248</p> <p>6.5.1 Spin Statistics for Electroluminescence 248</p> <p>6.5.2 Fluorescence-Emitting Molecules 249</p> <p>6.5.3 Advanced Concepts Comprising Fluorescent Emitters 251</p> <p>6.5.4 Phosphorescence-Emitting Molecules 251</p> <p>6.5.5 Single White-Light Emitting Phosphorescent Materials 256</p> <p>6.5.6 Thermally Activated Delayed Fluorescence-Based Emitters 257</p> <p>6.5.7 Phosphorescence Versus Thermally Activated Delayed Fluorescence 261</p> <p>6.5.8 TADF Assisted Fluorescence (TAF) Emitters 263</p> <p>6.6 Polymer Concepts 263</p> <p>6.6.1 Various Concepts Involving Polymer Materials 265</p> <p>6.6.2 Learning from High Performance Small Molecules for High Efficiency Polymers 267</p> <p>6.7 Summary and Outlook 268</p> <p>References 269</p> <p><b>7. Light Emitting Diode Materials and Devices 273</b><br /><i>Michael R. Krames</i></p> <p>7.1 Introduction 273</p> <p>7.2 Light Emitting Diode Basics 273</p> <p>7.2.1 Construction 273</p> <p>7.2.2 Recombination Processes 275</p> <p>7.2.3 Heterojunctions 277</p> <p>7.2.4 Quantum Wells 278</p> <p>7.2.5 Current Injection 278</p> <p>7.2.6 Forward voltage 280</p> <p>7.3 Material Systems 280</p> <p>7.3.1 Ga(As,P) 280</p> <p>7.3.2 Ga(As,P):N 281</p> <p>7.3.3 (Al,Ga)As 282</p> <p>7.3.4 (Al,Ga)InP 282</p> <p>7.3.5 (Ga,In)N 283</p> <p>7.3.6 White Light Generation 285</p> <p>7.4 Packaging Technologies 288</p> <p>7.4.1 Low Power 288</p> <p>7.4.2 Mid Power 288</p> <p>7.4.3 High Power 289</p> <p>7.4.4 Chip-On-Board LEDs 290</p> <p>7.4.5 Multi-Color LEDs 290</p> <p>7.4.6 Electrostatic Discharge Protection 290</p> <p>7.5 Performance 291</p> <p>7.5.1 Light Extraction Efficiency 291</p> <p>7.5.2 Monochromatic Performance 292</p> <p>7.5.3 White-Emitting Performance 298</p> <p>7.5.4 Temperature Effects 306</p> <p>7.5.5 Reliability 306</p> <p>References 307</p> <p><b>8. Alternating Current Thin Film and Powder Electroluminescence 313</b><br /><i>Adrian Kitai</i></p> <p>8.1 Introduction 313</p> <p>8.2 Background of TFEL 314</p> <p>8.2.1 Thick Film Dielectric EL Structure 315</p> <p>8.2.2 Ceramic Sheet Dielectric EL 316</p> <p>8.2.3 Sphere-Supported TFEL 316</p> <p>8.3 Theory of Operation 317</p> <p>8.4 Electroluminescent Phosphors 324</p> <p>8.5 Thin Film Double-Insulating EL Devices 325</p> <p>8.6 Current Status of TFEL 327</p> <p>8.7 Background of AC Powder EL 328</p> <p>8.8 Mechanism of Light Emission in AC Powder EL 329</p> <p>8.9 Electroluminescence Characteristics of AC Powder EL Materials 333</p> <p>8.10 Emission Spectra of AC Powder EL 334</p> <p>8.11 Luminance Degradation 335</p> <p>8.12 Moisture and Operating Environment 336</p> <p>8.13 Current Status and Limitations of Powder EL 336</p> <p>8.14 Research Directions in AC Powder EL and TFEL 336</p> <p>References 337</p> <p>Index 339</p>
<strong>Adrian Kitai</strong> is Professor in Materials Science and Engineering at McMaster University, Canada.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €