Details

Lysosomes


Lysosomes

Biology, Diseases, and Therapeutics
1. Aufl.

von: Frederick R. Maxfield, James M. Willard, Shuyan Lu

153,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 31.05.2016
ISBN/EAN: 9781118978306
Sprache: englisch
Anzahl Seiten: 544

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Discussing recent findings, up-to-date research, and novel strategies, the book integrates perspectives from pharmacology, toxicology, and biochemistry to illustrate the potential of lysosomes in drug discovery and development.<br /><br />•    Explores basic principles and properties of lysosomes that allow them to act as regulators of cell metabolism, therapeutic targets, and sites for activation of drug conjugates <br />•    Discusses the role of lysosomes in metabolism, drug targeting, apoptosis, cancer, aging, inflammation, autophagy, metabolism, toxicity, and membrane repair<br />•    Introduces new pathways in therapeutic development and new mechanisms in drug development
<p>PREFACE xiii</p> <p>LIST OF CONTRIBUTORS xvii</p> <p><b>1 Lysosomes: An Introduction 1</b><br /><i>Frederick R. Maxfield</i></p> <p>1.1 Historical Background, 2</p> <p>References, 4</p> <p><b>2 Lysosome Biogenesis and Autophagy 7</b><br /><i>Fulvio Reggiori and Judith Klumperman</i></p> <p>2.1 Introduction, 7</p> <p>2.2 Pathways to the Lysosomes, 10</p> <p>2.2.1 Biosynthetic Transport Routes to the Lysosome, 10</p> <p>2.2.2 Endocytic Pathways to the Lysosome, 10</p> <p>2.2.3 Autophagy Pathways to the Lysosome, 12</p> <p>2.2.4 The ATG Proteins: The Key Regulators of Autophagy, 14</p> <p>2.3 Fusion and Fission between the Endolysosomal and Autophagy Pathways, 16</p> <p>2.3.1 Recycling Endosomes and Autophagosome Biogenesis, 16</p> <p>2.3.2 Autophagosome Fusion with Late Endosomes and Lysosomes, 17</p> <p>2.3.3 Autophagic Lysosomal Reformation, 18</p> <p>2.4 Diseases, 19</p> <p>2.4.1 Lysosome-Related Disorders (LSDs), 19</p> <p>2.4.2 Lysosomes in Neurodegeneration and Its Links to Autophagy, 20</p> <p>2.4.3 Autophagy-Related Diseases, 20</p> <p>2.5 Concluding Remarks, 22</p> <p>Acknowledgments, 23</p> <p>References, 23</p> <p><b>3 Multivesicular Bodies: Roles in Intracellular and Intercellular Signaling 33</b><br /><i>Emily R. Eden, Thomas Burgoyne, and Clare E. Futter</i></p> <p>3.1 Introduction, 33</p> <p>3.2 Downregulation of Signaling by Sorting onto ILVs, 35</p> <p>3.3 Upregulation of Signaling by Sorting onto ILVs, 38</p> <p>3.4 Intercellular Signaling Dependent on Sorting onto ILVs, 39</p> <p>3.5 Conclusion, 44</p> <p>References, 45</p> <p><b>4 Lysosomes and Mitophagy 51</b><br /><i>Dominik Haddad and Patrik Verstreken</i></p> <p>4.1 Summary, 51</p> <p>4.2 Mitochondrial Significance, 51</p> <p>4.3 History of Mitophagy, 52</p> <p>4.4 Mechanisms of Mitophagy, 53</p> <p>4.4.1 Mitophagy in Yeast, 54</p> <p>4.4.2 Mitophagy in Mammals, 55</p> <p>4.5 Conclusion, 57</p> <p>Acknowledgments, 57</p> <p>References, 58</p> <p><b>5 Lysosome Exocytosis and Membrane Repair 63</b><br /><i>Rajesh K. Singh and Abigail S. Haka</i></p> <p>5.1 Introduction, 63</p> <p>5.2 Functions of Lysosome Exocytosis, 63</p> <p>5.2.1 Specialized Lysosome-Related Organelles, 64</p> <p>5.2.2 Lysosome Exocytosis for Membrane Repair, 65</p> <p>5.2.3 Lysosome Exocytosis as a Source of Membrane, 66</p> <p>5.2.4 Lysosome Exocytosis for Extracellular Degradation, 66</p> <p>5.2.5 Lysosome Exocytosis and Delivery of Proteins to the Cell Surface, 68</p> <p>5.3 Mechanisms of Lysosome Exocytosis, 68</p> <p>5.3.1 Maturation of Lysosomes and Lysosome-Related Organelles, 69</p> <p>5.3.2 Transport of Lysosomes to the Plasma Membrane, 70</p> <p>5.3.3 Tethering of Lysosomes to the Plasma Membrane, 72</p> <p>5.3.4 Lysosome Fusion with the Plasma Membrane, 75</p> <p>5.3.5 Calcium-Dependent Exocytosis, 76</p> <p>5.4 Conclusion, 76</p> <p>Acknowledgments, 77</p> <p>References, 77</p> <p><b>6 Role of Lysosomes in Lipid Metabolism 87</b><br /><i>Frederick R. Maxfield</i></p> <p>6.1 Introduction, 87</p> <p>6.2 Endocytic Uptake of Lipoproteins, 88</p> <p>6.3 Lipid Metabolism in Late Endosomes and Lysosomes, 91</p> <p>6.4 Autophagy and Lysosomal Lipid Turnover, 94</p> <p>6.5 Lysosomal Lipid Hydrolysis and Metabolic Regulation, 95</p> <p>6.6 Summary, 96</p> <p>References, 96</p> <p><b>7 TFEB, Master Regulator of Cellular Clearance 101</b><br /><i>Graciana Diez-Roux and Andrea Ballabio</i></p> <p>7.1 Lysosome, 101</p> <p>7.2 The Transcriptional Regulation of Lysosomal Function, 102</p> <p>7.3 TFEB Subcellular Regulation is Regulated by Its Phosphorylation, 104</p> <p>7.4 A Lysosome-to-Nucleus Signaling Mechanism, 105</p> <p>7.5 TFEB and Cellular Clearance in Human Disease, 106</p> <p>7.5.1 Lysosomal Storage Disorders, 107</p> <p>7.5.2 Neurodegenerative Disorders, 109</p> <p>7.5.3 Metabolic Syndrome, 110</p> <p>7.5.4 Cancer, Inborn Errors of Metabolism, Immunity, and Longevity, 110</p> <p>References, 111</p> <p><b>8 Lysosomal Membrane Permeabilization in Cell Death 115</b><br /><i>Urška Repnik and Boris Turk</i></p> <p>8.1 Introduction, 115</p> <p>8.2 Cell Death Modalities, 116</p> <p>8.3 Lysosomal Membrane Permeabilization (LMP) and Cell Death, 117</p> <p>8.3.1 Mechanisms of LMP, 118</p> <p>8.3.2 Upstream of LMP: Direct Insult Versus Molecular Signaling, 121</p> <p>8.3.3 Signaling Downstream of LMP, 124</p> <p>8.4 Conclusion, 127</p> <p>Acknowledgments, 127</p> <p>References, 128</p> <p><b>9 The Lysosome in Aging-Related Neurodegenerative Diseases 137</b><br /><i>Ralph A. Nixon</i></p> <p>9.1 Introduction, 137</p> <p>9.2 Lysosome Function in Aging Organisms, 139</p> <p>9.3 Lysosomes and Diseases of Late Age Onset, 142</p> <p>9.3.1 Cardiovascular Disease, 142</p> <p>9.4 Lysosomes in Aging-Related Neurodegenerative Diseases, 144</p> <p>9.4.1 Alzheimer’s Disease (AD), 145</p> <p>9.4.2 Parkinson’s Disease and Related Disorders, 150</p> <p>9.4.3 Diffuse Lewy Body Disease (DLB), 155</p> <p>9.4.4 Frontotemporal Lobar Degeneration (FTLD), 155</p> <p>9.5 Conclusion, 158</p> <p>Acknowledgments, 158</p> <p>References, 159</p> <p><b>10 Lysosome and Cancer 181</b><br /><i>Marja Jäättelä and Tuula Kallunki</i></p> <p>10.1 Introduction, 181</p> <p>10.2 Lysosomal Function and Its Importance for Cancer Development and Progression, 181</p> <p>10.3 Cancer-Induced Changes in Lysosomal Function, 182</p> <p>10.3.1 Increased Activity of Lysosomal Enzymes, 182</p> <p>10.3.2 Altered Lysosome Membrane Permeability, 184</p> <p>10.3.3 Increased Lysosome Size, 184</p> <p>10.3.4 Altered Lysosome Trafficking – Increased Lysosomal Exocytosis, 185</p> <p>10.4 Cancer-Induced Changes in Lysosome Composition, 185</p> <p>10.4.1 Changes in Lysosomal Hydrolases, 185</p> <p>10.4.2 Changes in the Lysosomal Membrane Proteins, 192</p> <p>10.5 Molecular Changes Involving Lysosomal Integrity, 193</p> <p>10.5.1 Cancer-Associated Changes in Lysosomal Sphingolipid Metabolism, 193</p> <p>10.5.2 Targeting Lysosomal Membrane Integrity, 195</p> <p>10.6 Conclusion, 196</p> <p>References, 197</p> <p><b>11 The Genetics of Sphingolipid Hydrolases and Sphingolipid Storage Diseases 209</b><br /><i>Edward H. Schuchman and Calogera M. Simonaro</i></p> <p>11.1 Introduction and Overview, 209</p> <p>11.2 Acid Ceramidase Deficiency: Farber Disease, 210</p> <p>11.3 Acid Sphingomyelinase Deficiency: Types A and B Niemann–Pick Disease, 213</p> <p>11.4 Beta-Glucocerebrosidase Deficiency: Gaucher Disease, 215</p> <p>11.5 Galactocerebrosidase Deficiency: Krabbe Disease/Globoid Cell Leukodystrophy, 218</p> <p>11.6 Arylsulfatase a Deficiency: Metachromatic Leukodystrophy, 219</p> <p>11.7 Alpha-Galactosidase a Deficiency: Fabry Disease, 221</p> <p>11.8 Beta-Galactosidase Deficiency: GM1 Gangliosidosis, 224</p> <p>11.9 Hexosaminidase A and B Deficiency: GM2 Gangliosidoses, 226</p> <p>11.10 Sphingolipid Activator Proteins, 229</p> <p>References, 231</p> <p><b>12 Lysosome-Related Organelles: Modifications of the Lysosome Paradigm 239</b><br /><i>Adriana R. Mantegazza and Michael S. Marks</i></p> <p>12.1 Differences Between LROs and Secretory Granules, 240</p> <p>12.2 Physiological Functions of LROs, 240</p> <p>12.3 LRO Biogenesis, 244</p> <p>12.3.1 Chediak–Higashi Syndrome and Gray Platelet Syndrome, 244</p> <p>12.3.2 Hermansky–Pudlak Syndrome, 246</p> <p>12.3.3 Melanosome Biogenesis, 247</p> <p>12.3.4 HPS and Melanosome Maturation, 248</p> <p>12.3.5 HPS and the Biogenesis of Other LROs, 250</p> <p>12.3.6 HPS and Neurosecretory Granule Biogenesis, 250</p> <p>12.3.7 Weibel–Palade Body Biogenesis, 251</p> <p>12.4 LRO Motility, Docking, and Secretion, 252</p> <p>12.5 LROs and Immunity to Pathogens, 253</p> <p>12.5.1 Cytolytic Granules, 253</p> <p>12.5.2 Familial Hemophagocytic Lymphohistiocytosis and Cytolytic Granule Secretion, 254</p> <p>12.5.3 Azurophilic Granules, 255</p> <p>12.5.4 NADPH Oxidase-Containing LROs, 255</p> <p>12.5.5 IRF7-Signaling LROs and Type I Interferon Induction, 256</p> <p>12.5.6 MIICs: LROs or Conventional Late Endosome/Lysosomes?, 256</p> <p>12.5.7 Phagosomes and Autophagosomes as New Candidate LROs, 258</p> <p>12.6 Perspectives, 260</p> <p>Acknowledgments, 260</p> <p>References, 260</p> <p><b>13 Autophagy Inhibition as a Strategy for Cancer Therapy 279</b><br /><i>Xiaohong Ma, Shengfu Piao, Quentin Mcafee, and Ravi K. Amaravadi</i></p> <p>13.1 Stages and Steps of Autophagy, 282</p> <p>13.2 Induction of Autophagy, 283</p> <p>13.3 Studies in Mouse Models Unravel the Dual Roles of Autophagy in Tumor Biology, 285</p> <p>13.4 Clinical Studies on Autophagy’s Dual Role in Tumorigenesis, 286</p> <p>13.5 Mouse Models Provide the Rationale for Autophagy Modulation in the Context of Cancer Therapy, 288</p> <p>13.6 Multiple Druggable Targets in the Autophagy Pathway, 291</p> <p>13.7 Overview of Preclinical Autophagy Inhibitors and Evidence Supporting Combination with Existing and New Anticancer Agents, 292</p> <p>13.8 Proximal Autophagy Inhibitors, 293</p> <p>13.9 Quinolines: From Antimalarials to Prototypical Distal Autophagy Inhibitors, 293</p> <p>13.10 Summary for the Clinical Trials for CQ/HCQ, 295</p> <p>13.11 Developing More Potent Anticancer Autophagy Inhibitors, 298</p> <p>13.12 Summary, Conclusion, and Future Directions, 300</p> <p>13.13 In Summary, 302</p> <p>References, 302</p> <p><b>14 Autophagy Enhancers, are we there Yet? 315</b><br /><i>Shuyan Lu and Ralph A. Nixon</i></p> <p>14.1 Introduction, 315</p> <p>14.2 Autophagy Impairment and Diseases, 316</p> <p>14.3 Autophagy Enhancer Screening, 317</p> <p>14.3.1 Methods for Monitoring Autophagy, 317</p> <p>14.3.2 Autophagy Enhancers Identified from Early Literature, 326</p> <p>14.3.3 mTOR Inhibitors, 331</p> <p>14.4 Other Agents that Boost Autophagy and Lysosomal Functions, 335</p> <p>14.4.1 HDAC Inhibition, 336</p> <p>14.4.2 pH Restoration, 337</p> <p>14.4.3 TRP Activator, 337</p> <p>14.4.4 TFEB Overexpression/Activation, 338</p> <p>14.4.5 Lysosomal Efficiency, 338</p> <p>14.4.6 MicroRNA, 339</p> <p>14.5 Concluding Remarks, 340</p> <p>References, 341</p> <p><b>15 Pharmacological Chaperones as Potential Therapeutics for Lysosomal Storage Disorders: Preclinical Research to Clinical Studies 357</b><br /><i>Robert E. Boyd, Elfrida R. Benjamin, Su Xu, Richie Khanna, and Kenneth J. Valenzano</i></p> <p>15.1 Introduction, 357</p> <p>15.2 Fabry Disease, 359</p> <p>15.3 Gaucher Disease, 363</p> <p>15.4 GM2 Gangliosidoses (Tay–Sachs/Sandhoff Diseases), 367</p> <p>15.5 Pompe Disease, 368</p> <p>15.6 PC-ERT Combination Therapy, 370</p> <p>References, 372</p> <p><b>16 Endosomal Escape Pathways for Delivery of Biologics 383</b><br /><i>Philip L. Leopold</i></p> <p>16.1 Introduction, 383</p> <p>16.2 Endosome Characteristics, 384</p> <p>16.3 Delivery of Nature’s Biologics: Lessons on Endosomal Escape from Pathogens, 389</p> <p>16.3.1 Viruses, 390</p> <p>16.3.2 Bacteria, Protozoa, and Fungi, 392</p> <p>16.3.3 Toxins, 394</p> <p>16.4 Endosomal Escape Using Engineered Systems, 395</p> <p>16.4.1 Peptides and Polymers, 396</p> <p>16.4.2 Lipids, 398</p> <p>16.4.3 Other Chemical and Physical Strategies, 399</p> <p>16.5 Conclusion, 399</p> <p>References, 400</p> <p><b>17 Lysosomes and Antibody–Drug Conjugates 409</b><br /><i>Michelle Mack, Jennifer Kahler, Boris Shor, Michael Ritchie, Maureen Dougher, Matthew Sung, and Puja Sapra</i></p> <p>17.1 Introduction, 409</p> <p>17.2 Receptor Internalization, 410</p> <p>17.3 Antibody–Drug Conjugates, 413</p> <p>17.4 Mechanisms of Resistance to ADCs, 416</p> <p>17.5 Summary, 417</p> <p>References, 417</p> <p><b>18 The Mechanisms and Therapeutic Consequences of Amine-Containing Drug Sequestration in Lysosomes 423</b><br /><i>Nadia Hamid and Jeffrey P. Krise</i></p> <p>18.1 Introduction, 423</p> <p>18.2 Lysosomal Trapping Overview, 424</p> <p>18.3 Techniques to Assess Lysosomal Trapping, 427</p> <p>18.4 Influence of Lysosomotropism on Drug Activity, 429</p> <p>18.5 Influence of Lysosomal Trapping on Pharmacokinetics, 435</p> <p>18.6 Pharmacokinetic Drug–Drug Interactions Involving Lysosomes, 438</p> <p>References, 440</p> <p><b>19 Lysosome Dysfunction: an Emerging Mechanism of Xenobiotic-Induced Toxicity 445</b><br /><i>Shuyan Lu, Bart Jessen, Yvonne Will, and Greg Stevens</i></p> <p>19.1 Introduction, 445</p> <p>19.2 Compounds that Impact Lysosomal Function, 446</p> <p>19.2.1 Lysosomotropic Compounds, 446</p> <p>19.2.2 Nonlysosomotropic Compounds, 451</p> <p>19.3 Cellular Consequences, 452</p> <p>19.3.1 Effect of Drugs on pH and Lysosomal Volume, 452</p> <p>19.3.2 Effects on Lysosomal Enzymes, 453</p> <p>19.3.3 Lysosomal Substrate Accumulation, 454</p> <p>19.3.4 Lysosomal Membrane Permeabilization (LMP) and Cell Death, 454</p> <p>19.3.5 Membrane Trafficking Changes, 455</p> <p>19.3.6 Other Cellular Impacts, 458</p> <p>19.4 Impaired Lysosomal Function as a Mechanism for Organ Toxicity, 461</p> <p>19.4.1 Liver Toxicity, 462</p> <p>19.4.2 Kidney Toxicity, 464</p> <p>19.4.3 Retinal, 466</p> <p>19.4.4 Peripheral Neuropathy, 466</p> <p>19.4.5 Muscle Toxicity, 467</p> <p>19.4.6 Tumorigenesis, 468</p> <p>19.4.7 General Considerations for Organ Toxicity, 469</p> <p>19.5 Concluding Remarks, 471</p> <p>References, 472</p> <p><b>20 Lysosomes and Phospholipidosis in Drug Development and Regulation 487</b><br /><i>James M. Willard and Albert De Felice</i></p> <p>20.1 Introduction, 487</p> <p>20.2 FDA Involvement, 488</p> <p>20.3 Autophagy and DIPL, 489</p> <p>20.4 Early Experience with Lethal DIPL, 489</p> <p>20.5 Clinical and Nonclinical Expressions of DIPL, 490</p> <p>20.5.1 Clinical, 490</p> <p>20.5.2 Nonclinical, 491</p> <p>20.6 Physical Chemistry, 491</p> <p>20.7 Quantitative Structure–Activity Relationship (QSAR), 492</p> <p>20.8 Toxicogenomics, 493</p> <p>20.9 Fluorescence, Dye, and Immunohistochemical Methods for Screening, 494</p> <p>20.10 FDA Database and QSAR Modeling, 494</p> <p>20.11 Linking Phospholipidosis and Overt Toxicity, 494</p> <p>20.12 Phospholipidosis and QT Interval Prolongation, 496</p> <p>20.13 DIPL Mechanisms, 500</p> <p>20.14 Treatment, 501</p> <p>20.15 Discussion, 501</p> <p>20.16 Future Directions and Recommendations, 505</p> <p>References, 506</p> <p>INDEX 513</p>
<b>Frederick R. Maxfield, PhD</b>, is Professor and Chair of the Department of Biochemistry at Weill Cornell Medical College. He has used digital imaging microscopy to characterize pH changes in endocytic organelles, to measure the kinetics of transport of molecules among organelles, and to identify new endocytic organelles such as the endocytic recycling compartment. Dr. Maxfield has published extensively on trafficking of lipids and cholesterol.<br /><br /><b>James M. Willard, PhD</b>, has been a member of the Phospholipidosis Working Group at the Center for Drug Evaluation and Research (CDER) of the Food and Drug Administration since 2005 and Co-Chair of the group since 2011. <br /><br /><b>Shuyan Lu, MSc</b>, has been an Investigative Toxicologist of Drug Research and Development at Pfizer for over 10 years. She studies the role of lysosomal pathways and physical chemical properties of compounds in drug-induced toxicity.
<p>Traditionally known as the “stomach of the cell,” lysosomes contain enzymes to break down and recycle internal and external macromolecules, like waste materials and cellular debris. The roles of lysosomes have been expanded to include much broader functions such as membrane repair and amino acid sensing. The organelles also emerge as a signalling hub for mTOR to maintain energy homeostasis. With significant implication in various pathological conditions, lysosomal pathways are evaluated as a pharmacological target for lysosomal storage diseases, cancer, and neurodegeneration. Lysosomes also involve the delivery of other biologicals and antibody drug conjugates. In addition, many drugs are found to accumulate inside lysosomes, thus allowing them to contribute to our understanding of pharmacokinetics, drug-drug interactions, and toxicity profiling.</p> <p>Discussing recent findings, up-to-date research, and novel strategies, <i>Lysosomes</i> integrates perspectives from cell biology, pharmacology, toxicology, and biochemistry to illustrate both the basic properties of lysosomes and their potential roles in drug discovery and development. With perspectives from various fields, this book illustrates the potential of lysosomes beyond their cellular function, focusing on disease and drug targeting. An opening section covers basic cell biology and functions of lysosomes – including chapters on the lysosome’s role in therapeutic pathways, cancer, cell death, and metabolism. The second section explores lysosomes in various aspects of drug development and toxicity and features discussion of autophagy intervention for cancer and neurodegeneration, ADC delivery and efficacy, and drug sequestration in lysosomes and its therapeutic and toxicological consequences.</p> <p>With in-depth coverage of a broad range of material, <i>Lysosomes</i> presents a number of key benefits to readers that include:</p> <p>Integration of key aspects of lysosomes to present an understanding of their roles, potential, and future prospects<br />Discussion of lysosomes in drug targeting, apoptosis, cancer, aging, autophagy, metabolism, toxicity, and membrane repair<br />Exploration of basic principles and properties of lysosomes that allow them to act as therapeutic targets and impact various aspects of drug development</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €