Details

Inorganic Glasses for Photonics


Inorganic Glasses for Photonics

Fundamentals, Engineering, and Applications
Wiley Series in Materials for Electronic & Optoelectronic Applications 1. Aufl.

von: Animesh Jha, Peter Capper, Safa O. Kasap, Arthur Willoughby

114,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 04.08.2016
ISBN/EAN: 9781118696095
Sprache: englisch
Anzahl Seiten: 344

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Advanced textbook on inorganic glasses suitable for both undergraduates and researchers.</p> <ul> <li>Engaging style to facilitate understanding</li> <li>Suitable for senior undergraduates, postgraduates and researchers entering material science, engineering, physics, chemistry, optics and photonics fields</li> <li>Discusses new techniques in optics and photonics including updates on diagnostic techniques</li> <li>Comprehensive and logically structured</li> </ul>
<p>Series Preface xiii</p> <p>Preface xv</p> <p><b>1. Introduction 1</b></p> <p>1.1 Definition of Glassy States 1</p> <p>1.2 The Glassy State and Glass Transition Temperature (Tg) 1</p> <p>1.3 Kauzmann Paradox and Negative Change in Entropy 4</p> <p>1.4 Glass-Forming Characteristics and Thermodynamic Properties 5</p> <p>1.5 Glass Formation and Co-ordination Number of Cations 14</p> <p>1.6 Ionicity of Bonds of Oxide Constituents in Glass-Forming Systems 20</p> <p>1.7 Definitions of Glass Network Formers, Intermediates and Modifiers and Glass-Forming Systems 23</p> <p>1.7.1 Constituents of Inorganic Glass-Forming Systems 24</p> <p>1.7.2 Strongly Covalent Inorganic Glass-Forming Networks 26</p> <p>1.7.3 Conditional Glass Formers Based on Heavy-Metal Oxide Glasses 29</p> <p>1.7.4 Fluoride and Halide Network Forming and Conditional Glass-Forming Systems 31</p> <p>1.7.5 Silicon Oxynitride Conditional Glass-Forming Systems 36</p> <p>1.7.6 Chalcogenide Glass-Forming Systems 37</p> <p>1.7.7 Chalcohalide Glasses 45</p> <p>1.8 Conclusions 46</p> <p>Selected Biography 46</p> <p>References 46</p> <p><b>2. Glass Structure, Properties and Characterization 51</b></p> <p>2.1 Introduction 51</p> <p>2.1.1 Kinetic Theory of Glass Formation and Prediction of Critical Cooling Rates 51</p> <p>2.1.2 Classical Nucleation Theory 52</p> <p>2.1.3 Non-Steady State Nucleation 54</p> <p>2.1.4 Heterogeneous Nucleation 55</p> <p>2.1.5 Nucleation Studies in Fluoride Glasses 56</p> <p>2.1.6 Growth Rate 58</p> <p>2.1.7 Combined Growth and Nucleation Rates, Phase Transformation and Critical Cooling Rate 59</p> <p>2.2 Thermal Characterization using Differential Scanning Calorimetry (DSC) and Differential Thermal Analysis (DTA) Techniques 62</p> <p>2.2.1 General Features of a Thermal Characterization 62</p> <p>2.2.2 Methods of Characterization 63</p> <p>2.2.3 Determining the Characteristic Temperatures 64</p> <p>2.2.4 Determination of Apparent Activation Energy of Devitrification 66</p> <p>2.3 Coefficients of Thermal Expansion of Inorganic Glasses 68</p> <p>2.4 Viscosity Behaviour in the near-Tg, above Tg and in the Liquidus Temperature Ranges 71</p> <p>2.5 Density of Inorganic Glasses 75</p> <p>2.6 Specific Heat and its Temperature Dependence in the Glassy State 76</p> <p>2.7 Conclusion 77</p> <p>References 77</p> <p><b>3. Bulk Glass Fabrication and Properties 79</b></p> <p>3.1 Introduction 79</p> <p>3.2 Fabrication Steps for Bulk Glasses 80</p> <p>3.2.1 Chemical Vapour Technique for Oxide Glasses 80</p> <p>3.2.2 Batch Preparation for Melting Glasses 81</p> <p>3.2.3 Chemical Treatment Before and During Melting 81</p> <p>3.3 Chemical Purification Methods for Heavier Oxide (GeO2 and TeO2) Glasses 84</p> <p>3.4 Drying, Fusion and Melting Techniques for Fluoride Glasses 87</p> <p>3.4.1 Raw Materials 88</p> <p>3.4.2 Control of Hydroxyl Ions during Drying and Melting of Fluorides 88</p> <p>3.5 Chemistry of Purification and Melting Reactions for Chalcogenide Materials 91</p> <p>3.6 Need for Annealing Glass after Casting 96</p> <p>3.7 Fabrication of Transparent Glass Ceramics 97</p> <p>3.8 Sol–Gel Technique for Glass Formation 99</p> <p>3.8.1 Background Theory 99</p> <p>3.8.2 Examples of Materials Chemistry and Sol–Gel Forming Techniques 103</p> <p>3.9 Conclusions 105</p> <p>References 105</p> <p><b>4. Optical Fibre Design, Engineering, Fabrication and Characterization 109</b></p> <p>4.1 Introduction to Geometrical Optics of Fibres: Geometrical Optics of Fibres and Waveguides (Propagation, Critical and Acceptance Angles, Numerical Aperture) 109</p> <p>4.2 Solutions for Dielectric Waveguides using Maxwell’s Equation 114</p> <p>4.2.1 Analysis of Mode Field Diameter in Single Mode Fibres 115</p> <p>4.3 Materials Properties Affecting Degradation of Signal in Optical Waveguides 117</p> <p>4.3.1 Total Intrinsic Loss 117</p> <p>4.3.2 Electronic Absorption 118</p> <p>4.3.3 Experimental Aspects of Determining the Short Wavelength Absorption 121</p> <p>4.3.4 Scattering 121</p> <p>4.3.5 Infrared Absorption 124</p> <p>4.3.6 Characterization of Vibrational Structures using Raman and IR Spectroscopy 126</p> <p>4.3.7 Experimental Aspects of Raman Spectroscopic Technique 127</p> <p>4.3.8 Fourier Transform Infrared (FTIR) spectroscopy 128</p> <p>4.3.9 Examples of the Analysis of Raman and IR spectra 130</p> <p>4.4 Fabrication of Core–Clad Structures of Glass Preforms and Fibres and their Properties 141</p> <p>4.4.1 Comparison of Fabrication Techniques for Silica Optical Fibres with Non-silica Optical Fibres 143</p> <p>4.4.2 Fibre Fabrication using Non-silica Glass Core–Clad Structures 151</p> <p>4.4.3 Loss Characterization of Fibres 153</p> <p>4.5 Refractive Indices and Dispersion Characteristics of Inorganic Glasses 158</p> <p>4.5.1 Experimental Procedure for Measuring Refractive Index of a Glass or Thin Film 163</p> <p>4.5.2 Dependence of Density on Temperature and Relationship with Refractive Index 166</p> <p>4.5.3 Effect of Residual Stress on Refractive Index of a Medium and its Effect 169</p> <p>4.6 Conclusion 170</p> <p>References 170</p> <p><b>5. Thin-film Fabrication and Characterization 178</b></p> <p>5.1 Introduction 178</p> <p>5.2 Physical Techniques for Thick and Thin Film Deposition 179</p> <p>5.3 Evaporation 179</p> <p>5.3.1 General Description 179</p> <p>5.3.2 Technique, Materials and Process Control 179</p> <p>5.4 Sputtering 181</p> <p>5.4.1 Principle of Sputtering 181</p> <p>5.5 Pulsed Laser Deposition 183</p> <p>5.5.1 Introduction and Principle 183</p> <p>5.5.2 Process 184</p> <p>5.5.3 Key Features of PLD process 186</p> <p>5.5.4 Controlling Parameters and Materials Investigated 187</p> <p>5.5.5 Fabrication of Thin Film Structures using PLD and Molecular Beam Epitaxy 188</p> <p>5.6 Ion Implantation 192</p> <p>5.6.1 Introduction 192</p> <p>5.6.2 Technique and Structural Changes 192</p> <p>5.6.3 Governing Parameters for Ion Implantation 193</p> <p>5.6.4 Materials Systems Investigated 194</p> <p>5.7 Chemical Techniques 194</p> <p>5.7.1 Characteristics of Chemical Vapour Deposition Processes 195</p> <p>5.7.2 Materials System Studied and Applications 196</p> <p>5.7.3 Molecular Beam Epitaxy (MBE) 196</p> <p>5.8 Ion-Exchange Technique 197</p> <p>5.9 Chemical Solution or Sol–Gel Deposition (CSD) 200</p> <p>5.9.1 Introduction 200</p> <p>5.9.2 CSD Technique and Materials Deposited 202</p> <p>5.10 Conclusion 203</p> <p>References 203</p> <p><b>6. Spectroscopic Properties of Lanthanide (Ln3+) and Transition Metal (M3+)-Ion Doped Glasses 209</b></p> <p>6.1 Introduction 209</p> <p>6.2 Theory of Radiative Transition 209</p> <p>6.3 Classical Model for Dipoles and Decay Process 212</p> <p>6.4 Factors Influencing the Line Shape Broadening of Optical Transitions 214</p> <p>6.5 Characteristics of Dipole and Multi-Poles and Selection Rules for Optical Transitions: 218</p> <p>6.5.1 Analysis of Dipole Transitions Based on Fermi’s Golden Rule 219</p> <p>6.5.2 Electronic Structure and Some Important Properties of Lanthanides 221</p> <p>6.5.3 Laporte Selection Rules for Rare-Earth and Transition Metal Ions 224</p> <p>6.6 Comparison of Oscillator Strength Parameters, Optical Transition Probabilities and Overall Lifetimes of Excited States 227</p> <p>6.6.1 Radiative and Non-Radiative Rate Equation 231</p> <p>6.6.2 Energy Transfer and Related Non-Radiative Processes 233</p> <p>6.6.3 Upconversion Process 237</p> <p>6.7 Selected Examples of Spectroscopic Processes in Rare-Earth Ion Doped Glasses 238</p> <p>6.7.1 Spectroscopic Properties of Trivalent Lanthanide (Ln3+)-Doped Inorganic Glasses 239</p> <p>6.7.2 Brief Comparison of Spectroscopic Properties of Er3+-Doped Glasses 241</p> <p>6.7.3 Spectroscopic Properties of Tm3+-Doped Inorganic Glasses 247</p> <p>6.8 Conclusions 257</p> <p>References 257</p> <p><b>7. Applications of Inorganic Photonic Glasses 261</b></p> <p>7.1 Introduction 261</p> <p>7.2 Dispersion in Optical Fibres and its Control and Management 261</p> <p>7.2.1 Intramodal Dispersion 262</p> <p>7.2.2 Intermodal Distortion 265</p> <p>7.2.3 Polarization Mode Dispersion (PMD) 266</p> <p>7.2.4 Methods of Controlling and Managing Dispersion in Fibres 267</p> <p>7.3 Unconventional Fibre Structures 269</p> <p>7.3.1 Fibres with Periodic Defects and Bandgap 269</p> <p>7.3.2 TIR and Endlessly Single Mode Propagation in PCF with Positive Core–Cladding Difference 272</p> <p>7.3.3 Negative Core–Cladding Refractive Index Difference 272</p> <p>7.3.4 Control of Group Velocity Dispersion (GVD) 273</p> <p>7.3.5 Birefringence in Microstructured Optical Fibres 274</p> <p>7.4 Optical Nonlinearity in Glasses, Glass-Ceramics and Optical Fibres 275</p> <p>7.4.1 Theory of Harmonic Generation 275</p> <p>7.4.2 Nonlinear Materials for Harmonic Generations and Parametric Processes 279</p> <p>7.4.3 Fibre Based Kerr Media and its Application 285</p> <p>7.4.4 Resonant Nonlinearity in Doped Glassy Hosts 287</p> <p>7.4.5 Second Harmonic Generation in Inorganic Glasses 288</p> <p>7.4.6 Electric-Field Poling and Poled Glass 289</p> <p>7.4.7 Raman Gain Medium 291</p> <p>7.4.8 Photo-induced Bragg and Long-Period Gratings in Fibres 292</p> <p>7.5 Applications of Selected Rare-earth ion and Bi-ion Doped Amplifying Devices 294</p> <p>7.5.1 Introduction 294</p> <p>7.5.2 Examples of Three-Level or Pseudo-Three-Level Transitions 296</p> <p>7.5.3 Examples of Four-Level Laser Systems 300</p> <p>7.6 Emerging Opportunities for the Future 302</p> <p>7.7 Conclusions 303</p> <p>References 304</p> <p>Supplementary References 311</p> <p>Symbols and Notations Used 315</p> <p>Index 317</p>
"The target audience for this text is graduate students and researchers in functionalizing properties for photonic applications. Anyone concerned with the structure-property relationship of materials, however, will profit from reading this book" <b>The Oprical Society, July 2017</b>
<b>Animesh Jha</b> is Professor of Applied Materials Science at the University of Leeds. He is a fellow of the Society of Glass Technology whose research areas include photonic materials, fiber and planar light waveguide devices, spectroscopy of rare-earth and transition metal ions, raman spectroscopy of glass and ceramic materials, minerals and mineralogy.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €