Details

ADME and Translational Pharmacokinetics / Pharmacodynamics of Therapeutic Proteins


ADME and Translational Pharmacokinetics / Pharmacodynamics of Therapeutic Proteins

Applications in Drug Discovery and Development
1. Aufl.

von: Honghui Zhou, Frank-Peter Theil

134,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 26.10.2015
ISBN/EAN: 9781118898802
Sprache: englisch
Anzahl Seiten: 480

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>With an emphasis on the fundamental and practical aspects of ADME for therapeutic proteins, this book helps readers strategize, plan and implement translational research for biologic drugs.</p> <p>• Details cutting-edge ADME (absorption, distribution, metabolism and excretion) and PKPD (pharmacokinetic / pharmacodynamics) modeling for biologic drugs<br />• Combines theoretical with practical aspects of ADME in biologic drug discovery and development and compares innovator biologics with biosimilar biologics and small molecules with biologics,  giving a lessons-learned perspective <br />• Includes case studies about leveraging ADME to improve biologics drug development for monoclonal antibodies, fusion proteins, pegylated proteins, ADCs, bispecifics, and vaccines<br />• Presents regulatory expectations and industry perspectives for developing biologic drugs in USA, EU, and Japan<br />• Provides mechanistic insight into biodistribution and target-driven pharmacokinetics in important sites of action such as tumors and the brain</p>
LIST OF CONTRIBUTORS xvii <p>FOREWORD xix</p> <p><b>1 ADME for Therapeutic Biologics: What Can We Leverage from Great Wealth of ADME Knowledge and <i>Research for Small Molecules 1</i></b><br /><i>Weirong Wang and Thomayant Prueksaritanont</i></p> <p>1.1 Introduction 1</p> <p>1.2 SM Drug Discovery and Development: Historical Perspective 1</p> <p>1.2.1 Evolving Role of DMPK: Paradigm Shift 1</p> <p>1.2.2 Key Enablers to Successful DMPK Support 2</p> <p>1.2.3 Regulatory Considerations 3</p> <p>1.3 LM Drug Discovery and Development 3</p> <p>1.3.1 Role of DMPK: Current State 3</p> <p>1.3.2 SM/LM DMPK Analogy 4</p> <p>1.3.3 Leveraging SM Experience: Case Examples 6</p> <p>1.4 Conclusions 8</p> <p>References 8</p> <p><b>2 Protein Engineering: Applications to Therapeutic Proteins and Antibodies 13</b><br /><i>Andrew G. Popplewell</i></p> <p>2.1 Introduction 13</p> <p>2.2 Methods of Protein Engineering 13</p> <p>2.2.1 General Techniques 13</p> <p>2.2.2 Introducing Specific, Directed Sequence Changes 14</p> <p>2.2.3 Fragment Fusion 14</p> <p>2.2.4 Gene Synthesis 14</p> <p>2.2.5 Molecular “Evolution” through Display and Selection 14</p> <p>2.3 Applications of Protein Engineering to Non-Antibody Therapeutic Proteins 16</p> <p>2.4 Applications of Protein Engineering to Therapeutic Antibodies 16</p> <p>2.4.1 Reduction of Immunogenicity 17</p> <p>2.4.2 Improving Stability and Biophysical Properties 17</p> <p>2.4.3 Tailoring Mechanism of Action 19</p> <p>2.4.4 Influencing Distribution and PK 19</p> <p>2.4.5 Improving Ligand/Receptor Interaction 20</p> <p>2.5 Future Perspectives 20</p> <p>References 21</p> <p><b>3 Therapeutic Antibodies—Protein Engineering to Influence ADME, PK, and Efficacy 25</b><br /><i>Tatsuhiko Tachibana, Kenta Haraya, Yuki Iwayanagi and Tomoyuki Igawa</i></p> <p>3.1 Introduction 25</p> <p>3.2 Relationship between pI and Pharmacokinetics 26</p> <p>3.2.1 pI and Clearance 26</p> <p>3.2.2 pI and Distribution 26</p> <p>3.2.3 pI and SC Absorption 27</p> <p>3.2.4 pI and FcRn Function 27</p> <p>3.3 Nonspecific/Specific Off?]Target Binding 27</p> <p>3.3.1 Nonspecific Binding and Clearance 27</p> <p>3.3.2 Specific Off?]Target Binding and Clearance 28</p> <p>3.4 pH?]Dependent Antigen Binding to Reduce Target?]Mediated Elimination 28</p> <p>3.4.1 Concept of Recycling Antibody 28</p> <p>3.4.2 pH Dependency and Target?]Mediated Elimination 29</p> <p>3.5 Soluble Antigen Sweeping 31</p> <p>3.5.1 Concept of Sweeping Antibody 31</p> <p>3.5.2 FcRn?]Mediated Sweeping 31</p> <p>3.5.3 FcγRIIb?]Mediated Sweeping 33</p> <p>3.6 Future Perspectives 34</p> <p>References 34</p> <p><b>4 ADME for Therapeutic Biologics: Antibody?]Derived Proteins and Proteins with Novel Scaffolds 39</b><br /><i>Chetan Rathi and Bernd Meibohm</i></p> <p>4.1 Introduction 39</p> <p>4.2 Antibody–Drug Conjugates 39</p> <p>4.2.1 Components of ADCs 40</p> <p>4.2.2 Types of ADC Analytes and Their PK Interpretation 41</p> <p>4.2.3 PK of ADC 42</p> <p>4.2.4 Immunogenicity of ADC 45</p> <p>4.2.5 Exposure–Response of ADCs 45</p> <p>4.2.6 Dose?]Dependent PK of ADCs 45</p> <p>4.3 Bispecifics 45</p> <p>4.3.1 Bispecific Antibody Formats 46</p> <p>4.3.2 PK of Bispecific Constructs 47</p> <p>4.3.3 Immunogenicity of Bispecific Constructs 48</p> <p>4.3.4 Examples of Bispecific Therapeutics—Oncology Indications 48</p> <p>4.3.5 Examples of Bispecific Therapeutics—CNS Indications 49</p> <p>4.3.6 Examples of Bispecific Therapeutics—Ocular Indications 49</p> <p>4.4 Conclusions 50</p> <p>References 50</p> <p><b>5 Overview of ADME and PK/PD of ADCs 55</b><br /><i>Baiteng Zhao and Tae H. Han</i></p> <p>5.1 Introduction to ADC 55</p> <p>5.2 Absorption 56</p> <p>5.3 Distribution 58</p> <p>5.4 Metabolism/Catabolism 58</p> <p>5.5 Drug?]Linker Stability 59</p> <p>5.6 Elimination 60</p> <p>5.7 Clinical PK 60</p> <p>5.8 PK and PK/PD Modeling for ADCs 61</p> <p>5.9 Summary 62</p> <p>References 63</p> <p><b>6 Role of Lymphatic System in Subcutaneous Absorption of Therapeutic Proteins 67</b><br /><i>Jiunn H. Lin and Weirong Wang</i></p> <p>6.1 Introduction 67</p> <p>6.2 Physiology of Subcutaneous Tissue 68</p> <p>6.3 Interstitial Transport from SC Injection Site 68</p> <p>6.4 Relative Role of Blood and Lymphatic Systems in SC Absorption 69</p> <p>6.5 Presystemic Catabolism in SC Absorption of Proteins 72</p> <p>6.6 Effect of Injection Site on SC Absorption 74</p> <p>6.7 Conclusions 74</p> <p>References 75</p> <p><b>7 Biodistribution of Therapeutic Biologics: Methods and Applications in Informing Target Biology, Pharmacokinetics, and Dosing Strategies 77</b><br /><i>Sean B. Joseph, Saileta Prabhu and C. Andrew Boswell</i></p> <p>7.1 Introduction 77</p> <p>7.2 Determinants of Antibody Biodistribution 77</p> <p>7.2.1 Molecular Properties 78</p> <p>7.2.2 Physiological (Tissue) Properties 79</p> <p>7.3 Methods of Measuring Antibody Biodistribution 81</p> <p>7.3.1 In Vivo Study Design Considerations 81</p> <p>7.3.2 Tissue Analysis 85</p> <p>7.4 Interpretation of Biodistribution Data 85</p> <p>7.4.1 Calculations and Units 86</p> <p>7.4.2 Compartmental Tissue Concentrations 86</p> <p>7.4.3 Blood Correction 86</p> <p>7.4.4 Derivation of Interstitial Concentrations 87</p> <p>7.4.5 Confirmation of Receptor Occupancy 87</p> <p>7.4.6 Explaining Unexpectedly Rapid Clearance 87</p> <p>7.4.7 Assisting in Clinical Dose Selection 87</p> <p>7.5 Concluding Remarks 87</p> <p>Acknowledgments 88</p> <p>References 88</p> <p><b>8 Prediction of Human Pharmacokinetics for Protein?]Based Biologic Therapeutics 91</b><br /><i>Chao Han and Christina Lourdes Mayer</i></p> <p>8.1 Introduction 91</p> <p>8.2 General Allometric Scaling and Interspecies Scaling Methods 92</p> <p>8.3 Considerations for Interspecies Scaling of Protein?]Based Biologic Therapeutics 93</p> <p>8.3.1 Considerations for Interspecies Scaling of mAbs 95</p> <p>8.3.2 Other Factors that may Affect PK Interspecies Scaling for Protein?]Based Therapeutics 98</p> <p>8.4 Physiologically Based PK Modeling 100</p> <p>8.5 Perspectives Beyond the Prediction 101</p> <p>8.5.1 Prediction of Human PK Serves Different Purposes at Different Stages of Drug Development 101</p> <p>8.5.2 Safety Considerations When Predicting Human PK for Protein?]Based Therapeutics 102</p> <p>8.6 Conclusions 102</p> <p>References 102</p> <p><b>9 Fixed Dosing versus Body?]Size?]Based Dosing for Therapeutic Biologics—A Clinical Pharmacology Strategy 107</b><br /><i>Diane D. Wang, Justin T. Hoffman and Kourosh Parivar</i></p> <p>9.1 Introduction 107</p> <p>9.1.1 Considerations for the Selection of a Dosing Approach 108</p> <p>9.1.2 Evaluations of Fixed Dosing versus Body?]Size?]Based Dosing 110</p> <p>9.1.3 Rationale Dosing Approach Selection Strategies Based on Stage of Clinical Development 121</p> <p>9.2 Conclusions 122</p> <p>References 122</p> <p><b>10 Impact of Diseases, Comorbidity, and Target Physiology on ADME, PK, and PK/PD of Therapeutic Biologics 125</b><br /><i>Songmao Zheng, Weirong Wang and Honghui Zhou</i></p> <p>10.1 Introduction 125</p> <p>10.1.1 ADME of Biologics 125</p> <p>10.1.2 Roles of TMDD for Biologics 126</p> <p>10.2 Impact of Diseases and Comorbidity on ADME and PK of Therapeutic Biologics 126</p> <p>10.2.1 Disease and Comorbidity on the Subcutaneous Absorption of Biologics 126</p> <p>10.2.2 Disease and Comorbidity on the Distribution of Biologics 127</p> <p>10.2.3 Hepatic Impairment 128</p> <p>10.2.4 Renal Impairment 128</p> <p>10.2.5 Immune?]Mediated Inflammatory Diseases 129</p> <p>10.2.6 Diabetes 129</p> <p>10.2.7 Immunogenicity 130</p> <p>10.3 Impact of Disease and Target Physiology on PK and PK/PD of Therapeutic Biologics 130</p> <p>10.3.1 Biologics against Membrane?]Bound Targets 130</p> <p>10.3.2 Biologics against Soluble Targets 133</p> <p>10.3.3 When Targets Exist as Both Membrane?]Bound and Soluble 133</p> <p>10.4 Correlation between the PK of Therapeutic Biologics and Treatment Response 134</p> <p>10.5 O ther Patient Characteristics that can Impact the Treatment Response of Therapeutic Biologics 135</p> <p>10.6 The Interplay between Disease, Target Physiology, and PK/PD of Therapeutic Biologics: Case Examples 136</p> <p>10.7 Concluding Remarks 138</p> <p>Acknowledgments 138</p> <p>References 138</p> <p><b>11 Immunogenicity: Its Impact on ADME of Therapeutic Biologics 147</b><br /><i>Harald Kropshofer and Wolfgang F. Richter</i></p> <p>11.1 Introduction 147</p> <p>11.2 Immunogenicity of Therapeutic Biologics 147</p> <p>11.2.1 The Underlying Cellular Immunology 147</p> <p>11.2.2 Aspects Facilitating Immune Responses against Biologics 149</p> <p>11.3 Impact of ADA on ADME 150</p> <p>11.3.1 Impact of ADA on Bioanalytical Results 150</p> <p>11.3.2 Formation of Immune Complexes 150</p> <p>11.3.3 Clearance of Immune Complexes 151</p> <p>11.3.4 Sustaining and Clearing ADAs 153</p> <p>11.3.5 Impact of ADAs on Distribution 155</p> <p>11.3.6 Impact of ADAs on Absorption 155</p> <p>11.4 How to Deal with ADME Consequences of Immune Responses? 155</p> <p>11.4.1 PK Assessment in the Presence of ADAs 155</p> <p>11.4.2 In?]Study Options to Overcome ADA Formation 156</p> <p>11.5 Summary and Conclusions 156</p> <p>References 157</p> <p><b>12 Mechanistic Physiologically Based Pharmacokinetic</b><br /><i>Models in Development of Therapeutic Monoclonal Antibodies 159</i></p> <p>Yanguang Cao and William J. Jusko</p> <p>12.1 Background 159</p> <p>12.2 History 159</p> <p>12.3 Principles and Methods 162</p> <p>12.4 Challenges 165</p> <p>12.4.1 Physiological Parameters 165</p> <p>12.4.2 Extravasation Mechanisms 165</p> <p>12.4.3 FcRn Function 165</p> <p>12.5 Simplified PBPK Models for mAbs 166</p> <p>12.5.1 Minimal PBPK Models 166</p> <p>12.5.2 Survey of mAb PK in Humans with the Minimal PBPK Model 168</p> <p>12.5.3 Minimal PBPK Model with Target?]Mediated Drug Disposition 169</p> <p>12.6 Perspectives 171</p> <p>Acknowledgments 172</p> <p>References 172</p> <p><b>13 Integrated Quantitation of Biotherapeutic Drug–Target Binding, Biomarkers, and Clinical Response to Support Rational Dose Regimen Selection 175</b><br /><i>Philip J. Lowe, Anne Kümmel, Christina Vasalou, Soichiro Matsushima and Andrej Skerjanec</i></p> <p>13.1 Introduction 175</p> <p>13.2 Methods 176</p> <p>13.2.1 O malizumab, IgE, Itch, and Hives 176</p> <p>13.2.2 QGE031 and Omalizumab, IgE, Basophil FcεR1 and Surface IgE, and Allergen Skin Prick Test Response 178</p> <p>13.2.3 Common Components 180</p> <p>13.3 Results and Discussion 181</p> <p>13.3.1 O malizumab Capture of IgE Reducing Itch and Hives 181</p> <p>13.3.2 QGE031 and Omalizumab Capture of IgE, Reducing Basophil FcεR1, Surface IgE, and Allergen Skin Reactivity 185</p> <p>13.4 Conclusions 191</p> <p>Acknowledgments 193</p> <p>References 193</p> <p><b>14 Target?]Driven Pharmacokinetics of Biotherapeutics 197</b><br /><i>Wilhelm Huisinga, Saskia Fuhrmann, Ludivine Fronton and Ben?]Fillippo Krippendorff</i></p> <p>14.1 Introduction 197</p> <p>14.2 Soluble and Membrane?]Bound Targets 197</p> <p>14.3 Whole?]Body Target?]Mediated Drug Disposition Models and Their Approximations 198</p> <p>14.3.1 Generic Whole?]Body TMDD Model 198</p> <p>14.3.2 Characteristics of Target?]Driven PK Profiles 199</p> <p>14.3.3 Location of the Target: Central versus Peripheral Compartment 200</p> <p>14.3.4 Parameter Identifiability and Model Reduction 200</p> <p>14.3.5 Extended Michaelis–Menten Approximation with Target Turnover 201</p> <p>14.3.6 Michaelis–Menten Approximation with Target Turnover 202</p> <p>14.3.7 Extended Michaelis–Menten Approximation 202</p> <p>14.3.8 Michaelis–Menten Approximation 203</p> <p>14.3.9 Model Selection 203</p> <p>14.4 Cell?]Level Target?]Mediated Drug Disposition Models 203</p> <p>14.4.1 Cell?]Level TMDD Model with a Single?]Cell Type 204</p> <p>14.4.2 Cell?]Level TMDD Model with Normal and Tumor Cells 204</p> <p>14.5 Simplified Physiologically Based Pharmacokinetic Model for mAbs 206</p> <p>14.5.1 Target?]Independent Pharmacokinetics 206</p> <p>14.5.2 Drug–Target Interaction 208</p> <p>14.6 Conclusion: Looking at Data Through Models 209</p> <p>Acknowledgment 209</p> <p>References 209</p> <p><b>15 Target?]Driven Pharmacokinetics of Biotherapeutics 213</b><br /><i>Guy M.L. Meno?]Tetang</i></p> <p>15.1 Introduction 213</p> <p>15.2 Peptide–FC Fusion Proteins 214</p> <p>15.3 Monoclonal Antibodies (mAbs) 215</p> <p>15.3.1 Antibodies Absorption 215</p> <p>15.3.2 Antibodies Distribution 215</p> <p>15.3.3 Mechanism of mAb Elimination 216</p> <p>15.3.4 Antibody–Drug Conjugates 217</p> <p>15.3.5 Recombinant Proteins 218</p> <p>15.4 Parameters Controlling Target?]Driven Nonlinear Pharmacokinetics of Biotherapeutics 218</p> <p>15.4.1 Target Localization 218</p> <p>15.4.2 Target Affinity 219</p> <p>15.4.3 Target Turnover 219</p> <p>15.4.4 Target Baseline and Disease Progression 219</p> <p>15.4.5 Off?]Target Binding 220</p> <p>15.5 Impact of Target?]Driven Nonlinear Pharmacokinetics of Biotherapeutics on Halometric Scaling 220</p> <p>15.5.1 Ethnic Differences 220</p> <p>15.6 Conclusions and Perspectives 220</p> <p>References 221</p> <p><b>16 Tumor Effect?]Site Pharmacokinetics: Mechanisms and Impact on Efficacy 225</b><br /><i>Greg M. Thurber</i></p> <p>16.1 Introduction 225</p> <p>16.2 Tumor Pharmacokinetics 225</p> <p>16.2.1 Tissue Physiology, Fluid Balance, and Macromolecular Transport 225</p> <p>16.2.2 Tumor Transport—An Overview 226</p> <p>16.2.3 Mechanisms of Tumor Transport 227</p> <p>16.2.4 Revisiting Tumor Transport Theory 229</p> <p>16.2.5 Impact of Drug Targeting Parameters on Distribution 231</p> <p>16.2.6 Experimental Validation and Comparison with Small Molecules 232</p> <p>16.3 Impact of Tumor Pharmacokinetics on Efficacy 232</p> <p>16.3.1 O verview of Cell?]Killing Mechanisms 232</p> <p>16.3.2 Pharmacokinetic Impact on Efficacy 233</p> <p>16.4 Conclusions 235</p> <p>References 236</p> <p><b>17 Brain Effect Site Pharmacokinetics: Delivery of Biologics Across the Blood–Brain Barrier 241</b><br /><i>Gert Fricker and Anne Mahringer</i></p> <p>17.1 Cytotic Processes at the BBB 243</p> <p>17.2 Receptors at the BBB as Targets for Biologics 243</p> <p>17.2.1 Transferrin Receptor 243</p> <p>17.2.2 Insulin Receptor 244</p> <p>17.2.3 Insulin?]Like Growth Factor Receptor 244</p> <p>17.2.4 LDL Receptor 244</p> <p>17.2.5 Low Density Lipoprotein Receptor?]Related Protein 1 245</p> <p>17.2.6 Low Density Lipoprotein Receptor?]Related Protein 2 245</p> <p>17.2.7 Leptin Receptor (OBR) 245</p> <p>17.2.8 Receptor of Advanced Glycation Endproducts 245</p> <p>17.2.9 Scavenger Receptor(SR) 246</p> <p>17.3 “Trojan Horse” Approaches to Target BBB Receptors 246</p> <p>17.4 Colloidal Carriers for Drug Delivery 248</p> <p>17.5 O ther Brain?]Directed Carriers 249</p> <p>17.6 Stem Cell?]Mediated Drug Delivery 250</p> <p>17.7 Focused Ultrasound and Microbubbles 251</p> <p>17.8 Conclusions and Perspectives 251</p> <p>References 251</p> <p><b>18 Molecular Pathology Techniques in the Preclinical Development of Therapeutic Biologics 257</b><br /><i>Thierry Flandre, Sarah Taplin, Stewart Jones and Peter Lloyd</i></p> <p>18.1 Introduction 257</p> <p>18.2 Target Expression Profiling 259</p> <p>18.2.1 Detection of DNA/RNA?]Based Target Expression Using Whole Tissue Extracts 259</p> <p>18.2.2 Detection of Protein?]Based Target Expression Using Whole Tissue Extracts 260</p> <p>18.2.3 Localization of DNA/RNA and Protein?]Based Target Expression at the Cellular Level Using Tissue Sections 262</p> <p>18.3 Off?]Target Binding of the Therapeutic Biologic Reagent 263</p> <p>18.3.1 Tissue Cross?]Reactivity Study 263</p> <p>18.3.2 Protein Microarray 264</p> <p>18.3.3 Cell Microarray Technology (Retrogenix) 264</p> <p>18.3.4 Protein Pull?]Down Assays 264</p> <p>18.4 Biodistribution of Therapeutic Biologic Reagent 264</p> <p>18.4.1 Whole?]Body Autoradiography 264</p> <p>18.4.2 Biodistribution: Immunohistochemistry Methods for Protein?]Based Therapeutic Products 265</p> <p>18.4.3 Biodistribution: Quantitative PCR Methods DNA/RNA?]Based Therapeutic Products 265</p> <p>18.5 Discussion 265</p> <p>18.5.1 Considerations in the Interpretation of Molecular Pathology?]Based Data 265</p> <p>18.5.2 Examples of Molecular Pathology Methods Used in Preclinical Development 266</p> <p>18.6 Conclusion 267</p> <p>References 267</p> <p><b>19 Labeling and Imaging Techniques for Quantification of Therapeutic Biologics 271</b><br /><i>Julie K. Jang, David Canter, Peisheng Hu, Alan L. Epstein and Leslie A. Khawli</i></p> <p>19.1 Introduction 271</p> <p>19.2 New and Conventional Methods for Labeling of Biologics 272</p> <p>19.2.1 Choice of Labels 272</p> <p>19.2.2 Labeling Strategies of Biologics 277</p> <p>19.3 Molecular Imaging for the Study of PK and Biodistribution of Biologics 285</p> <p>19.3.1 SPECT Imaging 286</p> <p>19.3.2 PET Imaging 286</p> <p>19.3.3 Optical Imaging 288</p> <p>19.4 Conclusions and Perspectives 288</p> <p>References 289</p> <p><b>20 Knowledge of ADME of Therapeutic Proteins in Adults Facilitates Pediatric Development 295</b><br /><i>Omoniyi J Adedokun and Zhenhua Xu</i></p> <p>20.1 Introduction 295</p> <p>20.2 Comparative Evaluation of ADME of Therapeutic Proteins between Adults and Children 296</p> <p>20.2.1 Absorption 296</p> <p>20.2.2 Distribution 297</p> <p>20.2.3 Metabolism and Elimination 297</p> <p>20.3 Extrapolation of Efficacy from Adults to Pediatric Patients 298</p> <p>20.3.1 No Extrapolation Approach 298</p> <p>20.3.2 Partial Extrapolation Approach 298</p> <p>20.3.3 Full Extrapolation Approach 299</p> <p>20.4 Pediatric Dose Strategies 300</p> <p>20.4.1 Body Weight?]Based (Linear) Dose?]Adjustment Approach 300</p> <p>20.4.2 BSA?]Based (Linear) Dose?]Adjustment Approach 304</p> <p>20.4.3 Tiered?]Fixed Dose?]Adjustment Approach 304</p> <p>20.4.4 Hybrid Dose?]Adjustment Approach 304</p> <p>20.4.5 Other Dose?]Adjustment Approaches 304</p> <p>20.5 Sample?]Size Determination for Pediatric Studies 304</p> <p>20.6 Modeling and Simulation in Pediatric Drug Development Facilitated by Existing Adult Models 305</p> <p>20.6.1 Modeling and Simulation Framework for Therapeutic Proteins in Pediatric Drug Development 305</p> <p>20.6.2 Examples of the Application of Modeling and Simulation in the Development of Therapeutic Proteins in Pediatric Patients 307</p> <p>20.7 Future Directions 309</p> <p>References 309</p> <p><b>21 LC/MS versus Immune?]Based Bioanalytical Methods in Quantitation of Therapeutic Biologics in Biological Matrices 313</b><br /><i>Bo An, Ming Zhang and Jun Qu</i></p> <p>21.1 Introduction 313</p> <p>21.2 Comparison of the Characteristics in Method Development 314</p> <p>21.2.1 Method Development Time 314</p> <p>21.2.2 Specificity 314</p> <p>21.2.3 Characteristics of Method Development 314</p> <p>21.3 Comparison of Assay Performance 316</p> <p>21.3.1 Sample Preparation 316</p> <p>21.3.2 Calibration Curve and Linearity Range 318</p> <p>21.3.3 Applicability 318</p> <p>21.3.4 Accuracy 319</p> <p>21.3.5 Sensitivity 319</p> <p>21.3.6 Reproducibility 321</p> <p>21.4 Application of LBA and LC/MS in the Analysis of Therapeutic Proteins 323</p> <p>21.4.1 Quantification of mAb in Plasma and Tissues 323</p> <p>21.4.2 Application in Multiplexed Analysis 323</p> <p>21.4.3 Characterization of Antibody–Drug Conjugates (ADC) 324</p> <p>21.5 Summary and Future Perspective 324</p> <p>References 324</p> <p><b>22 Biosimilar Development: Nonclinical and Clinical Strategies and Challenges with a Focus on the Role of PK/PD Assessments 331</b><br /><i>Susan Hurst and Donghua Yin</i></p> <p>22.1 Introduction 331</p> <p>22.2 Aspects of Biosimilarity 332</p> <p>22.3 Biosimilars’ Regulatory/Historical Perspective 333</p> <p>22.3.1 European Union 333</p> <p>22.3.2 EMA Nonclinical In Vivo Considerations 333</p> <p>22.3.3 EMA Clinical Considerations (Related to PK/PD) 334</p> <p>22.3.4 United States 334</p> <p>22.3.5 FDA Nonclinical In Vivo Considerations 335</p> <p>22.3.6 FDA Clinical Considerations (Related to PK/PD) 335</p> <p>22.3.7 The WHO and Other Global Markets 336</p> <p>22.4 Nonclinical Assessments in the Development of Biosimilars 336</p> <p>22.4.1 Biosimilars Nonclinical Development 336</p> <p>22.4.2 Designing the Nonclinical In Vivo Study 336</p> <p>22.4.3 Designing the Nonclinical Study: Immunogenicity/Bioanalytical 337</p> <p>22.4.4 Designing the Nonclinical In Vivo Study—PK and PD Focus 337</p> <p>22.4.5 Designing the Nonclinical In Vivo Study—No Relevant Nonclinical Species 338</p> <p>22.5 Clinical PK and PD Assessments in the Development of Biosimilars 340</p> <p>22.5.1 Biosimilars Clinical Development 340</p> <p>22.5.2 Bioanalytical Assays for Biosimilars PK and PD Investigations 341</p> <p>22.5.3 Design Considerations for Phase I PK and PD Similarity Studies 341</p> <p>22.5.4 PK Similarity Study of PF?]05280014, a Proposed Biosimilar to Trastuzumab: An Example 342</p> <p>22.5.5 Extrapolation of Clinical Data 342</p> <p>22.6 Concluding Remarks 344</p> <p>Acknowledgments 344</p> <p>References 344</p> <p><b>23 ADME Processes in Vaccines and PK/PD Approaches for Vaccination Optimization 347</b><br /><i>José David Gómez?]Mantilla, Iñaki F. Trocóniz and María J. Garrido</i></p> <p>23.1 Introduction 347</p> <p>23.1.1 Vaccine Development 347</p> <p>23.1.2 Types of Vaccines 348</p> <p>23.1.3 Basic Immunological Mechanism of Vaccine Development 348</p> <p>23.2 Biopharmaceutic Considerations on Vaccine ADME Processes 350</p> <p>23.3 Vaccines and ADME Processes 350</p> <p>23.3.1 Effect of Vaccine Formulation on ADME 351</p> <p>23.3.2 Effect of Route of Administration 353</p> <p>23.3.3 Metabolism and Excretion 357</p> <p>23.3.4 PK Considerations 357</p> <p>23.4 Mathematical Modeling for Vaccine Optimization in Cancer Treatment 360</p> <p>23.5 Systems Vaccinology: Application of Systems Biology in Personalized Vaccination 362</p> <p>23.6 Concluding Remarks 363</p> <p>References 363</p> <p><b>24 Drug Development Strategies for Therapeutic Biologics: Industry Perspectives 369</b><br /><i>Theresa Yuraszeck and Megan Gibbs</i></p> <p>24.1 Introduction 369</p> <p>24.1.1 Biologics Properties and Classification 370</p> <p>24.1.2 Assay Development and Validation 372</p> <p>24.2 Preclinical Development 372</p> <p>24.2.1 FIH Starting Dose 374</p> <p>24.3 Clinical Development 375</p> <p>24.3.1 Intrinsic and Extrinsic Factors 375</p> <p>24.3.2 Special Populations: Renal and Hepatic Impairment 376</p> <p>24.3.3 Special Populations: Pediatrics 376</p> <p>24.4 Biosimilars 377</p> <p>24.5 Emerging Markets 377</p> <p>24.6 Conclusions 378</p> <p>References 379</p> <p><b>25 Review: The Critical Role of Clinical Pharmacology in the Development of Biologics 385</b><br /><i>Liang Zhao, Diane Wang, Ping Zhao, Elizabeth Y. Shang, Yaning Wang and Vikram Sinha</i></p> <p>25.1 Introduction 385</p> <p>25.2 PK and PD of Biologics 385</p> <p>25.2.1 Structural Difference between SMDs and Biological Products 385</p> <p>25.2.2 Route of Administration and Absorption 386</p> <p>25.2.3 Distribution 386</p> <p>25.2.4 Metabolism and Elimination 386</p> <p>25.2.5 mAb Distribution 386</p> <p>25.2.6 Catabolism and Elimination 387</p> <p>25.2.7 Other Biologics 387</p> <p>25.3 Critical Role of Clinical Pharmacology and Related Regulatory Guidance for Biologics Development 387</p> <p>25.3.1 First?]in?]Human (FIH) Dose Determination and Study Design 387</p> <p>25.3.2 Critical Considerations from a Standpoint of Clinical Pharmacology in Biologics Development 388</p> <p>25.4 Model?]Based Drug Development for Biologics 393</p> <p>25.4.1 Fixed Dosing versus Body Size?]Adjusted Dosing 394</p> <p>25.4.2 Mechanism?] and Physiologically Based Models for mAbs 394</p> <p>25.4.3 Utility of Meta?]Analysis 395</p> <p>25.4.4 Utility of Case–Control Analysis in Biologics Development 396</p> <p>25.5 Conclusions 397</p> <p>25.6 Disclaimer 397</p> <p>References 397</p> <p><b>26 Investigating the Nonclinical ADME and PK/PD of an Antibody–Drug Conjugate: A Case Study of ADO?]Trastuzumab Emtansine (T?]DM1) 401</b><br /><i>Jay Tibbitts</i></p> <p>26.1 Introduction 401</p> <p>26.2 Importance of ADME for ADCs 402</p> <p>26.3 T?]DM1 Bioanalytical Strategy and Methods 403</p> <p>26.4 Ex Vivo Linker Stability 404</p> <p>26.5 Plasma PK 404</p> <p>26.6 Distribution of T?]DM1 406</p> <p>26.7 T?]DM1 Catabolism and Elimination 406</p> <p>26.8 T?]DM1 Nonclinical PK/PD 408</p> <p>26.9 Conclusions 409</p> <p>References 409</p> <p><b>27 Use of PK/PD Knowledge in Guiding Bispecific Biologics Research and Development 413</b><br /><i>Andreas Baumann, Saileta Prabhu and Jitendra Kanodia</i></p> <p>27.1 Introduction 413</p> <p>27.2 Structural Formats and Generation of Bispecific Biologics 415</p> <p>27.3 Biochemistry and Pharmacology of Bispecifics 416</p> <p>27.3.1 Affinity 416</p> <p>27.3.2 Avidity 416</p> <p>27.4 Pharmacokinetics 416</p> <p>27.4.1 PK Assay Strategies Employed for the Development of bsAbs 417</p> <p>27.4.2 Immunogenicity Strategies Employed for the Development of bsAbs 418</p> <p>27.5 Pharmacokinetic–Pharmacodynamic Model?]Informed Design of bsAbs 418</p> <p>27.6 Application of PK/PD in the Research and Development of Bispecific Biologics: Case Examples 419</p> <p>27.6.1 Anti?]TfR/BACE1 to Improve Therapeutic Antibody Transport across the Blood–Brain Barrier 419</p> <p>27.6.2 PK Characterization to Optimize bsAb Molecule Design and Selection for Ophthalmology 420</p> <p>27.6.3 Pharmacokinetic Studies during Development of a Bispecific T?]Cell Engager 421</p> <p>27.7 Outlook 421</p> <p>References 422</p> <p>Index 427</p>
<p>"At the outset, one?s impressed with the scope of the book; it provides an outline of very diverse topics starting with the basics of protein engineering and how these are used to design and manipulate the ADME properties of recombinant and synthetic proteins...The authors have to be congratulated on their endeavor to stitch these topics together in a single book...With such a wide range of topics, even an experienced scientific practitioner in this area is likely to find something new to engage them and expand their knowledge...In summary, an excellent and comprehensive book for beginners to the CP/PK area to acquaint themselves with the area of biologics (specifically mAb) CP/PKPD principles and for experienced CP/PK scientists for reference." (<i>CPT: Pharmacometrics & Systems Pharmacology</i>, March 2017)</p>
<b>Honghui Zhou</b> is a Senior Director and Janssen Fellow, at Janssen Research & Development, LLC and US head of Pharmacological and Translational Modeling. Board-certified by the American Board of Clinical Pharmacology and a Fellow of American Association of Pharmaceutical Scientists (AAPS) and American College of Clinical Pharmacology (ACCP), he has authored 200 peer-reviewed scientific papers, book chapters, and conference abstracts and co-edited the book <i>Drug-Drug Interactions for Therapeutic Biologics</i> (Wiley, 2013).<br /><br /><b>Frank-Peter Theil</b> heads nonclinical development at UCB Biopharma. Dr. Theil has authored and co-authored 40 research publications, three book chapters and he has given numerous invited presentations at national and international scientific meetings. He is a member of the American Association of Pharmaceutical Scientists (AAPS) and American Society of Clinical Pharmacology and Therapeutics (ASCPT).
<p><b>Improve the discovery and development of protein drugs</b></p> <p>Monoclonal antibodies, as the most successful class of protein therapeutics, have become a critical part of drug treatment regimens with more than 40 marketed modalities and hundreds under development. Some of them have become standards of care, in particular in areas such as oncology and immune-mediated inflammatory diseases; where they often provide safe and efficacious treatment alternatives. Nevertheless, limitations inherent in the canonical monospecific IgG-based monoclonal antibodies have prompted exploration of alternative molecular formats, such as antibody drug-conjugates (ADCs), bi- or multi-specific versions of antibodies. However, there is still scarcity of knowledge and data, combined with a lack of consistent strategies in effectively taking those candidate biologics from preclinical to clinical development. Recent years, though, have seen much progress in understanding ADME (absorption, distribution, metabolism and excretion) of biologics and how this knowledge can be used in research and development.<br /><br />With an emphasis on the theoretical and practical aspects of ADME for therapeutic proteins, this book helps readers strategize, plan and implement end-to-end translational research. Understanding of ADME has clearly illustrated its merits in the area of small molecule drugs in order to develop drugs successfully and more effectively. Novel therapeutic modalities will even more require an in-depth understanding of ADME to optimize delivery for a successful development. The authors, writing from the frontlines of biologics research and development, cover topics that include similarities and differences in ADME characteristics between small molecules and biologics, the types of therapeutic biologics (e.g. monoclonal antibodies, pegylated proteins, vaccines, ADCs, and bispecifics) and their unique ADME properties, and how protein engineering alters and optimizes ADME and PK/PD properties.<br /><br />A complete and valuable reference and resource for anyone working in the biopharmaceutical field, <i>ADME and Translational Pharmacokinetics / Pharmacodynamics of Therapeutic Proteins</i> offers features that include:<br /><br />• Concepts of ADME and PK/PD modeling for biologics<br />• Comparison of small molecules with biologics, giving a lessons-learned perspective<br />• Mechanistic insight in target-driven and local PK/PD in sites of action like tumors and the brain<br />• Case studies about leveraging ADME to improve end-to-end biologics drug development <br />• Current thinking and strategies on biosimilar development from ADME and PK/PD standpoints<br />• Regulatory expectations and industry perspectives for biologic development in USA, EU, and Japan</p>

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €