Details

Green Chemical Synthesis with Microwaves and Ultrasound


Green Chemical Synthesis with Microwaves and Ultrasound


1. Aufl.

von: Dakeshwar Kumar Verma, Chandrabhan Verma, Paz Otero Fuertes

142,99 €

Verlag: Wiley-VCH (D)
Format: EPUB
Veröffentl.: 25.03.2024
ISBN/EAN: 9783527844487
Sprache: englisch
Anzahl Seiten: 416

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Green Chemical Synthesis with Microwaves and Ultrasound</b> <p> <b>A guide to the efficient and sustainable synthesis of organic compounds</b> <p>Chemical processes and the synthesis of compounds are essential aspects of numerous industries, and particularly central to the creation of drug-like structures. Their often significant environmental biproducts, however, have driven substantial innovations in the areas of green and organic synthesis, which have the potential to drive efficient, solvent-free synthesis and create more sustainable chemical processes. The use of microwaves and ultrasounds in chemical synthesis has proven an especially fruitful area of research, with the potential to produce a more sustainable industrial future. <i>Green Chemical Synthesis with Microwaves and Ultrasound </i>provides a comprehensive overview of recent advances in microwave- and ultrasound-driven synthesis and their cutting-edge applications. <p><i>Green Chemical Synthesis with Microwaves and Ultrasound </i>readers will also find: <ul><li>Introduction to the key equipment and tools of green chemical synthesis</li> <li>Detailed discussion of methods including ultrasound irradiation, metal-catalyzed reactions, enzymatic reactions, and many more</li> <li>An authorial team with immense experience in environmentally friendly organic chemical production</li></ul> <p><i>Green Chemical Synthesis with Microwaves and Ultrasound </i>is ideal for chemists, organic chemists, chemical engineers, biochemists, and any researchers or industry professionals working on the synthesis of chemicals and/or organic compounds.
<p>About the Editors xiii</p> <p>Preface xv</p> <p><b>1 Ultrasound Irradiation: Fundamental Theory, Electromagnetic Spectrum, Important Properties, and Physical Principles 1<br /> </b><i>Sumit Kumar, Amrutlal Prajapat, Sumit K. Panja, and Madhulata Shukla</i></p> <p>1.1 Introduction 1</p> <p>1.2 Cavitation History 3</p> <p>1.2.1 Basics of Cavitation 3</p> <p>1.2.2 Types of Cavitation 5</p> <p>1.3 Application of Ultrasound Irradiation 7</p> <p>1.3.1 Sonoluminescence and Sonophotocatalysis 9</p> <p>1.3.2 Industrial Cleaning 10</p> <p>1.3.3 Material Processing 11</p> <p>1.3.4 Chemical and Biological Reactions 12</p> <p>1.4 Conclusion 14</p> <p>Acknowledgments 15</p> <p>References 15</p> <p><b>2 Fundamental Theory of Electromagnetic Spectrum, Dielectric and Magnetic Properties, Molecular Rotation, and the Green Chemistry of Microwave Heating Equipment 21<br /> </b><i>Raghvendra K. Mishra, Akshita Yadav, Vinayak Mishra, Satya N. Mishra, Deepa S. Singh, and Dakeshwar Kumar Verma</i></p> <p>2.1 Introduction 21</p> <p>2.1.1 Historical Background 25</p> <p>2.1.2 Green Chemistry Principles for Sustainable System 28</p> <p>2.2 Fundamental Concepts of the Electromagnetic Spectrum Theory 35</p> <p>2.3 Electrical, Dielectric, and Magnetic Properties in Microwave Irradiation 38</p> <p>2.4 Microwave Irradiation Molecular Rotation 41</p> <p>2.5 Fundamentals of Electromagnetic Theory in Microwave Irradiation 42</p> <p>2.5.1 Electromagnetic Radiations and Microwave 43</p> <p>2.5.2 Heating Mechanism of Microwave: Conventional Versus Microwave Heating 44</p> <p>2.6 Physical Principles of Microwave Heating and Equipment 46</p> <p>2.7 Green Chemistry Through Microwave Heating: Applications and Benefits 53</p> <p>2.8 Conclusion 57</p> <p>References 57</p> <p><b>3 Conventional Versus Green Chemical Transformation: MCRs, Solid Phase Reaction, Green Solvents, Microwave, and Ultrasound Irradiation 69<br /> </b><i>Shailendra Yadav, Dheeraj S. Chauhan, and Mumtaz A. Quraishi</i></p> <p>3.1 Introduction 69</p> <p>3.2 A Brief Overview of Green Chemistry 69</p> <p>3.2.1 Definition and Historical Background 69</p> <p>3.2.2 Significance 70</p> <p>3.3 Multicomponent Reactions 71</p> <p>3.4 Solid Phase Reactions 73</p> <p>3.5 Microwave Induced Synthesis 74</p> <p>3.6 Ultrasound Induced Synthesis 75</p> <p>3.7 Green Chemicals and Solvents 77</p> <p>3.8 Conclusions and Outlook 78</p> <p>References 79</p> <p><b>4 Metal-Catalyzed Reactions Under Microwave and Ultrasound Irradiation 83<br /> </b><i>Suresh Maddila, Immandhi S.S. Anantha, Pamerla Mulralidhar, Nagaraju Kerru, and Sudhakar Chintakula</i></p> <p>4.1 Ultrasonic Irradiation 83</p> <p>4.1.1 Iron-Based Catalysts 86</p> <p>4.1.2 Copper-Based Catalysts 89</p> <p>4.1.2.1 Dihydropyrimidinones by Cu-Based Catalysts 91</p> <p>4.1.2.2 Dihydroquinazolinones by Cu-Based Catalysts 92</p> <p>4.1.3 Misalliances Metal-Based Catalysts 94</p> <p>4.2 Microwave-Assisted Reactions 97</p> <p>4.2.1 Solid Acid and Base Catalysts 98</p> <p>4.2.1.1 Condensation Reactions 98</p> <p>4.2.1.2 Cyclization Reactions 100</p> <p>4.2.1.3 Multi-component Reactions 104</p> <p>4.2.1.4 Friedel–Crafts Reactions 106</p> <p>4.2.1.5 Reaction Involving Catalysts of Biological Origin 107</p> <p>4.2.1.6 Reduction 109</p> <p>4.2.1.7 Oxidation 110</p> <p>4.2.1.8 Coupling Reactions 113</p> <p>4.2.1.9 Micelliances Reactions 121</p> <p>4.2.1.10 Click Chemistry 125</p> <p>4.3 Conclusion 127</p> <p>Acknowledgments 128</p> <p>References 128</p> <p><b>5 Microwave- and Ultrasonic-Assisted Coupling Reactions 133<br /> </b><i>Sandeep Yadav, Anirudh P.S. Raman, Kashmiri Lal, Pallavi Jain, and Prashant Singh</i></p> <p>5.1 Introduction 133</p> <p>5.2 Microwave 134</p> <p>5.2.1 Microwave-Assisted Coupling Reactions 135</p> <p>5.2.2 Ultrasound-Assisted Coupling Reactions 142</p> <p>5.3 Conclusion 150</p> <p>References 151</p> <p><b>6 Synthesis of Heterocyclic Compounds Under Microwave Irradiation Using Name Reactions 157<br /> </b><i>Sheryn Wong and Anton V. Dolzhenko</i></p> <p>6.1 Introduction 157</p> <p>6.2 Classical Methods for Heterocyclic Synthesis Under Microwave Irradiation 158</p> <p>6.2.1 Piloty–Robinson Pyrrole Synthesis 158</p> <p>6.2.2 Clauson–Kaas Pyrrole Synthesis 158</p> <p>6.2.3 Paal–Knorr Pyrrole Synthesis 159</p> <p>6.2.4 Paal–Knorr Furan Synthesis 160</p> <p>6.2.5 Paal–Knorr Thiophene Synthesis 160</p> <p>6.2.6 Gewald Reaction 161</p> <p>6.2.7 Fischer Indole Synthesis 162</p> <p>6.2.8 Bischler–Möhlau Indole Synthesis 162</p> <p>6.2.9 Hemetsberger–Knittel Indole Synthesis 163</p> <p>6.2.10 Leimgruber–Batcho Indole Synthesis 163</p> <p>6.2.11 Cadogan–Sundberg Indole Synthesis 163</p> <p>6.2.12 Pechmann Pyrazole Synthesis 164</p> <p>6.2.13 Debus–Radziszewski Reaction 164</p> <p>6.2.14 van Leusen Imidazole Synthesis 166</p> <p>6.2.15 van Leusen Oxazole Synthesis 166</p> <p>6.2.16 Robinson–Gabriel Reaction 167</p> <p>6.2.17 Hantzsch Thiazole Synthesis 167</p> <p>6.2.18 Einhorn–Brunner Reaction 168</p> <p>6.2.19 Pellizzari Reaction 169</p> <p>6.2.20 Huisgen Reaction 169</p> <p>6.2.21 Finnegan Tetrazole Synthesis 171</p> <p>6.2.22 Four-component Ugi-azide Reaction 172</p> <p>6.2.23 Kröhnke Pyridine Synthesis 172</p> <p>6.2.24 Bohlmann–Rahtz Pyridine Synthesis 173</p> <p>6.2.25 Boger Reaction 174</p> <p>6.2.26 Skraup Reaction 174</p> <p>6.2.27 Gould–Jacobs Reaction 175</p> <p>6.2.28 Friedländer Quinoline Synthesis 176</p> <p>6.2.29 Povarov Reaction 176</p> <p>6.3 Conclusion 177</p> <p>Acknowledgments 177</p> <p>References 177</p> <p><b>7 Microwave- and Ultrasound-Assisted Enzymatic Reactions 185<br /> </b><i>Nafseen Ahmed, Chandan K. Mandal, Varun Rai, Abbul Bashar Khan, and Kamalakanta Behera</i></p> <p>7.1 Introduction 185</p> <p>7.2 Influence Microwave Radiation on the Stability and Activity of Enzymes 186</p> <p>7.3 Principle of Ultrasonic-Assisted Enzymolysis 190</p> <p>7.4 Applications of Ultrasonic-Assisted Enzymolysis 192</p> <p>7.4.1 Proteins and Other Plant Components Can Be Transformed and Extracted 192</p> <p>7.4.2 Modification of Protein Functionality 193</p> <p>7.4.3 Enhancement of Biological Activity 194</p> <p>7.4.4 Ultrasonic-Assisted Acceleration of Hydrolysis Time 195</p> <p>7.5 Enzymatic Reactions Supported by Ultrasound 196</p> <p>7.5.1 Lipase 196</p> <p>7.5.2 Protease 196</p> <p>7.5.3 Polysaccharide Enzymes 198</p> <p>7.6 Biodiesel Production via Ultrasound-Supported Transesterification 198</p> <p>7.6.1 Homogenous Acid-Catalyzed Ultrasound-Assisted Transesterification 199</p> <p>7.6.2 Transesterification with Ultrasound Assistance and Homogenous Base Catalysis 199</p> <p>7.6.3 Heterogeneous Acid-Catalyzed Ultrasound-Assisted Transesterification 201</p> <p>7.6.4 Heterogeneous Base-Catalyzed Ultrasound-Assisted Transesterification 205</p> <p>7.6.5 Enzyme-Catalyzed Ultrasound-Assisted Transesterification 207</p> <p>7.7 Conclusions 207</p> <p>Acknowledgments 209</p> <p>References 209</p> <p><b>8 Microwave- and Ultrasound-Assisted Synthesis of Polymers 219<br /> </b><i>Anupama Singh, Sushil K. Sharma, and Shobhana Sharma</i></p> <p>8.1 Introduction 219</p> <p>8.2 Microwave-Assisted Synthesis of Polymers 220</p> <p>8.3 Ultrasound-Assisted Synthesis of Polymers 223</p> <p>8.4 Conclusion 228</p> <p>References 229</p> <p><b>9 Synthesis of Nanomaterials Under Microwave and Ultrasound Irradiation 235<br /> </b><i>Ahmed A. Mohamed</i></p> <p>9.1 Introduction 235</p> <p>9.2 Synthesis of Metal Nanoparticles 236</p> <p>9.3 Synthesis of Carbon Dots 239</p> <p>9.4 Synthesis of Metal Oxides 240</p> <p>9.5 Synthesis of Silicon Dioxide 243</p> <p>9.6 Conclusion 243</p> <p>References 244</p> <p><b>10 Microwave- and Ultrasound-Assisted Synthesis of Metal-Organic Frameworks (MOF) and Covalent Organic Frameworks (COF) 249<br /> </b><i>Sanjit Gaikwad and Sangil Han</i></p> <p>10.1 Introduction 249</p> <p>10.2 Principles 250</p> <p>10.2.1 Principles of Microwave Heating 250</p> <p>10.2.2 Principle of Ultrasound-Assisted Techniques 250</p> <p>10.2.3 Advantages and Disadvantages of Microwave- and Ultrasound-Assisted Techniques 252</p> <p>10.3 MOF Synthesis by Microwave and Ultrasound Method 252</p> <p>10.3.1 Microwave-Assisted Synthesis of MOF 253</p> <p>10.3.2 Ultrasound-Assisted Synthesis of MOFs 256</p> <p>10.4 Factors That Affect MOF Synthesis 257</p> <p>10.4.1 Solvent 257</p> <p>10.4.2 Temperature and pH 258</p> <p>10.5 Application of MOF 260</p> <p>10.6 COF Synthesis by Microwave and Ultrasound Method 262</p> <p>10.6.1 Ultrasound-Assisted Synthesis of COFs 262</p> <p>10.6.2 Microwave-Assisted Synthesis of COF 262</p> <p>10.6.3 Structure of COF (2D and 3D) 263</p> <p>10.7 Factors Affecting the COF Synthesis 266</p> <p>10.8 Applications of COFs 267</p> <p>10.9 Future Predictions 269</p> <p>10.10 Summary 269</p> <p>Acknowledgments 269</p> <p>References 270</p> <p><b>11 Solid Phase Synthesis Catalyzed by Microwave and Ultrasound Irradiation 283<br /> </b><i>R.M. Abdel Hameed, Amal Amr, Amina Emad, Fatma Yasser, Haneen Abdullah, Mariam Nabil, Nada Hazem, Sara Saad, and Yousef Mohamed</i></p> <p>11.1 Introduction 283</p> <p>11.2 Wastewater Treatment 284</p> <p>11.3 Biodiesel Production 289</p> <p>11.4 Oxygen Reduction Reaction 297</p> <p>11.5 Alcoholic Fuel Cells 306</p> <p>11.6 Conclusion and Future Plans 313</p> <p>References 313</p> <p><b>12 Comparative Studies on Thermal, Microwave-Assisted, and Ultrasound-Promoted Preparations 337<br /> </b><i>Tri P. Adhi, Aqsha Aqsha, and Antonius Indarto</i></p> <p>12.1 Introduction 337</p> <p>12.1.1 Background on Preparative Techniques in Chemistry 337</p> <p>12.1.2 Overview of Thermal, Microwave-Assisted, and Ultrasound-Promoted Preparations 338</p> <p>12.1.3 Significance of Comparative Studies in Enhancing Synthetic Methodologies 341</p> <p>12.1.3.1 Optimization of Conditions 341</p> <p>12.1.3.2 Efficiency Improvement 342</p> <p>12.1.3.3 Methodological Advances 343</p> <p>12.1.3.4 Sustainability and Green Chemistry 343</p> <p>12.2 Fundamentals of Thermal, Microwave-Assisted, and Ultrasound-Assisted Reactions 345</p> <p>12.2.1 Explanation of Thermal Reactions and Their Advantages and Limitations 345</p> <p>12.2.2 Introduction to Microwave-Assisted Reactions and How They Differ from Traditional Method 346</p> <p>12.2.3 Understanding the Principles and Mechanisms of Ultrasound-Promoted Reactions 347</p> <p>12.3 Case Studies in Organic Synthesis 349</p> <p>12.3.1 Examining Examples of Organic Reactions Performed Under Thermal Conditions 349</p> <p>12.3.1.1 Esterification Reaction Under Thermal Conditions 349</p> <p>12.3.1.2 Dehydration of Alcohols 349</p> <p>12.3.1.3 Oxidation of Aldehydes to Carboxylic Acids Using Water 350</p> <p>12.3.2 Case Studies Showcasing the Application of Microwave-Assisted Reactions 350</p> <p>12.3.2.1 Microwave-Assisted C—C Bond Formation 351</p> <p>12.3.2.2 Microwave-Assisted Cyclization 352</p> <p>12.3.2.3 Microwave-Assisted Dehydrogenation Reactions 353</p> <p>12.3.2.4 Microwave-Assisted Organic Synthesis 353</p> <p>12.3.3 Highlighting Successful Instances of Ultrasound-Promoted Organic Synthesis 353</p> <p>12.3.3.1 Ultrasound-Promoted in Organic Synthesis 354</p> <p>12.3.3.2 Ultrasound-Promoted Oxidations 354</p> <p>12.3.3.3 Ultrasound-Promoted Esterification 354</p> <p>12.3.3.4 Ultrasound-Promoted Cyclization 354</p> <p>12.4 Scope and Limitations 355</p> <p>12.4.1 Discussing the Applicability of Each Method to Different Reaction Types 355</p> <p>12.4.2 Identifying the Limitations and Challenges Faced by Each Technique 357</p> <p>12.4.3 Opportunities for Combining Approaches to Overcome Specific Limitations 358</p> <p>12.5 Future Directions and Emerging Trends 359</p> <p>12.5.1 Overview of Recent Advancements and Ongoing Research in Thermal, Microwave, and Ultrasound-Assisted Preparations 359</p> <p>12.5.1.1 Food Processing Technologies 360</p> <p>12.5.1.2 Chemical Routes to Materials: Thermal Oxidation of Graphite for Graphene Preparation 360</p> <p>12.5.1.3 Environmental and Sustainable Applications: Waste to Energy 361</p> <p>12.5.2 Recent Findings in Microwave-Assisted Preparation 361</p> <p>12.5.2.1 Catalyst 361</p> <p>12.5.2.2 Nanotechnology 362</p> <p>12.5.3 Food Processing Technologies 362</p> <p>12.5.4 Ultrasound-Assisted Preparations 363</p> <p>12.5.4.1 Biomedical 363</p> <p>12.5.4.2 Artificial Intelligence (AI) 363</p> <p>12.6 Identification of Potential Areas for Further Exploration and Improvement 363</p> <p>12.6.1 Reaction Mechanisms and Kinetics 363</p> <p>12.6.2 Synergistic Effects 364</p> <p>12.6.3 Green Chemistry and Sustainability 366</p> <p>12.6.4 Scale-Up and Industrial Application 366</p> <p>12.6.5 Catalysis and Selectivity 367</p> <p>12.6.6 In Situ Monitoring and Control 367</p> <p>12.6.7 Mechanistic Studies 368</p> <p>12.6.8 Temperature and Energy Management 368</p> <p>12.6.9 Materials Processing 369</p> <p>12.6.10 Biomedical Applications 370</p> <p>12.7 The Role of Artificial Intelligence and Computational Approaches in Optimizing Preparative Techniques 370</p> <p>References 372</p> <p>Index 381</p>
<p><b>Dakeshwar Kumar Verma, PhD, </b>is Assistant Professor of Chemistry at the Govt. Digvijay Autonomous Postgraduate College, Rajnandgaon, Chhattisgarh, India.</p> <p><b>Chandrabhan Verma, PhD, </b>is a Researcher in the Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.</p> <p><b>Paz Otero Fuertes, PhD, </b>is a Senior Researcher in the Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Spain.</p>
<p> <b>A guide to the efficient and sustainable synthesis of organic compounds</b> <p>Chemical processes and the synthesis of compounds are essential aspects of numerous industries, and particularly central to the creation of drug-like structures. Their often significant environmental biproducts, however, have driven substantial innovations in the areas of green and organic synthesis, which have the potential to drive efficient, solvent-free synthesis and create more sustainable chemical processes. The use of microwaves and ultrasounds in chemical synthesis has proven an especially fruitful area of research, with the potential to produce a more sustainable industrial future. <i>Green Chemical Synthesis with Microwaves and Ultrasound </i>provides a comprehensive overview of recent advances in microwave- and ultrasound-driven synthesis and their cutting-edge applications. <p><i>Green Chemical Synthesis with Microwaves and Ultrasound </i>readers will also find: <ul><li>Introduction to the key equipment and tools of green chemical synthesis</li> <li>Detailed discussion of methods including ultrasound irradiation, metal-catalyzed reactions, enzymatic reactions, and many more</li> <li>An authorial team with immense experience in environmentally friendly organic chemical production</li></ul> <p><i>Green Chemical Synthesis with Microwaves and Ultrasound </i>is ideal for chemists, organic chemists, chemical engineers, biochemists, and any researchers or industry professionals working on the synthesis of chemicals and/or organic compounds.

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €