Details

Green Solvents in Organic Synthesis


Green Solvents in Organic Synthesis


1. Aufl.

von: Xiao-Feng Wu, Zhiping Yin, Liang-nian He, Feng Wang

142,99 €

Verlag: Wiley-VCH (D)
Format: PDF
Veröffentl.: 05.03.2024
ISBN/EAN: 9783527841929
Sprache: englisch
Anzahl Seiten: 464

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Green Solvents in Organic Synthesis</b> <p> <b>Essential reference on replacing conventional solvents with greener alternatives in industrial chemicals synthesis and production</b> <p>A well-timed book promoting sustainability in synthesis and production of chemicals, <i>Green Solvents in Organic Synthesis </i>details various green solvents, solvent systems, and solubilization techniques, including their chemistry, physiochemical properties, performance, and distinct applications, presenting a greener approach to conventional solvents by replacing them with sustainable alternatives that have similarities in their reaction mechanisms. <p>Edited by four highly qualified academics with significant research experience in the field, <i>Green Solvents in Organic Synthesis </i>includes information on: <ul><li>Water and liquid polymers (Polyethylene glycol PEG), Acetonitrile, DMSO, Dimethyl carbonate, Ionic liquids, and Supercritical fluids)</li><li>Bio-based solvents (Cyrene, γ-Valerolactone (GVL), Lactic acid, 2-MeTHF) and deep eutectic solvents (DESs)</li><li>Alcohols (MeOH, EtOH, i-PrOH, n-BuOH, t-BuOH, Ethylene glycol), ketones (Acetones, MEK, MIBK, Cyclohexanone), and esters (Methyl acetate, Ethyl acetate, i-PrOAc, n-BuOAc)</li><li>Technical, economic, and environmental aspects of green solvents and how to maximize their reuse and recycling to alleviate pollution and reduce energy consumption</li></ul> <p>For chemists in a variety of disciplines, <i>Green Solvents in Organic Synthesis </i>is an essential reference that provides foundational knowledge of green solvents, along with key features of each class of green solvent within the context of organic reactions for industrial and laboratory synthesis.
<p><b>1 Recent Achievements in Organic Reactions in Alcohols 1<br /> </b><i>Lan Zhao, Man Zhao, Meng-Ge Wei, Hong-Ru Li, and Liang-Nian He</i></p> <p>1.1 Introduction 1</p> <p>1.2 Alcohols as Green Solvents 6</p> <p>1.2.1 Hydrogenation/Reduction Reaction 6</p> <p>1.2.2 Oxidation Reaction 8</p> <p>1.2.3 Substitution Reaction 10</p> <p>1.2.4 Addition Reaction 11</p> <p>1.2.5 Cyclization Reaction 13</p> <p>1.2.6 Coupling Reaction 18</p> <p>1.2.7 Condensation/Ring Condensation Reaction 21</p> <p>1.3 Alcohols as Green Solvents and Catalysts 28</p> <p>1.3.1 Addition Reaction 28</p> <p>1.3.2 Cyclization Reaction 28</p> <p>1.3.3 Coupling Reaction 30</p> <p>1.3.4 Condensation Reaction 30</p> <p>1.3.5 Metathesis Reaction 35</p> <p>1.4 Alcohols as Green Solvents and Hydrogen Donors 35</p> <p>1.5 Miscellaneous 39</p> <p>1.5.1 Polyethylene Glycol as a Solvent for CO 2 Capture and Conversion 39</p> <p>1.5.2 Polyethylene Glycol Radical-Initiated Oxidation Reactions in Compressed Carbon Dioxide 41</p> <p>1.5.3 Ring-Opening Reaction 43</p> <p>1.6 Summary and Concluding Remarks 45</p> <p>Acknowledgments 46</p> <p>References 46</p> <p><b>2 Recent Achievements in Organic Reactions in MeCN 51<br /> </b><i>Tongtong Xing, Guizhi Zhai, Linna Wu, Xiaofen Wang, and Zechao Wang</i></p> <p>2.1 Introduction 51</p> <p>2.2 MeCN in Transition Metal-catalyzed Reactions Without Radicals Involved 52</p> <p>2.2.1 Transition Metal-catalyzed Addition Reactions in MeCN 52</p> <p>2.2.2 Transition Metal-catalyzed Oxidation Reactions in MeCN 56</p> <p>2.2.3 Transition Metal-catalyzed Reduction Reactions in MeCN 64</p> <p>2.2.4 Transition Metal-catalyzed Substitution Reactions in MeCN 66</p> <p>2.2.5 Transition Metal-catalyzed Cyclization Reactions in MeCN 74</p> <p>2.3 MeCN in Transition Metal-free Catalyzed Reactions Without Radicals Involved 80</p> <p>2.3.1 Transition Metal-free Catalyzed Cyclization Reactions in MeCN 80</p> <p>2.3.2 Transition Metal-free Catalyzed Multicomponent Reactions in MeCN 84</p> <p>2.3.3 Transition Metal-free Catalyzed C—X Bond Formation in MeCN 87</p> <p>2.4 MeCN in C—X Bonds Formation With Radicals Involved 90</p> <p>2.4.1 C—C, C—Si Bond Formation in MeCN 90</p> <p>2.4.2 C—N, C—P Bond Formation in MeCN 93</p> <p>2.4.3 C—O, C—S Bond Formation in MeCN 96</p> <p>2.4.4 C-Halogen Bond Formation in MeCN 98</p> <p>2.5 Conclusion 102</p> <p>References 102</p> <p><b>3 Recent Achievements in Organic Reactions in Bio-based Solvents 107<br /> </b><i>Shaomin Chen, Noman Haider Tariq, and Yanlong Gu</i></p> <p>3.1 Introduction 107</p> <p>3.2 Glycerol 108</p> <p>3.3 Polyethylene Glycols (PEGs) 112</p> <p>3.4 2-Methyltetrahydrofuran (2-MeTHF) 114</p> <p>3.5 Cyclopentyl Methyl Ether (CPME) 117</p> <p>3.6 Organic Carbonates 120</p> <p>3.7 γ-Valerolactone (GVL) 125</p> <p>3.8 Ethyl Lactate (EL) 128</p> <p>3.9 Miscellaneous 130</p> <p>3.10 Conclusions and Outlook 131</p> <p>References 131</p> <p><b>4 Recent Achievements in Organic Reactions in DMSO 137<br /> </b><i>Peng Yuan, Jia-Chen Xiang, and An-Xin Wu</i></p> <p>4.1 Pummerer-type Activation of DMSO 138</p> <p>4.2 Selectfluor-enabled Activation of DMSO 148</p> <p>4.3 Activation of DMSO Enabled by Single-electron Transformation 151</p> <p>4.4 Electrocatalytic Synthesis Enabled Activation of DMSO 163</p> <p>4.5 Photocatalytic Reaction Enabled Activation of DMSO 164</p> <p>4.6 DMSO Acts as the Metal Ligand 171</p> <p>4.7 Some Special Activation or Usage of DMSO 174</p> <p>4.8 Summary and Outlook 181</p> <p>References 181</p> <p><b>5 The Use of DMC as Green Solvent in Organic Synthesis 185<br /> </b><i>Xinxin Qi and Xiao-Feng Wu</i></p> <p>5.1 Introduction 185</p> <p>5.2 Organic Reactions in DMC 185</p> <p>References 197</p> <p><b>6 Applications of Green Deep Eutectic Solvents (DESs) in Synthetic Transformations 199<br /> </b><i>Zhuan Zhang and Taoyuan Liang</i></p> <p>6.1 Introduction 199</p> <p>6.2 Cross-coupling Reactions in Deep Eutectic Solvents 201</p> <p>6.2.1 C—C Bond Couplings 201</p> <p>6.2.2 C—N Bond Couplings 210</p> <p>6.2.3 C—O Bond Couplings 211</p> <p>6.2.4 C—S Bond Couplings 212</p> <p>6.3 Oxidation Reactions in Deep Eutectic Solvents 213</p> <p>6.3.1 Metal-catalyzed Oxidation 213</p> <p>6.3.2 Other Oxidative Processes 214</p> <p>6.4 Reduction Reactions in Deep Eutectic Solvents 217</p> <p>6.4.1 Metal-catalyzed Reduction 217</p> <p>6.4.2 Other Catalytic Reduction 218</p> <p>6.5 Cyclization Reactions in Deep Eutectic Solvents 219</p> <p>6.5.1 Synthesis of Five-membered Ring 219</p> <p>6.5.2 Synthesis of Six-membered Ring 220</p> <p>6.6 Condensation Reactions in Deep Eutectic Solvents 221</p> <p>6.6.1 DES as the Catalyst/Solvent System for Condensation 221</p> <p>6.6.2 Other Catalytic System for Condensation 223</p> <p>6.7 Multicomponent Reactions in Deep Eutectic Solvents 224</p> <p>6.7.1 One-pot Three-component Reaction 224</p> <p>6.7.2 One-pot Four-component Reaction 227</p> <p>6.8 Other Organic Reactions in Deep Eutectic Solvents 228</p> <p>6.8.1 Isomerization Reaction 228</p> <p>6.8.2 Ring-opening Reaction 230</p> <p>6.8.3 Esterification Reaction 230</p> <p>6.9 Polymerization in DSEs 231</p> <p>6.9.1 Anionic Polymerization of Alkenes 231</p> <p>6.9.2 Glycolysis and Polyesterification 231</p> <p>6.9.3 Oxidative Polymerization 232</p> <p>6.9.4 Visible-light-driven RAFT Polymerization 232</p> <p>6.10 Conclusion 233</p> <p>References 233</p> <p><b>7 Recent Achievements in Organic Reactions in Ionic Liquids 237<br /> </b><i>Jianxiao Li and Huanfeng Jiang</i></p> <p>7.1 Introduction 237</p> <p>7.2 Transition Metal-catalyzed Reactions 238</p> <p>7.2.1 Palladium-catalyzed Cascade Cyclization Reaction 239</p> <p>7.2.2 Carbonylation Reactions 248</p> <p>7.2.3 Sonogashira Coupling Reactions 252</p> <p>7.2.4 Suzuki Coupling Reactions 255</p> <p>7.2.5 Copper-catalyzed Coupling Reactions 257</p> <p>7.3 Outlook 259</p> <p>List of Abbreviations 259</p> <p>References 260</p> <p><b>8 Recent Achievements in Organic Reactions in Ketones and Esters 263<br /> </b><i>Fan-Lin Zeng and Bing Yu</i></p> <p>8.1 Introduction 263</p> <p>8.2 Organic Reactions in Ketones 263</p> <p>8.2.1 Organic Reactions in Cyrene 263</p> <p>8.2.2 Organic Reactions in NBP 266</p> <p>8.3 Organic Reactions in Esters 268</p> <p>8.3.1 Organic Reactions in Organic Carbonates 268</p> <p>8.3.2 Organic Reactions in γ-Valerolactone 270</p> <p>8.3.3 Organic Reactions in Ethyl Lactate 273</p> <p>8.4 Conclusion 275</p> <p>References 275</p> <p><b>9 Recent Achievements in Organic Reactions in Polyethylene Glycol 279<br /> </b><i>Zhiping Yin</i></p> <p>9.1 Introduction 279</p> <p>9.2 PEG in Pd-catalyzed Coupling Reactions 280</p> <p>9.2.1 Pd-catalyzed C—C, C—Si Bonds Formation in PEG 280</p> <p>9.2.2 Pd-catalyzed C—N, C—P Bond Formation in PEG 290</p> <p>9.2.3 Pd-catalyzed C—O Bond Formation in PEG 291</p> <p>9.2.4 Pd-catalyzed C—B Bond Formation in PEG 291</p> <p>9.3 PEG in Cu-catalyzed Reactions 292</p> <p>9.3.1 Cu-catalyzed C—C Bond Formation in PEG 292</p> <p>9.3.2 Cu-catalyzed C—N Bond Formation in PEG 293</p> <p>9.3.3 Cu-catalyzed C—O, C—S, and C—Se Bond Formation in PEG 296</p> <p>9.4 PEG in Ni, Ru, and Pt-catalyzed Reactions 299</p> <p>9.5 PEG in Organocatalysis Reactions 302</p> <p>9.6 PEG in Multicomponent Reactions 304</p> <p>9.7 PEG in Cyclization Reactions 306</p> <p>9.7.1 Synthesis of Five-membered Ring Systems 306</p> <p>9.7.2 Synthesis of Six and Seven-membered Ring Systems 308</p> <p>9.8 Conclusion 309</p> <p>Acknowledgments 310</p> <p>References 310</p> <p><b>10 Recent Advances in Organic Reactions Using Water as Solvent 317<br /> </b><i>Chang-Sheng Wang, Qiao Sun, Guowei Wang, Wei He, Zheng Fang, and Kai Guo</i></p> <p>10.1 Introduction 317</p> <p>10.2 Cross-Coupling Reactions 318</p> <p>10.2.1 C–C Cross-Coupling 318</p> <p>10.2.2 C–N Cross-Coupling 336</p> <p>10.2.3 C–S Cross-Coupling 342</p> <p>10.2.4 C–P Cross-Coupling 346</p> <p>10.3 C–H Functionalization 347</p> <p>10.3.1 C–C Bond Formation 347</p> <p>10.3.2 C–N Bond Formation 364</p> <p>10.3.3 C–O Bond Formation 367</p> <p>10.3.4 C–X Bond Formation 369</p> <p>10.3.5 C–H Annulation/Cyclization 370</p> <p>10.4 C–C Activation 374</p> <p>10.5 C–O Cleavage Reactions 376</p> <p>10.6 Oxidative and Reductive Reactions 377</p> <p>10.6.1 Electrochemical Oxidation 377</p> <p>10.6.2 Reduction and Related Reactions 379</p> <p>10.7 Substitution Reactions 381</p> <p>10.7.1 Nucleophilic Substitution 381</p> <p>10.7.2 Electrophilic Substitution 383</p> <p>10.7.3 Radical Substitution 384</p> <p>10.8 Addition Reactions 386</p> <p>10.8.1 Nucleophilic Addition 386</p> <p>10.8.2 Alkene/Alkyne Functionalization via Radical Addition 392</p> <p>10.8.3 Alkene or Alkyne Functionalization via Radical-Free Addition 396</p> <p>10.8.4 Cycloaddition Reactions 399</p> <p>10.9 Cyclization or Annulation Reactions 403</p> <p>10.9.1 Radical-Free Cyclization/Annulation 403</p> <p>10.9.2 Radical Cyclization 406</p> <p>10.10 Multicomponent Reaction (MCR) 410</p> <p>10.11 Domino/Tandem/Cascade Reactions 417</p> <p>10.11.1 Chemo-Domino/Tandem/Cascade Reactions 417</p> <p>10.11.2 Chemoenzymatic Reactions 422</p> <p>10.12 Rearrangement or Insertion Reactions 425</p> <p>10.12.1 Rearrangement Reactions 425</p> <p>10.12.2 Carbene Insertion/Transfer Reactions 429</p> <p>10.13 Amide Condensation Reactions 431</p> <p>10.14 Summary and Conclusions 435</p> <p>Acknowledgments 435</p> <p>References 435</p> <p>Index 443</p>
<p><b>Xiao-Feng Wu, PhD, </b>is a Professor at Dalian Institute of Chemical Physics, CAS.</p> <p><b>Zhiping Yin, PhD, </b>is a Professor at the School of Pharmacy of Jiangsu University.</p> <p><b>Liang-Nian He, PhD, </b>is a Professor at Nankai University.</p> <p><b>Feng Wang, PhD, </b>serves as the vice director of Dalian Institute of Chemical Physics, CAS and the director of the Biomass-Conversion and Bio-Energy division at the Bioenergy Chemical Group.</p>
<p> <b>Essential reference on replacing conventional solvents with greener alternatives in industrial chemicals synthesis and production</b> <p>A well-timed book promoting sustainability in synthesis and production of chemicals, <i>Green Solvents in Organic Synthesis </i>details various green solvents, solvent systems, and solubilization techniques, including their chemistry, physiochemical properties, performance, and distinct applications, presenting a greener approach to conventional solvents by replacing them with sustainable alternatives that have similarities in their reaction mechanisms. <p>Edited by four highly qualified academics with significant research experience in the field, <i>Green Solvents in Organic Synthesis </i>includes information on: <ul><li>Water and liquid polymers (Polyethylene glycol PEG), Acetonitrile, DMSO, Dimethyl carbonate, Ionic liquids, and Supercritical fluids)</li><li>Bio-based solvents (Cyrene, γ-Valerolactone (GVL), Lactic acid, 2-MeTHF) and deep eutectic solvents (DESs)</li><li>Alcohols (MeOH, EtOH, i-PrOH, n-BuOH, t-BuOH, Ethylene glycol), ketones (Acetones, MEK, MIBK, Cyclohexanone), and esters (Methyl acetate, Ethyl acetate, i-PrOAc, n-BuOAc)</li><li>Technical, economic, and environmental aspects of green solvents and how to maximize their reuse and recycling to alleviate pollution and reduce energy consumption</li></ul> <p>For chemists in a variety of disciplines, <i>Green Solvents in Organic Synthesis </i>is an essential reference that provides foundational knowledge of green solvents, along with key features of each class of green solvent within the context of organic reactions for industrial and laboratory synthesis.

Diese Produkte könnten Sie auch interessieren:

Protein Therapeutics
Protein Therapeutics
von: Tristan Vaughan, Jane Osbourn, Bahija Jallal, Raimund Mannhold, Gerd Folkers, Helmut Buschmann
EPUB ebook
273,99 €
Protein Therapeutics
Protein Therapeutics
von: Tristan Vaughan, Jane Osbourn, Bahija Jallal, Raimund Mannhold, Gerd Folkers, Helmut Buschmann
PDF ebook
273,99 €