Details

CO2 Conversion and Utilization


CO2 Conversion and Utilization

Photocatalytic and Electrochemical Methods and Applications
1. Aufl.

von: Zhicheng Zhang

133,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 28.07.2023
ISBN/EAN: 9783527841790
Sprache: englisch
Anzahl Seiten: 368

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>CO<sub>2</sub> Conversion and Utilization</b> <p><b>Comprehensive overview of current development of various catalysts in CO<sub>2</sub> conversion and utilization through photocatalytic and electrochemical methods</b> <p><i>CO<sub>2</sub> Conversion and Utilization </i>systematically summarizes the development of CO<sub>2</sub> photo- and electro-conversion and utilization, especially the reaction mechanism, engineering and technology of testing, and preparation methods and physicochemical properties of various catalytic materials. The rational design and preparation of catalysts, development of characterization technologies, and in-depth understanding of catalytic mechanisms are systematically discussed. <p>In particular, the various parameters influencing the photocatalytic and electrochemical CO<sub>2</sub> reduction are emphasized. The underlying challenges and perspectives for the future development of efficient catalysts for CO<sub>2</sub> reduction to specific chemicals and fuels are discussed at the end of the text. <p>Written by a highly qualified author with significant experience in the field, <i>CO<sub>2</sub> Conversion and Utilization </i>includes information on: <ul><li>Measurement systems and parameters for CO<sub>2</sub> photo/electro-conversion, CO<sub>2</sub> photo/electro-conversion mechanism, and Cu-based and Cu-free metal materials for electrocatalytic CO<sub>2</sub> reduction</li> <li>Organic-inorganic, metal organic framework, and covalent organic framework hybrid materials for CO<sub>2</sub> photo/electro-conversion</li> <li>Single/dual-atom catalysts, homogeneous catalysts, and high-entropy alloys for CO<sub>2</sub> photo/electro-conversion</li> <li>Semiconductor composite and carbon-based materials for photocatalytic CO<sub>2</sub> reduction, novel routes for CO<sub>2</sub> utilization via metal-CO<sub>2</sub> batteries, and CO<sub>2</sub> conversion into long-chain compounds</li></ul> <p>Providing comprehensive coverage of the subject, <i>CO<sub>2</sub> Conversion and Utilization </i>is of high interest for scientific researchers as well as engineers and technicians in industry, including but not limited to photochemists, electrochemists, environmental chemists, catalytic chemists, chemists in industry, and inorganic chemists.
<p>Preface xiii</p> <p><b>1 Measurement Systems and Parameters for CO 2 Photo/Electro-Conversion 1<br /> </b><i>li li, Zhenwei Zhao, Xinyi Wang, and Zhicheng Zhang</i></p> <p>1.1 Introduction 1</p> <p>1.2 The Measurement Systems for CO 2 Photo/Electro-Conversion 1</p> <p>1.2.1 The Measurement Systems of Photocatalytic CO 2 Reduction 1</p> <p>1.2.1.1 CO 2 Reduction System Under Liquid-Phase Reaction System 2</p> <p>1.2.1.2 CO 2 Reduction System in Gas-Phase Reaction System 2</p> <p>1.2.1.3 Detection of CO 2 Reduction Products 3</p> <p>1.2.2 The Measurement Systems of Electrocatalytic CO 2 Reduction 3</p> <p>1.2.2.1 Electrocatalytic CO 2 Reduction Reaction Test in H-Cell 3</p> <p>1.2.2.2 Electrocatalytic CO 2 Reduction Reaction Test in Flow Cell 5</p> <p>1.2.2.3 Electrocatalytic CO 2 Reduction Reaction Test in MEA 5</p> <p>1.2.3 The Measurement Systems of Photo-Electro-Catalytic CO 2 Reduction 6</p> <p>1.2.3.1 Basic Device for Photocatalytic CO 2 Reduction Experiment 6</p> <p>1.2.3.2 Other Devices for Photocatalytic CO 2 Reduction 7</p> <p>1.2.3.3 Detection of CO 2 Reduction Reaction Products 7</p> <p>1.3 The Parameters for CO 2 Photo-Conversion 7</p> <p>1.3.1 The Parameters of Photocatalytic CO 2 Reduction 7</p> <p>1.3.1.1 Evaluation Parameters of Photocatalytic CO 2 Reduction Activity 8</p> <p>1.3.1.2 Evaluation Parameters of Photocatalytic CO 2 Reduction Selectivity 10</p> <p>1.3.1.3 Evaluation Parameters of Photocatalytic CO 2 Reduction Stability 10</p> <p>1.3.2 The Parameters of Electrocatalytic CO 2 Reduction 10</p> <p>1.3.3 The Parameters of Photo-Electro-Catalytic CO 2 Reduction 12</p> <p>1.3.3.1 Overpotential 12</p> <p>1.3.3.2 Total Photocurrent Density (j ph) and Partial Photocurrent Density (j A) 12</p> <p>1.3.3.3 Faraday Efficiency (FE) 13</p> <p>1.3.3.4 Solar Energy Conversion Efficiency 13</p> <p>1.3.3.5 Apparent Quantum Yield (AQY) 13</p> <p>1.3.3.6 Electrochemical Active Area (ECSA) 14</p> <p>1.3.3.7 Electrochemical Impedance (EIS) 14</p> <p>1.3.3.8 Tafel Slope (Tafel) 14</p> <p>1.3.3.9 Photocatalytic Stability 14</p> <p>References 15</p> <p><b>2 CO 2 Photo/Electro-Conversion Mechanism 17<br /> </b><i>Yalin Guo, Shenghong Zhong, and Jianfeng Huang</i></p> <p>2.1 Introduction 17</p> <p>2.2 CO 2 Photo-Conversion Mechanism 18</p> <p>2.3 CO 2 Electro-Conversion Mechanism 25</p> <p>2.3.1 Thermodynamics of CO 2 Reduction 25</p> <p>2.3.2 Pathways of Electrochemical CO 2 Reduction 26</p> <p>2.3.2.1 Electrochemical CO 2 Reduction to CO 27</p> <p>2.3.2.2 Electrochemical CO 2 Reduction to Formate 28</p> <p>2.3.2.3 Electrochemical CO 2 Reduction to Products Beyond CO 29</p> <p>2.4 Summary and Perspectives 32</p> <p>References 32</p> <p><b>3 Cu-Based Metal Materials for Electrocatalytic CO 2 Reduction 37<br /> </b><i>Junjun Li, Yongxia Shi, Man Hou, and Zhicheng Zhang</i></p> <p>3.1 Introduction 37</p> <p>3.2 Cu-Based Metal Materials for Electrocatalytic CO 2 Reduction 39</p> <p>3.2.1 Cu Materials for Electrocatalytic CO 2 Reduction 39</p> <p>3.2.2 Cu-Based Bimetal Materials for Electrocatalytic CO 2 Reduction 40</p> <p>3.2.2.1 Cu–Au 40</p> <p>3.2.2.2 Cu–Ag 42</p> <p>3.2.2.3 Cu–Pd 43</p> <p>3.2.2.4 Cu–Sn 44</p> <p>3.2.2.5 Cu–Bi 46</p> <p>3.2.2.6 Cu–In 46</p> <p>3.2.2.7 Cu–Al 49</p> <p>3.2.2.8 Cu–Zn 49</p> <p>3.2.3 Cu-Based Trimetallic Materials for Electrocatalytic CO 2 Reduction 50</p> <p>3.3 Conclusion and Outlook 50</p> <p>Acknowledgment 53</p> <p>References 53</p> <p><b>4 Cu-Free Metal Materials for Electrocatalytic CO 2 Conversion 61<br /> </b><i>Zhiqi Huang and Qingfeng Hua</i></p> <p>4.1 Introduction 61</p> <p>4.2 CO-Producing Metals 62</p> <p>4.2.1 Au-Based Electrocatalysts 62</p> <p>4.2.2 Ag-Based Electrocatalysts 66</p> <p>4.2.3 Pd-Based Electrocatalysts 68</p> <p>4.2.4 Zn-Based Electrocatalysts 70</p> <p>4.3 HCOOH-Producing Metals 72</p> <p>4.3.1 Sn-Based Electrocatalysts 72</p> <p>4.3.2 Bi-Based Electrocatalysts 76</p> <p>4.3.3 In-Based Electrocatalysts 78</p> <p>References 80</p> <p><b>5 Organic–Inorganic Hybrid Materials for CO 2 Photo/Electro-Conversion 93<br /> </b><i>Peilei He</i></p> <p>5.1 Hybrid Materials for Photocatalytic CO 2 Reduction Reaction (co 2 Rr) 93</p> <p>5.1.1 Photocatalytic CO 2 RR on p-type Semiconductor/Molecule Catalysts 93</p> <p>5.1.2 Photocatalytic CO 2 RR on Carbon Nitride (C 3 N 4)-supported Molecular Catalysts 95</p> <p>5.1.3 Photocatalytic CO 2 RR on Polyoxometalates (POMs)-based Catalysts 97</p> <p>5.2 Hybrid Materials for Electrochemical CO 2 RR 98</p> <p>5.2.1 Electrochemical CO 2 RR on Carbon-supported Molecular Catalysts 98</p> <p>5.2.2 Electrochemical CO 2 RR on TiO 2 -based Hybrid Materials 103</p> <p>5.3 Hybrid Materials for Photoelectrochemical (PEC) CO 2 RR 104</p> <p>5.4 Challenge and Opportunity 106</p> <p>References 107</p> <p><b>6 Metal–Organic Framework Materials for CO 2 Photo-/Electro-Conversion 111<br /> </b><i>Bingqing Yao, Xiaoya Cui, and Zhicheng Zhang</i></p> <p>6.1 Introduction 111</p> <p>6.2 Photocatalysis 112</p> <p>6.2.1 MOFs with Photoactive Organic Ligands 113</p> <p>6.2.2 MOFs with Photoactive Metal Nodes 116</p> <p>6.2.3 MOF-Based Hybrid System 117</p> <p>6.3 Electrocatalysis 119</p> <p>6.3.1 MOFs with Active Sites at Organic Ligands 120</p> <p>6.3.2 MOFs with Active Sites at Metal Nodes 121</p> <p>6.3.3 MOF-Based Hybrid System 125</p> <p>6.4 Photoelectrocatalysis 128</p> <p>6.5 Conclusion and Outlook 129</p> <p>Acknowledgment 130</p> <p>References 130</p> <p><b>7 Covalent Organic Frameworks for CO 2 Photo/Electro-Conversion 137<br /> </b><i>Ting He</i></p> <p>7.1 Introduction 137</p> <p>7.2 COFs for Photocatalytic CO 2 Reduction 138</p> <p>7.2.1 Imine-Linked COFs 138</p> <p>7.2.2 Ketoenamine COFs 141</p> <p>7.2.3 Carbon–Carbon Double Bond-Linked COFs 145</p> <p>7.2.4 Dioxin-Linked COFs 147</p> <p>7.2.5 Azine-Linked and Hydrazone-Linked COFs 147</p> <p>7.3 COFs for Electrocatalytic CO 2 Reduction 148</p> <p>7.3.1 Porphyrin-Based COFs 148</p> <p>7.3.2 Phthalocyanine-Based COFs 151</p> <p>7.3.3 Other COFs 152</p> <p>7.4 Challenges and Perspectives 152</p> <p>References 154</p> <p><b>8 Single/Dual-Atom Catalysts for CO 2 Photo/Electro-Conversion 157<br /> </b><i>Honghui Ou and Yao Wang</i></p> <p>8.1 Introduction 157</p> <p>8.2 Synthetic Methods of Single/Dual-Atom Catalysts 158</p> <p>8.2.1 Single-Atom Photocatalysts 158</p> <p>8.2.2 Dual-Atom Photocatalysts 160</p> <p>8.2.3 Single-Atom Electro-Catalysts 162</p> <p>8.2.4 Dual-Atom Electro-Catalysts 164</p> <p>8.3 CO 2 Photo-Conversion 165</p> <p>8.4 CO 2 Electro-Conversion 169</p> <p>8.5 Summary and Perspective 171</p> <p>References 172</p> <p><b>9 Homogeneous Catalytic CO 2 Photo/Electro-Conversion 177<br /> </b><i>Zhenguo Guo and Houjuan Yang</i></p> <p>9.1 Introduction 177</p> <p>9.2 Homogeneous Catalytic CO 2 Electro-Conversion 177</p> <p>9.2.1 The Structure Homogeneous Electrocatalytic CO 2 Reduction System 177</p> <p>9.2.2 Products in Homogeneous Electrocatalytic CO 2 Reduction 178</p> <p>9.2.3 Characterizing the Performance of Molecular Electrocatalysts 178</p> <p>9.2.3.1 Selectivity 178</p> <p>9.2.3.2 Activity 178</p> <p>9.2.3.3 Overpotential (η) 179</p> <p>9.2.3.4 Stability 179</p> <p>9.2.4 Catalysts for Homogeneous Electrocatalytic CO 2 Reduction 179</p> <p>9.3 Homogeneous Photocatalytic CO 2 Reduction 180</p> <p>9.3.1 Mechanism of Homogeneous Photocatalytic CO 2 Reduction 180</p> <p>9.3.2 Characterizing the Performance of Photocatalysis 181</p> <p>9.3.3 Photosensitizers Used in Homogeneous Photocatalytic CO 2 Reduction 181</p> <p>9.3.4 Sacrificial Electron Donors in Homogeneous Photocatalytic CO 2 Reduction 181</p> <p>9.3.5 Catalysts Used in Homogeneous Photocatalytic CO 2 Reduction 182</p> <p>9.4 Summary and Perspective 186</p> <p>Acknowledgments 187</p> <p>References 187</p> <p><b>10 High-Entropy Alloys for CO 2 Photo/Electro-Conversion 189<br /> </b><i>Fengqi Wang, Pei Liu, and Yuchen Qin</i></p> <p>10.1 Introduction 189</p> <p>10.2 Reaction Pathways and Evaluation Parameters of Electrochemical Co 2 Rr 191</p> <p>10.2.1 Reaction Pathways of CO 2 RR 191</p> <p>10.2.2 Evaluation Parameters of Electrochemical CO 2 RR 192</p> <p>10.2.2.1 Faraday Efficiency 192</p> <p>10.2.2.2 Current Density 193</p> <p>10.2.2.3 Turnover Number (TON) 194</p> <p>10.2.2.4 Turnover Frequency (TOF) 194</p> <p>10.2.2.5 Overpotential 194</p> <p>10.3 Characteristics and Synthesis of HEAs 194</p> <p>10.3.1 Characteristics of HEAs 194</p> <p>10.3.1.1 The Cocktail Effect 194</p> <p>10.3.1.2 The Sluggish Diffusion Effect 195</p> <p>10.3.1.3 The High-entropy Effect 195</p> <p>10.3.1.4 The Lattice Distortion Effect 195</p> <p>10.3.1.5 The Phase Structure 196</p> <p>10.3.2 Synthesis of HEAs 196</p> <p>10.3.2.1 Top-Down Method 196</p> <p>10.3.2.2 Down–Top Method 198</p> <p>10.4 High-Entropy Alloys for CO 2 RR 199</p> <p>10.5 Summary and Outlook 204</p> <p>References 205</p> <p><b>11 Semiconductor Composite Materials for Photocatalytic CO 2 Reduction 215<br /> </b><i>Shengyao Wang and Bo Jiang</i></p> <p>11.1 Introduction 215</p> <p>11.2 TiO 2 -Based Composite Photocatalysts 216</p> <p>11.2.1 Mixed-Phase TiO 2 Composites 217</p> <p>11.2.2 Metal-Modified TiO 2 218</p> <p>11.2.3 Nonmetallic-Modified TiO 2 219</p> <p>11.2.4 Organic Photosensitizer-Modified TiO 2 219</p> <p>11.2.5 Composited TiO 2 Catalyst 220</p> <p>11.3 Metal Oxides/Hydroxides-Based Composite Photocatalysts 222</p> <p>11.3.1 Binary Metal Oxide 222</p> <p>11.3.2 Ternary Metal Oxide 222</p> <p>11.3.3 Oxide Perovskite 224</p> <p>11.3.4 Transition Metal Hydroxide 224</p> <p>11.3.5 Layered Double Hydroxides (LDHs) 226</p> <p>11.4 Metal Chalcogenides/Nitrides-Based Composite Photocatalysts 226</p> <p>11.4.1 Metal Chalcogenides-Based Composite Photocatalysts 227</p> <p>11.4.2 Metal Nitrides-Based Composite Photocatalysts 228</p> <p>11.5 c 3 N 4 -Based composite Photocatalysts 229</p> <p>11.5.1 Change the Morphology and Structure 230</p> <p>11.5.2 Doped Elements and Other Structural Units 231</p> <p>11.5.3 Influence of Cocatalyst 232</p> <p>11.5.4 Constructing Heterojunction 233</p> <p>11.6 MOFs-Derived Composite Photocatalysts 233</p> <p>11.6.1 Tunable Frame Structure 234</p> <p>11.6.2 High Specific Surface Area Enhances CO 2 Adsorption 234</p> <p>11.6.3 MOFs-Derived Composite Photocatalysts 234</p> <p>11.7 Nonmetal-Based Composite Photocatalysts 236</p> <p>11.7.1 Graphene Oxide-Based Composite Photocatalysts 236</p> <p>11.7.2 SiC-Based Composite Photocatalysts 237</p> <p>11.7.3 BN-Based Composite Photocatalysts 237</p> <p>11.7.4 Black Phosphorus-Based Composite Photocatalysts 238</p> <p>11.7.5 COFs-Based Composite Photocatalysts 239</p> <p>11.7.6 CMPs-Based Composite Photocatalysts 240</p> <p>11.8 Conclusions and Perspectives 240</p> <p>References 242</p> <p><b>12 Carbon-Based Materials for CO 2 Photo/Electro-Conversion 251<br /> </b><i>Qing Qin and Lei Dai</i></p> <p>12.1 Advances of Carbon-Based Materials 251</p> <p>12.1.1 Heteroatom-Doped Carbon 251</p> <p>12.1.2 Metal-Based Carbon Composites 252</p> <p>12.1.3 Carbon–Carbon Composites 253</p> <p>12.1.4 Pore Construction 254</p> <p>12.2 Background of CO 2 Conversion 255</p> <p>12.3 EC CO 2 Conversion 256</p> <p>12.3.1 Heteroatom-Doped Carbon in EC CO 2 Conversion 257</p> <p>12.3.2 Metal-Modified Carbon Materials in EC CO 2 Conversion 259</p> <p>12.3.3 Carbon–Carbon Composites in EC CO 2 Conversion 261</p> <p>12.3.4 Pore Engineering in EC CO 2 Conversion 262</p> <p>12.4 PC CO 2 Reduction 264</p> <p>12.4.1 Heteroatom-Doped Carbon in PC CO 2 Conversion 265</p> <p>12.4.2 Metal-Based/Carbon Nanocomposites in PC CO 2 Conversion 266</p> <p>12.4.3 Carbon–Carbon Composites in PC CO 2 Conversion 268</p> <p>12.5 Carbon-Based Materials in PEC CO 2 Reduction 269</p> <p>12.6 Challenge and Opportunity 270</p> <p>References 272</p> <p><b>13 Metal–CO 2 Batteries: Novel Routes for CO 2 Utilization 283<br /> </b><i>Xiangyu Zhang and Le Yu</i></p> <p>13.1 Introduction 283</p> <p>13.2 The Mechanism for Metal–CO 2 Electrochemistry 284</p> <p>13.2.1 Discharge/Charge Mechanisms of Li–CO 2 Batteries 284</p> <p>13.2.1.1 Discharge Mechanisms of Pure Li–CO 2 Batteries 284</p> <p>13.2.1.2 Charge Mechanisms of Pure Li–CO 2 Batteries 285</p> <p>13.2.2 Discharge/Charge Mechanisms of Zn–CO 2 Batteries 286</p> <p>13.3 The Electrocatalysts for Metal–CO 2 Batteries 286</p> <p>13.3.1 Carbonaceous Materials 286</p> <p>13.3.2 Noble Metal-based Materials and Transition Metal-based Materials 287</p> <p>13.4 The Electrolytes for Metal–CO 2 Batteries 290</p> <p>13.4.1 Nonaqueous Aprotic Liquid Electrolytes for Pure Li–CO 2 Electrochemistry 290</p> <p>13.4.2 Solid-State Electrolytes for Pure Li–CO 2 Electrochemistry 290</p> <p>13.5 Conclusion and Outlook 292</p> <p>References 293</p> <p><b>14 CO 2 Conversion into Long-Chain Compounds 297<br /> </b><i>Tingting Zheng and Chuan Xia</i></p> <p>14.1 Introduction 297</p> <p>14.2 Photobiochemical Synthesis (PBS) 299</p> <p>14.2.1 Principles in Designing the PBS System 299</p> <p>14.2.2 Multicarbon Compounds Produced from PBS 301</p> <p>14.2.3 Challenges and Prospects for PBS 304</p> <p>14.3 Microbial Electrosynthesis (MES) 306</p> <p>14.3.1 Extracellular Electron Transfer (EET) 306</p> <p>14.3.2 Approaches to Optimize MES 309</p> <p>14.3.2.1 Metabolic Pathways 309</p> <p>14.3.2.2 Metabolic Engineering 309</p> <p>14.3.2.3 Culture 311</p> <p>14.3.2.4 Biocathode 312</p> <p>14.3.3 Multicarbon Products Derived from MES 313</p> <p>14.3.4 The Status Quo and Challenges of MES 316</p> <p>14.4 Decoupling Biotic and Abiotic Processes 318</p> <p>14.5 Conclusions and Perspectives 322</p> <p>References 324</p> <p><b>15 Conclusions and Perspectives 335<br /> </b><i>Haiqing Wang</i></p> <p>15.1 New CO 2 RR Catalyst 335</p> <p>15.2 New CO 2 RR Mechanism 336</p> <p>15.3 Industrial CO 2 RR Perspectives 337</p> <p>Index 339</p>
<p><i><b>Zhicheng Zhang </b>is currently a Professor of Tianjin University, China. He obtained his Ph.D. from China University of Petroleum (Beijing) in 2012. He then worked as a postdoctoral researcher at Tsinghua University. In 2014, he worked as a senior research fellow at Nanyang Technological University, Singapore. In 2019, he joined Tianjin University as a full Professor. His research interests focus on the design, synthesis, and applications of functional metal-based nanomaterials.</i>
<p><b>Comprehensive overview of current development of various catalysts in CO<sub>2</sub> conversion and utilization through photocatalytic and electrochemical methods</b> <p><i>CO<sub>2</sub> Conversion and Utilization </i>systematically summarizes the development of CO<sub>2</sub> photo- and electro-conversion and utilization, especially the reaction mechanism, engineering and technology of testing, and preparation methods and physicochemical properties of various catalytic materials. The rational design and preparation of catalysts, development of characterization technologies, and in-depth understanding of catalytic mechanisms are systematically discussed. <p>In particular, the various parameters influencing the photocatalytic and electrochemical CO<sub>2</sub> reduction are emphasized. The underlying challenges and perspectives for the future development of efficient catalysts for CO<sub>2</sub> reduction to specific chemicals and fuels are discussed at the end of the text. <p>Written by a highly qualified author with significant experience in the field, <i>CO<sub>2</sub> Conversion and Utilization </i>includes information on: <ul><li>Measurement systems and parameters for CO<sub>2</sub> photo/electro-conversion, CO<sub>2</sub> photo/electro-conversion mechanism, and Cu-based and Cu-free metal materials for electrocatalytic CO<sub>2</sub> reduction</li> <li>Organic-inorganic, metal organic framework, and covalent organic framework hybrid materials for CO<sub>2</sub> photo/electro-conversion</li> <li>Single/dual-atom catalysts, homogeneous catalysts, and high-entropy alloys for CO<sub>2</sub> photo/electro-conversion</li> <li>Semiconductor composite and carbon-based materials for photocatalytic CO<sub>2</sub> reduction, novel routes for CO<sub>2</sub> utilization via metal-CO<sub>2</sub> batteries, and CO<sub>2</sub> conversion into long-chain compounds</li></ul> <p>Providing comprehensive coverage of the subject, <i>CO<sub>2</sub> Conversion and Utilization </i>is of high interest for scientific researchers as well as engineers and technicians in industry, including but not limited to photochemists, electrochemists, environmental chemists, catalytic chemists, chemists in industry, and inorganic chemists.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €