Details

Spectroscopy and Characterization of Nanomaterials and Novel Materials


Spectroscopy and Characterization of Nanomaterials and Novel Materials

Experiments, Modeling, Simulations, and Applications
1. Aufl.

von: Prabhakar Misra

162,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 08.04.2022
ISBN/EAN: 9783527833696
Sprache: englisch
Anzahl Seiten: 528

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Spectroscopy and Characterization of Nanomaterials and Novel Materials</b> <p><b>Comprehensive overview of nanomaterial characterization methods and applications from leading researchers in the field </b> <p> In <i>Spectroscopy and Characterization of Nanomaterials and Novel Materials: Experiments, Modeling, Simulations, and Applications,</i> the editor Prabhakar Misra and a team of renowned contributors deliver a practical and up-to-date exploration of the characterization and applications of nanomaterials and other novel materials, including quantum materials and metal clusters. The contributions cover spectroscopic characterization methods for obtaining accurate information on optical, electronic, magnetic, and transport properties of nanomaterials. <p>The book reviews nanomaterial characterization methods with proven relevance to academic and industry research and development teams, and modern methods for the computation of nanomaterials’ structure and properties - including machine-learning approaches - are also explored. Readers will also find descriptions of nanomaterial applications in energy research, optoelectronics, and space science, as well as: <ul><li>A thorough introduction to spectroscopy and characterization of graphitic nanomaterials and metal oxides</li> <li>Comprehensive explorations of simulations of gas separation by adsorption and recent advances in Weyl semimetals and axion insulators</li> <li>Practical discussions of the chemical functionalization of carbon nanotubes and applications to sensors</li> <li>In-depth examinations of micro-Raman imaging of planetary analogs</li></ul> <p>Perfect for physicists, materials scientists, analytical chemists, organic and polymer chemists, and electrical engineers, <i>Spectroscopy and Characterization of Nanomaterials and Novel Materials: Experiments, Modeling, Simulations, and Applications</i> will also earn a place in the libraries of sensor developers and computational physicists and modelers.
<p>Preface  xix</p> <p>About the Editor  xxvii</p> <p> </p> <p>Part I Spectroscopy and Characterization 1</p> <p><b> </b></p> <p><b>1 Spectroscopic Characterization of Graphitic Nanomaterials and Metal Oxides for Gas Sensing 3</b></p> <p><i>Olasunbo Farinre, Hawazin Alghamdi, and Prabhakar Misra</i></p> <p>1.1 Introduction and Overview  3</p> <p>1.1.1 Graphitic Nanomaterials  3</p> <p>1.1.1.1 Synthesis of Graphitic Nanomaterials  5</p> <p>1.1.2 Metal Oxides  8</p> <p>1.2 Spectroscopic Characterization of Graphitic Nanomaterials and Metal Oxides 9</p> <p>1.2.1 Graphitic Nanomaterials  9</p> <p>1.2.1.1 Characterization of Carbon Nanotubes (CNTs)  10</p> <p>1.2.1.2 Characterization of Graphene and Graphene Nanoplatelets (GnPs)  11</p> <p>1.2.2 Characterization of Tin Dioxide (SnO2)  12</p> <p>1.3 Graphitic Nanomaterials and Metal Oxide-Based Gas Sensors  19</p> <p>1.3.1 Fabrication of Graphitic Nanomaterials-Based Gas Sensors  19</p> <p>1.3.1.1 Carbon Nanotube (CNT)-Based Gas Sensors  19</p> <p>1.3.1.2 Graphene and Graphene Nanoplatelet (GnP)-Based Gas Sensors  20</p> <p>1.3.2 Fabrication of Metal Oxide-Based Gas Sensors  21</p> <p>1.3.2.1 Tin Dioxide (SnO2)-Based Gas Sensors  23</p> <p>1.4 Conclusions and Future Work 24 Acknowledgments 26 References 26</p> <p> </p> <p><b>2 Low-dimensional Carbon Nanomaterials: Synthesis, Properties, and Applications Related to Heat</b> <b>Transfer, Energy Harvesting, and Energy Storage 33</b></p> <p><i>Mahesh Vaka, Tejaswini Rama Bangalore Ramakrishna, Khalid Mohammad, and Rashmi Walvekar</i></p> <p>2.1 Introduction  33</p> <p>2.2 Synthesis and Properties of Low-dimensional Carbon Nanomaterials  35</p> <p>2.2.1 Zero-dimensional Carbon Nanomaterials (0-DCNs)  35</p> <p>2.2.1.1 Fullerene  35</p> <p>2.2.1.2 Carbon-encapsulated Metal Nanoparticles  35</p> <p>2.2.1.3 Nanodiamond  37</p> <p>2.2.2 Onion-like Carbons  38</p> <p>2.2.3 One-dimensional Carbon Nanomaterials  39</p> <p>2.2.3.1 Carbon Nanotube  39</p> <p>2.2.3.2 Carbon Fibers  39</p> <p>2.2.4 Two-dimensional Carbon Nanomaterials  40</p> <p>2.3 Applications  42</p> <p>2.3.1 Hydrogen Storage  42</p> <p>2.3.2 Solar Cells  43</p> <p>2.3.3 Thermal Energy Storage  44</p> <p>2.3.4 Energy Conversion  45</p> <p>2.4 Conclusions  46</p> <p>References  46</p> <p> </p> <p><b>3 Mesoscale Spin Glass Dynamics  55</b></p> <p><i>Samaresh Guchhait</i></p> <p>3.1 Introduction  55</p> <p>3.2 What Is a Spin Glass?  56</p> <p>3.2.1 Spin Glass and Its Correlation Length  57</p> <p>3.2.2 Mesoscale Spin Glass Dynamics  60</p> <p>3.3 Summary 64 Acknowledgments 64 References 64</p> <p> </p> <p><b>4 Raman Spectroscopy Characterization of Mechanical and Structural Properties of Epitaxial Graphene 67</b></p> <p><i>Amira Ben Gouider Trabelsi, Feodor V. Kusmartsev, Anna Kusmartseva, and Fatemah Homoud Alkallas</i></p> <p>4.1 Introduction  67</p> <p>4.2 Epitaxial Graphene Mechanical Properties Investigation  68</p> <p>4.2.1 Optical Location of Epitaxial Graphene Layers  68</p> <p>4.2.2 Raman Location of Mechanical Properties Changes  71</p> <p>4.2.2.1 Graphene 2D Mode  71</p> <p>4.2.2.2 G Mode Investigation  74</p> <p>4.2.2.3 Strain Percentage  76</p> <p> 4.3 Raman Polarization Study  77</p> <p>4.3.1 Size Domain of Graphene Layer  77</p> <p>4.3.2 Polarization Study  78</p> <p>4.4 Conclusions 80 Acknowledgments 80 References 80</p> <p> </p> <p><b>5 Raman Spectroscopy Studies of III–V Type II Superlattices  83</b></p> <p><i>Henan Liu and Yong Zhang</i></p> <p>5.1 Introduction  83</p> <p>5.2 Raman Study on InAs/GaSb SL  84</p> <p>5.2.1 Analysis on (001) Scattering Geometry  85</p> <p>5.2.2 Analysis on (110) Scattering Geometry  86</p> <p>5.3 Raman Study on InAs/InAs1−xSbx SL  90</p> <p>5.3.1 Raman Results for the Constituent Bulks and InAs1−xSbx Alloys  90</p> <p>5.3.2 Analysis on (001) Scattering Geometry for the SLs  93</p> <p>5.3.3 Analysis on (110) Scattering for the SLs  95</p> <p>5.4 A Comparison Among the InAs/InAs1−xSbx, InAs/GaSb, and GaAs/AlAs SLs 97</p> <p>5.5 Conclusion  98</p> <p>References  98</p> <p> </p> <p><b>6 Dissecting the Molecular Properties of Nanoscale Materials Using Nuclear Magnetic Resonance Spectroscopy 101</b></p> <p><i>Nipanshu Agarwal and Krishna Mohan Poluri</i></p> <p>6.1 Introduction to Nanomaterials  101</p> <p>6.2 Techniques Used for Characterization of Nanomaterials  104</p> <p>6.3 Nuclear Magnetic Resonance (NMR) Spectroscopy  105</p> <p>6.3.1 Principle of NMR Spectroscopy  106</p> <p>6.3.2 Various NMR Techniques Used in Nanomaterial Characterization  106</p> <p>6.3.2.1 One-dimensional NMR Spectroscopy  108</p> <p>6.3.2.2 Relaxometry (T1 and T2)  108</p> <p>6.3.2.3 Two-dimensional NMR Spectroscopy  110</p> <p>6.3.3 Advantages and Disadvantages of Using NMR Spectroscopy  114</p> <p>6.4 Applications of NMR in Nanotechnology  115</p> <p>6.4.1 NMR for Characterization of Nanomaterials  115</p> <p>6.4.1.1 Characterization of Gold Nanomaterials by NMR  115</p> <p>6.4.1.2 Characterization of Organic Nanomaterials by NMR  119</p> <p>6.4.1.3 Characterization of Quantum Dots and Nanodiamonds by NMR 120</p> <p>6.4.2 Elucidating the Molecular Characteristics/Interactions of Nanomaterials Using NMR 120</p> <p>6.4.2.1 Characterizing Nanodisks Using Paramagnetic NMR  120</p> <p>6.4.2.2 Characterizing Nanomaterials Using Low Field NMR (LF-NMR) 123</p> <p>6.4.2.3 Analyzing Nanomaterial Interactions Using 2D NMR Techniques  123</p> <p>6.4.3 Characterization of Magnetic Contrast Agents (MR-CAs)  128</p> <p>6.5 Conclusions 132 Acknowledgments 132 References 132</p> <p> </p> <p><b>7 Charge Dynamical Properties of Photoresponsive and Novel Semiconductors Using Time-Resolved Millimeter-Wave Apparatus 149</b></p> <p><i>Biswadev Roy, Branislav Vlahovic, M.H. Wu, and C.R. Jones</i></p> <p>7.1 Introduction  149</p> <p>7.1.1 Why Charge Dynamics for Novel Materials in the Millimeter-Wave Regime? 150</p> <p>7.1.2 Underlying Theory of Operation and Time-Resolved Data: Treatment of Internal Fields in Samples 154</p> <p>7.1.3 Apparatus Design and Instrumentation  156</p> <p>7.1.4 Sensitivity Analysis and Dynamic Range  158</p> <p>7.1.5 Calibration Factor  159</p> <p>7.2 Studies on RF Responses of Materials  162</p> <p>7.2.1 Transmission and Reflection Response for GaAs  162</p> <p>7.2.2 Silicon Response by Resistivity  162</p> <p>7.2.2.1 Charge Carrier Concentration  165</p> <p>7.2.2.2 Millimeter-Wave Probe and Laser Data  166</p> <p>7.2.2.3 TR-mmWC Charge Dynamical Parameter Correlation Table and Sample-Resistivity 168</p> <p>7.2.2.4 Photoconductance (ΔG) Using Calculated Sensitivity  171</p> <p>7.3 CdSxSe1−x Nanowires  174</p> <p>7.3.1 Transmission and Reflection Response Spectra for CdX Nanowire  174</p> <p>7.3.2 Millimeter-Wave Signal Coherence and Decay Response of CdSxSe1−x Nanowire 176</p> <p>7.4 Conclusions  182</p> <p>7.5 Data: CdSxSe1−x TR-mmWC Responses for Various Pump Fluences  182</p> <p>Acknowledgments  183</p> <p>References  183</p> <p> </p> <p><b>8 Metal Nanoclusters  187</b></p> <p><i>Sayani Mukherjee and Sukhendu Mandal</i></p> <p>8.1 Introduction  187</p> <p>8.2 Gold Nanoclusters  189</p> <p>8.2.1 Phosphine-protected Au-NCs  190</p> <p>8.2.2 Thiol-protected Nanoclusters 193</p> <p>8.2.2.1 Brust–Schiffrin Synthesis  193</p> <p>8.2.2.2 Modified Brust–Schiffrin Synthesis  194</p> <p>8.2.2.3 Size-focusing Method  197</p> <p>8.2.2.4 Ligand Exchange-induced Structural Transformation  200</p> <p>8.2.3 Other Ligands as Protecting Agents  202</p> <p>8.3 Mixed Metals Alloy Nanoclusters  202</p> <p>8.4 Conclusion  203</p> <p>8.5 Future Direction 203 Acknowledgment 204 References 204</p> <p> </p> <p>Part II Modeling and Simulation  211</p> <p> </p> <p><b>9 Simulations of Gas Separation by Adsorption  213</b></p> <p><i>Hawazin Alghamdi, Hind Aljaddani, Sidi Maiga, and Silvina Gatica</i></p> <p>9.1 Introduction  213</p> <p>9.2 Simulation Methods  216</p> <p>9.2.1 Molecular Dynamics Simulations  216</p> <p>9.2.2 Monte Carlo Simulations  217</p> <p>9.2.3 Ideal Adsorbed Solution Theory (IAST)  218</p> <p>9.3 Models  220</p> <p>9.3.1 Molecular Models  220</p> <p>9.3.2 Substrate Models  221</p> <p>9.3.3 Validation of the Methods and Force Fields  222</p> <p>9.4 Examples  223</p> <p>9.4.1 GCMC Simulation of CO2/CH4 Binary Mixtures on Nanoporous Carbons 223</p> <p>9.4.2 MD Simulations of CO2/CH4 Binary Mixtures on Graphene Nanoribbons/Graphite 224</p> <p>9.4.3 MD Simulations of H2O/N2 Binary Mixtures on Graphene  228</p> <p>9.4.4 Calculation of the Selectivity of CO2 and CH4 on Graphene Using the IAST 231</p> <p>9.5 Conclusion  236</p> <p>References  236</p> <p>10 Recent Advances in Weyl Semimetal (MnBi2Se4) and Axion Insulator (MnBi2Te4) 239</p> <p>Sugata Chowdhury, Kevin F. Garrity, and Francesca Tavazza</p> <p>10.1 Introduction  239</p> <p>10.2 Discussion  241</p> <p>10.2.1 MBS  242</p> <p>10.2.2 MBT  243</p> <p>10.3 Outlook  252</p> <p>References  253</p> <p> </p> <p>Part III  Applications  261</p> <p> </p> <p><b>11 Chemical Functionalization of Carbon Nanotubes and Applications to Sensors 263</b></p> <p><i>Khurshed Ahmad Shah and Muhammad Shunaid Parvaiz</i></p> <p>11.1 Introduction  263</p> <p>11.2 Properties of Carbon Nanotubes  267</p> <p>11.2.1 Electrical Properties  267</p> <p>11.2.2 Mechanical Properties  269</p> <p>11.2.3 Optical Properties  269</p> <p>11.2.4 Physical Properties  271</p> <p>11.3 Properties of Functionalized Carbon Nanotubes  272</p> <p>11.3.1 Mechanical Properties  272</p> <p>11.3.2 Electrical Properties  272</p> <p>11.4 Types of Chemical Functionalization  273</p> <p>11.4.1 Thermally Activated Chemical Functionalization  273</p> <p>11.4.2 Electrochemical Functionalization  273</p> <p>11.4.3 Photochemical Functionalization  274</p> <p>11.5 Chemical Functionalization Techniques  274</p> <p>11.5.1 Chemical Techniques  274</p> <p>11.5.2 Electrons/Ions Irradiation Techniques  275</p> <p>11.5.3 Specialized Techniques  275</p> <p>11.6 Sensing Applications of Carbon Nanotubes  276</p> <p>11.6.1 Gas Sensors  276</p> <p>11.6.2 Biosensors  277</p> <p>11.6.3 Chemical Sensors  277</p> <p>11.6.4 Electrochemical Sensors  278</p> <p>11.6.5 Temperature Sensors  278</p> <p>11.6.6 Pressure Sensors  278</p> <p>11.7 Advantages and Disadvantages of Carbon Nanotube Sensors  278</p> <p>11.8 Summary  279</p> <p>References  280</p> <p> </p> <p><b>12 Graphene for Breakthroughs in Designing Next-Generation Energy Storage Systems 287</b></p> <p><i>Abhilash Ayyapan Nair, Manoj Muraleedharan Pillai, and Sankaran Jayalekshmi</i></p> <p>12.1 Introduction  287</p> <p>12.2 Li–Ion Cells  289</p> <p>12.2.1 Basic Working Mechanism  289</p> <p>12.2.2 Role of Graphene: Graphene Foam-Based Electrodes for Li–Ion Cells 291</p> <p>12.3 Li–S Cells  294</p> <p>12.3.1 Advantages of Li–S Cells  295</p> <p>12.3.2 Working of Li–S Cells  295</p> <p>12.3.3 Challenges of Li–S Cells  296</p> <p>12.3.4 Graphene-Based Sulfur Cathodes for Li–S Cells  297</p> <p>12.3.5 Graphene Oxide-Based Sulfur Cathodes for Li–S Cells  298</p> <p>12.4 Supercapacitors  299</p> <p>12.4.1 Basic Working Principle  299</p> <p>12.4.2 Graphene-Based Supercapacitor Electrodes  300</p> <p>12.4.3 Graphene/Polymer Composites as Electrodes  303</p> <p>12.4.4 Graphene/Metal Oxide Composite Electrodes  305</p> <p>12.5 Li–Ion Capacitors  306</p> <p>12.5.1 Working Principle  306</p> <p>12.5.2 Graphene/Graphene Composites as Cathode Materials  307</p> <p>12.5.3 Graphene/Graphene Composites as Anode Materials  309</p> <p>12.6 Looking Forward  310</p> <p>References  311</p> <p> </p> <p><b>13 Progress in Nanostructured Perovskite Photovoltaics 317</b></p> <p><i>Sreekanth Jayachandra Varma and Ramakrishnan Jayakrishnan</i></p> <p>13.1 Introduction  317</p> <p>13.2 Nanostructured Perovskites as Efficient Photovoltaic Materials  318</p> <p>13.3 Perovskite Quantum Dots  321</p> <p>13.4 Perovskite Nanowires and Nanopillars  324</p> <p>13.4.1 2D Perovskite Nanostructures  326</p> <p>13.4.2 2D/3D Perovskite Heterostructures  330</p> <p>13.5 Summary  336</p> <p>References  336</p> <p> </p> <p><b>14 Applications of Nanomaterials in Nanomedicine  345</b></p> <p><i>Ayanna N. Woodberry and Francis E. Mensah</i></p> <p>14.1 Introduction  345</p> <p>14.2 Nanomaterials, Definition, and Historical Perspectives 345</p> <p>14.2.1 What Are Nanomaterials?  345</p> <p>14.2.2 Origin and Historical Perspectives  346</p> <p>14.2.3 Synthesis of Nanomaterials  349</p> <p>14.2.3.1 Inorganic Nanoparticles  349</p> <p>14.3 Nanomaterials and Their Use in Nanomedicine  351</p> <p>14.3.1 What Is Nanomedicine?  351</p> <p>14.3.2 The Myth of Small Molecules  351</p> <p>14.3.3 Nanomedicine Drug Delivery Has Implications that Go Beyond Medicine 351</p> <p>14.3.4 Improvement in Function  351</p> <p>14.3.5 Nanomaterials Use in Nanomedicine for Therapy  351</p> <p>14.3.5.1 Progress in Polymer Therapeutics as Nanomedicine  351</p> <p>14.3.5.2 Recent Progress in Polymer: Therapeutics as Nanomedicines  352</p> <p>14.3.5.3 Use of Linkers  354</p> <p>14.3.5.4 Targeting Moiety  354</p> <p>14.3.6 Polymeric Drugs  355</p> <p>14.3.7 Polymeric-Drug Conjugates  355</p> <p>14.3.8 Polymer–Protein Conjugates  356</p> <p>14.4 The Use of Nanomaterials in Global Health for the Treatment of Viral Infections Such As the DNA and the RNA Viruses, Retroviruses, Ebola, and COVID-19 356</p> <p>14.4.1 Nanomaterials in Radiation Therapy  358</p> <p>14.5 Conclusion  359</p> <p>References  359</p> <p> </p> <p><b>15 Application of Carbon Nanomaterials on the Performance of Li-Ion Batteries 361</b></p> <p><i>Quinton L. Williams, Adewale A. Adepoju, Sharah Zaab, Mohamed Doumbia, Yahya Alqahtani, and Victoria Adebayo</i></p> <p>15.1 Introduction  361</p> <p>15.2 Battery Background  362</p> <p>15.2.1 Genesis of the Rechargeable Battery  362</p> <p>15.2.2 Battery Cell Classifications  363</p> <p>15.2.2.1 Primary Batteries – Non-rechargeable Batteries  363</p> <p>15.2.2.2 Secondary Batteries – Rechargeable Batteries  363</p> <p>15.2.3 Comparison of Rechargeable Batteries  363</p> <p>15.2.4 Internal Battery Cell Components  364</p> <p>15.2.4.1 Cathode  365</p> <p>15.2.4.2 Anode  366</p> <p>15.2.4.3 Electrolyte  366</p> <p>15.2.5 Crystal Structure of Active Materials  366</p> <p>15.2.5.1 Layered LiCoO2  367</p> <p>15.2.5.2 Spinel LiM2O4  367</p> <p>15.2.5.3 Olivine LiFePO4  368</p> <p>15.2.5.4 NCM  369</p> <p>15.2.6 Principle of Operation of Li-Ion Batteries  370</p> <p>15.2.7 Battery Terminology  371</p> <p>15.2.7.1 Battery Safety  373</p> <p>15.2.8 A Glimpse into the Future of Battery Technology  374</p> <p>15.3 High C-Rate Performance of LiFePO4/Carbon Nanofibers Composite Cathode for Li-Ion Batteries 375</p> <p>15.3.1 Introduction  375</p> <p>15.3.2 Experimental  375</p> <p>15.3.2.1 Preparation of Composite Cathode  375</p> <p>15.3.2.2 Characterization  376</p> <p>15.3.3 Results and Discussion  376</p> <p>15.3.4 Summary  379</p> <p>15.4 Graphene Nanoplatelet Additives for High C-Rate LiFePO4 Battery Cathodes 380</p> <p>15.4.1 Introduction  380</p> <p>15.4.2 Experimental  381</p> <p>15.4.2.1 Composite Cathode Preparation and Battery Assembly  381</p> <p>15.4.2.2 Characterizations and Electrochemical Measurements  382</p> <p>15.4.3 Results and Discussion  382</p> <p>15.4.4 Summary  386</p> <p>15.5 LiFePO4 Battery Cathodes with PANI/CNF Additive  386</p> <p>15.5.1 Introduction  386</p> <p>15.5.2 Experimental  386</p> <p>15.5.2.1 Preparation of the PANI/CNF Conducting Agent and Coin Cell  387</p> <p>15.5.3 Results and Discussion  387</p> <p>15.5.4 Conclusion  392</p> <p>15.6 Reduced Graphene Oxide – LiFePO4 Composite Cathode for Li-Ion Batteries 393</p> <p>15.6.1 Introduction  393</p> <p>15.6.2 Experimental  394</p> <p>15.6.3 Results and Discussion  394</p> <p>15.6.4 Summary  398</p> <p>15.7 Rate Performance of Carbon Nanofiber Anode for Lithium-Ion Batteries 398</p> <p>15.7.1 Introduction  398</p> <p>15.7.2 Experimental  398</p> <p>15.7.3 Results and Discussion  399</p> <p>15.7.4 Summary  401</p> <p>15.8 NCM Batteries with the Addition of Carbon Nanofibers in the Cathode 402</p> <p>15.8.1 Introduction  402</p> <p>15.8.2 Experimental  403</p> <p>15.8.3 Results and Discussion  403</p> <p>15.8.4 Summary  405</p> <p>15.9 Conclusion 407 Acknowledgments 407 References 408</p> <p> </p> <p>Part IV Space Science  415</p> <p> </p> <p><b>16 Micro-Raman Imaging of Planetary Analogs: Nanoscale Characterization of Past and Current Processes 417</b></p> <p><i>Dina M. Bower, Ryan Jabukek, Marc D. Fries, and Andrew Steele</i></p> <p>16.1 Introduction  417</p> <p>16.2 Relationships Between Minerals  421</p> <p>16.2.1 Minerals in the Solar System  421</p> <p>16.2.2 Minerals as Indicators of Life and Habitability  425</p> <p>16.3 Planetary Analogs  427</p> <p>16.3.1 Modern Terrestrial Analogs  427</p> <p>16.3.2 Ancient Terrestrial Analogs  429</p> <p>16.4 Meteorites and Lunar Rocks  431</p> <p>16.5 Carbon  434</p> <p>16.5.1 Definition and Description of Macromolecular Carbon  434</p> <p>16.5.2 Macromolecular Carbon on the Earth and in Astromaterials  435</p> <p>16.5.3 Macromolecular Carbon in Petrographic Context  437</p> <p>16.6 Conclusion  439</p> <p>References  439</p> <p> </p> <p><b>17 Machine Learning and Nanomaterials for Space Applications 453</b></p> <p><i>Eric Lyness, Victoria Da Poian, and James Mackinnon</i></p> <p>17.1 Introduction to Artificial Intelligence and Machine Learning  453</p> <p>17.1.1 What Do We Mean by Artificial Intelligence and Machine Learning? 454</p> <p>17.1.2 The Field of Data Analysis and Data Science  455</p> <p>17.1.2.1 Data Analysis  455</p> <p>17.1.2.2 Data Science  455</p> <p>17.1.3 Applications in Nanoscience  456</p> <p>17.2 Machine Learning Methods and Tools  457</p> <p>17.2.1 Types of ML  457</p> <p>17.2.1.1 Supervised  457</p> <p>17.2.1.2 Unsupervised  459</p> <p>17.2.1.3 Semi-supervised  460</p> <p>17.2.1.4 Reinforcement Learning  460</p> <p>17.2.2 The Basic Techniques and the Underlying Algorithms  460</p> <p>17.2.2.1 Regression (Linear, Logistic)  460</p> <p>17.2.2.2 Decision Tree  461</p> <p>17.2.2.3 Neural Networks  461</p> <p>17.2.2.4 Expert Systems  463</p> <p>17.2.2.5 Dimensionality Reduction  463</p> <p>17.2.3 Available Tools: Discussion of the Software Available, Both Free and Commercial, and How They Can Be Used by Nonexperts 464</p> <p>17.3 Limitations of AI  464</p> <p>17.3.1 Data Availability  464</p> <p>17.3.1.1 Splitting Your Dataset  464</p> <p>17.3.2 Warnings in Implementation (Overfitting, Cross-validation)  465</p> <p>17.3.3 Computational Power  465</p> <p>17.4 Case Study: Autonomous Machine Learning Applied to Space Applications 466</p> <p>17.4.1 Few Existing AI Applications for Planetary Missions  466</p> <p>17.4.2 MOMA Use-Case Project (Leaning Toward Science Autonomy)  467</p> <p>17.5 Challenges and Approaches to Miniaturized Autonomy  468</p> <p>17.5.1 Computing Requirements of AI/Machine Learning  468</p> <p>17.5.2 Why Is Space Hard?  469</p> <p>17.5.3 Software Approaches for Embedded Hardware  471</p> <p>17.6 Summary: How to Approach AI  473</p> <p>References  474</p> <p>Index  477</p> <p> </p> <p> </p>
<p><b><i>Prabhakar Misra, PhD,</b> is a Professor in the Department of Physics and Astronomy at Howard University in Washington, DC. He has over 30 years of experience researching the detection and spectroscopic characterization of jet-cooled free radicals, ions and stable molecules of relevance to combustion phenomena and plasmas, Raman spectroscopy and Molecular Dynamics simulation of nanomaterials for gas-sensing applications, and other contemporary areas in experimental atomic and molecular physics and condensed matter physics. </i></p>
<p><b>Comprehensive overview of nanomaterial characterization methods and applications from leading researchers in the field </b></p> <p> In <i>Spectroscopy and Characterization of Nanomaterials and Novel Materials: Experiments, Modeling, Simulations, and Applications,</i> the editor Prabhakar Misra and a team of renowned contributors deliver a practical and up-to-date exploration of the characterization and applications of nanomaterials and other novel materials, including quantum materials and metal clusters. The contributions cover spectroscopic characterization methods for obtaining accurate information on optical, electronic, magnetic, and transport properties of nanomaterials. <p>The book reviews nanomaterial characterization methods with proven relevance to academic and industry research and development teams, and modern methods for the computation of nanomaterials’ structure and properties - including machine-learning approaches - are also explored. Readers will also find descriptions of nanomaterial applications in energy research, optoelectronics, and space science, as well as: <ul><li>A thorough introduction to spectroscopy and characterization of graphitic nanomaterials and metal oxides</li> <li>Comprehensive explorations of simulations of gas separation by adsorption and recent advances in Weyl semimetals and axion insulators</li> <li>Practical discussions of the chemical functionalization of carbon nanotubes and applications to sensors</li> <li>In-depth examinations of micro-Raman imaging of planetary analogs</li></ul> <p>Perfect for physicists, materials scientists, analytical chemists, organic and polymer chemists, and electrical engineers, <i>Spectroscopy and Characterization of Nanomaterials and Novel Materials: Experiments, Modeling, Simulations, and Applications</i> will also earn a place in the libraries of sensor developers and computational physicists and modelers.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €