Details

Supramolecular Catalysis


Supramolecular Catalysis

New Directions and Developments
1. Aufl.

von: Piet W.N.M. van Leeuwen, Matthieu Raynal

192,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 22.12.2021
ISBN/EAN: 9783527832026
Sprache: englisch
Anzahl Seiten: 704

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Supramolecular Catalysis</b> <p><b>Provides a timely and detailed overview of the expanding field of supramolecular catalysis </b> <p>The subdiscpline of supramolecular catalysis has expanded in recent years, benefiting from the development of homogeneous catalysis and supramolecular chemistry. Supramolecular catalysis allows chemists to design custom-tailored metal and organic catalysts by devising non-covalent interactions between the various components of the reaction. <p>Edited by two world-renowned researchers, <i>Supramolecular Catalysis: New Directions and Developments</i> summarizes the most significant developments in the dynamic, interdisciplinary field. Contributions from an international panel of more than forty experts address a broad range of topics covering both organic and metal catalysts, including emergent catalysis by self-replicating molecules, switchable catalysis using allosteric effects, supramolecular helical catalysts, and transition metal catalysis in confined spaces. This authoritative and up-to-date volume: <ul><li>Covers ligand-ligand interactions, assembled multi-component catalysts, ligand-substrate interactions, and supramolecular organocatalysis and non-classical interactions</li> <li>Presents recent work on supramolecular catalysis in water, supramolecular allosteric catalysis, and catalysis promoted by discrete cages, capsules, and other confined environments</li> <li>Highlights current research trends and discusses the future of supramolecular catalysis</li> <li>Includes full references and numerous figures, tables, and color illustrations</li></ul> <p><i>Supramolecular Catalysis: New Directions and Developments</i> is essential reading for catalytic chemists, complex chemists, biochemists, polymer chemists, spectroscopists, and chemists working with organometallics.
<p>Preface xix</p> <p>Supramolecular Catalysis: An Introduction xxi</p> <p><b>Part I Ligand–Ligand Interactions 1</b></p> <p><b>1 Supramolecular Construction of Bidentate Ligands Through Self-assembly by Hydrogen Bonding 3<br /> </b><i>Felix Bauer and Bernhard Breit</i></p> <p>1.1 Introduction 3</p> <p>1.2 Formation of Bidentate Ligands Through Self-assembly via Hydrogen Bonding and Application in Hydroformylation 5</p> <p>1.3 Asymmetric Hydrogenation 13</p> <p>1.4 Other Catalytic Applications 17</p> <p>1.5 Concluding Remarks 21</p> <p>References 22</p> <p><b>2 Self-Assembled Bidentate Ligands in Transition Metal Catalysis; From Fundamental Invention to Commercial Application 27<br /> </b><i>Alexander M. Kluwer, Xavier Caumes, and Joost N. H. Reek</i></p> <p>2.1 Introduction 27</p> <p>2.2 Metal–Ligand Interactions, the SUPRAphos Library 28</p> <p>2.3 Supramolecular Bidentate Ligands Based on Hydrogen Bonds, a Toolbox for Evolutionary Catalyst Design 30</p> <p>2.4 Formation of Supramolecular Pincer-Type Complexes 34</p> <p>2.5 From a Supramolecular Bidentate Ligand to a Catalyst with Substrate Pre-organization 36</p> <p>2.6 Outlook 37</p> <p>References 38</p> <p><b>Part II Self-assembled Nanostructures and Multi-component Assemblies 41</b></p> <p><b>3 Assembled Ionic Molecular Catalysts and Ligands 43<br /> </b><i>Kohsuke Ohmatsu, Daisuke Uraguchi, and Takashi Ooi</i></p> <p>3.1 Introduction 43</p> <p>3.2 Concept of Ion-Paired Chiral Ligand 44</p> <p>3.4 Conclusion 51</p> <p>References 51</p> <p><b>4 Self-amplification of Enantioselectivity in Asymmetric Catalysis by Supramolecular Recognition and Stereodynamics 55<br /> </b><i>Oliver Trapp</i></p> <p>4.1 Introduction 55</p> <p>4.2 Design of an Enantioselective Self-amplifying Catalyst Based on Noncovalent Product–Catalyst Interactions 57</p> <p>4.3 The Stereodynamics of the Ligand Core 57</p> <p>4.4 Design of Product–Catalyst Adducts and Catalyst Synthesis 59</p> <p>4.5 Noncovalent Interaction Studies via NMR Spectroscopy 61</p> <p>4.6 Self-amplifying Hydrogenation of 3,5-DNB-ΔAla-OEt 63</p> <p>4.7 Concluding Remarks 64</p> <p>Acknowledgments 64</p> <p>References 64</p> <p><b>5 Interlocked Molecules in Enantioselective Catalysis 69<br /> </b><i>Carel Kwamen and Jochen Niemeyer</i></p> <p>5.1 Introduction 69</p> <p>5.2 Rotaxanes in Enantioselective Catalysis 70</p> <p>5.3 Catenanes in Enantioselective Catalysis 75</p> <p>5.4 Molecular Knots in Enantioselective Catalysis 77</p> <p>5.5 Conclusion 78</p> <p>References 78</p> <p><b>6 Catalytic Supramolecular Gels 81<br /> </b><i>Beatriu Escuder</i></p> <p>6.1 Introduction 81</p> <p>6.2 Catalytic LMWGs 82</p> <p>6.3 LMWGs in Organocatalysis 82</p> <p>6.4 LMWGs in Metallocatalysis 86</p> <p>6.5 Multicomponent Supramolecular Materials Involving Catalytic LMWGs 87</p> <p>6.6 Concluding Remarks 89</p> <p>Acknowledgments 90</p> <p>References 90</p> <p><b>7 Supramolecular Helical Catalysts 93<br /> </b><i>Laurent Bouteiller and Matthieu Raynal</i></p> <p>7.1 Introduction 93</p> <p>7.2 Concept: Induction of Chirality to Metal Centers Connected to Supramolecular Helices 94</p> <p>7.3 Amplification of Chirality in Two-Component Supramolecular Helical Catalysts 97</p> <p>7.4 Amplification of Chirality in Three-Component Helical Catalysts 98</p> <p>7.5 Switchable Asymmetric Catalysis by Reversible Assembly of Helical Catalysts 100</p> <p>7.6 Dual Stereocontrol of an Asymmetric Reaction by Switchable Helical Catalysts 101</p> <p>7.7 Concluding Remarks 103</p> <p>Acknowledgments 104</p> <p>References 104</p> <p><b>8 Self-Assembled Multi-Component Supramolecular Catalysts for Asymmetric Reactions 107<br /> </b><i>Guanghui Ouyang, Jian Jiang, and Minghua Liu</i></p> <p>References 114</p> <p><b>Part III Ligand–Substrate Interactions 117</b></p> <p><b>9 Harnessing Ligand–Substrate Non-covalent Interactions for Control of Site-Selectivity in Transition Metal-Catalyzed C–H Activation and Cross-Coupling 119<br /> </b><i>Robert J. Phipps</i></p> <p>9.1 Introduction 119</p> <p>9.2 C–H Borylation 120</p> <p>9.3 Cross-Coupling 126</p> <p>9.4 Concluding Remarks 128</p> <p>Acknowledgments 129</p> <p>References 129</p> <p><b>10 Supramolecular Interactions in Distal C–H Activation of (Hetero)arenes 133<br /> </b><i>Jyoti P. Biswas and Debabrata Maiti</i></p> <p>10.1 Introduction 133</p> <p>10.2 Distal C–H Activation of Arenes 133</p> <p>10.3 Distal C–H Activation of Heterocycles 137</p> <p>10.4 Conclusion 141</p> <p>Acknowledgments 141</p> <p>References 141</p> <p><b>11 Transition-Metal-Catalyzed, Site- and Enantioselective Oxygen and Nitrogen Transfer Enabled by Lactam Hydrogen Bonds 145<br /> </b><i>Finn Burg and Thorsten Bach</i></p> <p>11.1 Chiral Lactams as Hydrogen Bonding Sites for Enantioselective Catalysis 145</p> <p>11.2 Enantioselective Addition to Olefins 147</p> <p>11.3 Enantioselective C(sp 3)–H Functionalization 150</p> <p>11.4 Enantioselective Oxidation of Sulfur Centers 156</p> <p>11.5 Concluding Remarks 157</p> <p>Acknowledgments 158</p> <p>References 158</p> <p><b>12 Supramolecular Substrate Orientation as Strategy to Control Selectivity in Transition Metal Catalysis 161<br /> </b><i>Joost N.H. Reek and Bas de Bruin</i></p> <p>12.1 Introduction 161</p> <p>12.2 Asymmetric Hydrogenation 161</p> <p>12.3 Substrate Orientation in Hydroformylation Catalysis 164</p> <p>12.4 Substrate Orientation in C—H Borylation 168</p> <p>12.5 Second Coordination Sphere Control in Enantioselective Cobalt-catalyzed Carbene and Nitrene Transfer Reactions 170</p> <p>References 174</p> <p><b>13 Phosphine Ligands with Acylguanidinium Groups as Substrate-directing Unit 179<br /> </b><i>Felix Bauer and Bernhard Breit</i></p> <p>13.1 Introduction 179</p> <p>13.2 Hydroformylation of Alkenoic and Alkynoic Acids 179</p> <p>13.3 Aldehyde Reduction and Tandem Hydroformylation–Hydrogenation 188</p> <p>13.4 Concluding Remarks 197</p> <p>References 198</p> <p><b>14 Chemical Reactions Controlled By Remote Zn···N Interactions Between Substrates and Catalysts 201<br /> </b><i>Jonathan Trouvé and Rafael Gramage-Doria</i></p> <p>14.1 Introduction 201</p> <p>14.2 Organic Reactions 202</p> <p>14.3 Transition Metal Catalysis 204</p> <p>14.4 Conclusion 207</p> <p>Acknowledgments 207</p> <p>References 207</p> <p><b>Part IV Catalysis Promoted by Discrete Cages, Capsules, and other Confined Environments 211</b></p> <p><b>15 Artificial Enzymes Created Through Molecular Imprinting of Cross-Linked Micelles 213<br /> </b><i>Yan Zhao</i></p> <p>15.1 Introduction 213</p> <p>15.2 Surface-Cross-Linked Micelles (SCMs) 213</p> <p>15.3 Molecularly Imprinted Nanoparticles (MINPs) via Double Cross-Linking of Micelles 215</p> <p>15.4 MINP-Based Artificial Esterase 217</p> <p>15.5 MINP-Based Artificial Glycosidase 219</p> <p>15.6 MINP-Based Artificial Enzymes for Asymmetric Catalysis and Tandem Catalysis 223</p> <p>15.7 Concluding Remarks 225</p> <p>Acknowledgments 226</p> <p>References 226</p> <p><b>16 Bioinspired Catalysis Using Innately Polarized Pd 2 L 4 Coordination Cages 229<br /> </b><i>Paul J. Lusby</i></p> <p>16.1 Introduction 229</p> <p>16.2 A Coordination-Cage Host–Guest Method Based on Polar Interactions 229</p> <p>16.3 From Guest Binding to Catalysis; an Artificial “Diels–Alderase” 231</p> <p>16.4 Base-Free Michael Addition Catalysis 235</p> <p>16.5 Turning Cage-Catalysis Inside Out 238</p> <p>16.6 Concluding Remarks 239</p> <p>Acknowledgments 239</p> <p>References 239</p> <p><b>17 Supramolecular Catalysis with a Cubic Coordination Cage: Contributions from Cavity and External-Surface Binding 241<br /> </b><i>ChristopherG.P.TaylorandMichaelD.Ward</i></p> <p>17.1 Introduction: The Host Cage and Its Structure 241</p> <p>17.2 Binding of Organic Guests in the Central Cavity in Water 242</p> <p>17.3 Surface Binding of Anions 244</p> <p>17.4 The Paradigm: Catalysis of the Kemp Elimination 245</p> <p>17.5 Effects of Anion Accumulation Around the Surface: Autocatalysis 247</p> <p>17.6 Catalysis with Noncavity-Bound Guests: Phosphate Ester Hydrolysis and an Aldol Condensation 249</p> <p>17.7 Conclusion 251</p> <p>Acknowledgments 252</p> <p>References 252</p> <p><b>18 Transition Metal Catalysis in Confined Spaces 255<br /> </b><i>Joost N.H. Reek and Sonja Pullen</i></p> <p>18.1 Introduction 255</p> <p>18.2 Template Ligand Strategies for Encapsulation of Transition Metal Catalysts 255</p> <p>18.3 Catalyst Encapsulation Strategies for Solar Fuel-Related Reactions 258</p> <p>18.4 Concluding Remarks and Outlook 268</p> <p>References 268</p> <p><b>19 Catalysis by Metal–Organic Cages: A Computational Perspective 271<br /> </b><i>Giuseppe Sciortino, Gantulga Norjmaa, Jean Didier Maréchal, and Gregori Ujaque</i></p> <p>19.1 Introduction 271</p> <p>19.2 Looking for a Robust Computational Framework to Study MOCs 272</p> <p>19.3 Applications of Modeling to Confined Catalysis 274</p> <p>19.4 Future Directions 281</p> <p>References 281</p> <p><b>20 N-heterocyclic Carbene (NHC)-Capped Cyclodextrins for Cavity-Controlled Catalysis 287<br /> </b><i>Sylvain Roland and Matthieu Sollogoub</i></p> <p>20.1 Introduction: NHC-Capped Cyclodextrin Metal Complexes 287</p> <p>20.2 Orientation of Cyclization Reactions – Five vs. Six-Membered Cycle 289</p> <p>20.3 Control of Regioselectivity 291</p> <p>20.4 Control of Enantioselectivity by the CD Chiral Cavity 293</p> <p>20.5 Substrate Selectivity 296</p> <p>20.6 Protection of Metal Centers and Promotion of Reactive Species 297</p> <p>20.7 Concluding Remarks 299</p> <p>Acknowledgments 299</p> <p>References 299</p> <p><b>21 Supramolecular Catalysis by Metallohosts Based on Glycoluril 303<br /> </b><i>Jeroen P.J. Bruekers, Johannes A.A.W. Elemans, and Roeland J.M. Nolte</i></p> <p>21.1 Introduction 303</p> <p>21.2 Rhodium-Based Catalytic Baskets 304</p> <p>21.3 Copper-Based Catalytic Baskets 306</p> <p>21.4 Porphyrin Cage Catalysts 307</p> <p>21.4.1 Epoxidation of Low-Molecular-Weight Alkenes 307</p> <p>21.4.2 Epoxidation of Polymeric Alkenes 311</p> <p>21.4.3 Carbenoid Transfer Reactions with α-Diazoesters 315</p> <p>21.5 Outlook 316</p> <p>Acknowledgments 317</p> <p>References 317</p> <p><b>22 Catalysis Inside the Hexameric Resorcinarene Capsule: Toward Addressing Current Challenges in Synthetic Organic Chemistry 321<br /> </b><i>Leonidas-Dimitrios Syntrivanis and Konrad Tiefenbacher</i></p> <p>22.1 Introduction 321</p> <p>22.2 Background 321</p> <p>22.3 Application to Terpene Cyclization 323</p> <p>22.4 Elucidating the Prerequisites for Catalytic Activity Inside the Resorcinarene Capsule 328</p> <p>22.5 Further Applications of Capsule I as Catalyst 329</p> <p>22.6 Concluding Remarks 330</p> <p>Acknowledgments 331</p> <p>References 331</p> <p><b>23 Supramolecular Organocatalysis Within the Nanospace of Resorcinarene Capsule 335<br /> </b><i>Carmine Gaeta, Carmen Talotta, Margherita De Rosa, Annunziata Soriente, Antonio Rescifina, and Placido Neri</i></p> <p>23.1 Introduction 335</p> <p>23.2 The Hexameric Resorcinarene Capsule 337</p> <p>23.3 The Hexameric Capsule as H-bonding Organocatalyst 338</p> <p>23.4 The Hexameric Capsule as Brønsted Acid Organocatalyst 339</p> <p>23.5 Iminium Catalysis with a Coencapsulated Cocatalyst 341</p> <p>23.6 Halogen-bond (XB) Catalysis with a Coencapsulated Cocatalyst 343</p> <p>23.7 Concluding Remarks 343</p> <p>Acknowledgment 344</p> <p>References 344</p> <p><b>24 Resorcin[4]arene Hexamer: From Nanocontainer to Nanocatalyst 347<br /> </b><i>Giorgio Strukul, Fabrizio Fabris, and Alessandro Scarso</i></p> <p>24.1 Introduction 347</p> <p>24.2 Resorcinarene Capsule as Nanoreactor 348</p> <p>24.3 Resorcin[4]arene Capsule as Nanocatalyst 352</p> <p>24.4 Concluding Remarks 357</p> <p>Acknowledgments 358</p> <p>References 358</p> <p><b>Part V Supramolecular Organocatalysis and Non-classical Interactions 361</b></p> <p><b>25 The Aryl-Pyrrolidine-tert-Leucine Motif as a New Privileged Chiral Scaffold: The Role of Noncovalent Stabilizing Interactions 363<br /> </b><i>Daniel A. Strassfeld and Eric N. Jacobsen</i></p> <p>25.1 Introduction 363</p> <p>25.2 Foundational Studies 364</p> <p>25.3 Development of the Aryl-Pyrrolidino-tert-Leucine Catalyst Motif 366</p> <p>25.4 Scope of Enantioselective Reactions and Mechanisms Promoted Effectively by Aryl-Pyrrolidine-tert-Leucine HBD Catalysts 368</p> <p>25.5 Mechanisms of Enantioinduction by Aryl-Pyrrolidinetert-Leucino-H-Bond-Donor Catalysts: Case Studies 374</p> <p>25.6 Concluding Remarks 380</p> <p>Acknowledgments 381</p> <p>References 382</p> <p><b>26 Chiral Triazole Foldamers in Enantioselective Anion-Binding Catalysis 387<br /> </b><i>Alica C. Keuper and Olga García Mancheño</i></p> <p>26.1 Introduction 387</p> <p>26.2 Triazoles as Anion Receptors 387</p> <p>26.3 Design of Foldamer Triazoles as Hydrogen Bond Donors for Anion-Binding Catalysis 388</p> <p>26.4 Anion-Binding-Catalyzed Enantioselective Reissert-Type Reaction with Silylketene Acetals 389</p> <p>26.5 Reaction with Different Nucleophiles 391</p> <p>26.6 Nucleophilic Dearomatization of Pyrylium Derivatives 392</p> <p>26.7 Folding and Cooperative Multi-Recognition Mechanism 393</p> <p>26.8 Design of Catalytic Transformations Based on Anion-Template Strategies 394</p> <p>26.9 Concluding Remarks 395</p> <p>Acknowledgments 396</p> <p>References 396</p> <p><b>27 Supramolecular Catalysis via Organic Solids: Templates to Mechanochemistry to Cascades 401<br /> </b><i>Shweta P. Yelgaonkar and Leonard R. MacGillivray</i></p> <p>27.1 Template Approach for [2+2] Photocycloadditions 401</p> <p>27.2 State of Mechanochemistry 402</p> <p>27.3 Organic Catalysis and Mechanochemistry 403</p> <p>27.4 Cascade Reactions and Mechanochemistry 407</p> <p>27.5 Concluding Remarks 409</p> <p>Acknowledgments 409</p> <p>References 409</p> <p><b>28 Exploration of Halogen Bonding for the Catalysis of Organic Reactions 413<br /> </b><i>Revannath L. Sutar and Stefan M. Huber</i></p> <p>28.1 Introduction 413</p> <p>28.2 Halide Abstraction Reactions 415</p> <p>28.3 Activation of Organic Functional Groups 418</p> <p>28.4 Activation of a Metal–Halogen Bond 421</p> <p>28.5 Conclusion 421</p> <p>References 422</p> <p><b>29 Chalcogen-Bonding Catalysis 427<br /> </b><i>Wei Wang and Yao Wang</i></p> <p>29.1 Introduction 427</p> <p>29.2 Challenges in Chalcogen-Bonding Catalysis 428</p> <p>29.3 Discovery of Efficient Chalcogen-Bonding Catalysts 428</p> <p>29.4 Chalcogen–Chalcogen Bonding Catalysis 431</p> <p>29.5 Dual Chalcogen–Chalcogen Bonding Catalysis 433</p> <p>29.6 Conclusion Remarks 436</p> <p>Acknowledgments 437</p> <p>References 437</p> <p><b>30 Asymmetric Supramolecular Organocatalysis: The Fourth Pillar of Catalysis 441<br /> </b><i>Kengadarane Anebouselvy, Kodambahalli S. Shruthi, and Dhevalapally B. Ramachary</i></p> <p>30.1 Introduction 441</p> <p>30.2 Asymmetric Michael Additions 442</p> <p>30.3 Concluding Remarks 448</p> <p>Acknowledgments 448</p> <p>References 448</p> <p><b>Part VI Supramolecular Catalysis in Water 451</b></p> <p><b>31 Metal Catalysis in Micellar Media 453<br /> </b><i>Giorgio Strukul, Fabrizio Fabris, and Alessandro Scarso</i></p> <p>31.1 Introduction 453</p> <p>31.2 Oxidation Reactions 454</p> <p>31.3 C—C and C—X Bond Forming Reactions 457</p> <p>31.4 Metal Nanoparticles in Micellar Media 461</p> <p>31.5 Catalyst Surfactant Interactions 463</p> <p>Acknowledgments 465</p> <p>References 465</p> <p><b>32 Surfactant Assemblies as Nanoreactors for Organic Transformations 467<br /> </b><i>Margery Cortes-Clerget, Joseph R.A. Kincaid, Nnamdi Akporji, and Bruce H. Lipshutz</i></p> <p>32.1 Introduction 467</p> <p>32.2 Micellar Catalysis: Concepts 468</p> <p>32.3 Ligand Design 471</p> <p>32.4 The “Nano-to-Nano” Effect 475</p> <p>32.5 Reservoir Effect 476</p> <p>32.6 Access to Opportunities for Telescoping Sequences 478</p> <p>32.7 Industrial Applications 481</p> <p>32.8 Conclusions 483</p> <p>References 484</p> <p><b>33 Compartmentalized Polymers for Catalysis in Aqueous Media 489<br /> </b><i>Fabian Eisenreich and Anja R.A. Palmans</i></p> <p>33.1 Introduction 489</p> <p>33.2 Folding a Polymer Chain in Water into a Compact Structure 491</p> <p>33.3 Polymer-Supported Ru(II) Catalysis in Water 495</p> <p>33.4 Polymer-Supported Cu(I) and Pd(II) Catalysis in Water 496</p> <p>33.5 Polymer-Supported Organocatalysis in Water 498</p> <p>33.6 Polymer-Supported Photocatalysis in Water 500</p> <p>33.7 Outlook and Conclusions 501</p> <p>Acknowledgments 502</p> <p>References 502</p> <p><b>34 Phosphines Modified by Cyclodextrins for Supramolecular Catalysis in Water 507<br /> </b><i>Sébastien Tilloy and Eric Monflier</i></p> <p>34.1 Introduction 507</p> <p>34.2 Synthesis and Properties of CD-Phosphine 1 (CD-P-1) 508</p> <p>34.3 Synthesis and Properties of CD-Phosphine 2 (CD-P-2) 510</p> <p>34.4 Synthesis and Properties of CD-Phosphine 3 (CD-P-3) 512</p> <p>34.5 Synthesis and Properties of CD-Phosphine 4 (CD-P-4) 513</p> <p>34.6 Concluding Remarks 514</p> <p>References 515</p> <p><b>35 Water-Soluble Yoctoliter Reaction Flasks 519<br /> </b><i>Yahya A. Ismaiel and Bruce C. Gibb</i></p> <p>35.1 Introduction 519</p> <p>35.2 Deep-Cavity Cavitands 520</p> <p>35.3 The Thermodynamic and Kinetic Features of the Capsular Complexes 520</p> <p>35.4 Assembly State of OA 1 and TEMOA 2 and Guest Packing Motifs Within 521</p> <p>35.5 Photochemistry 523</p> <p>35.6 Thermal Reactions 528</p> <p>35.7 Summary and Conclusions 533</p> <p>Acknowledgments 533</p> <p>References 533</p> <p><b>36 Chemical Catalyst-Promoted Regioselective Histone Acylation 537<br /> </b><i>Yuki Yamanashi and Motomu Kanai</i></p> <p>36.1 Introduction 537</p> <p>36.2 Chemical Catalyst-Mediated Synthetic Epigenetics 537</p> <p>36.3 Supramolecular Catalyst Strategy for Protein Modification 538</p> <p>36.4 Supramolecular Catalyst Strategy for Histone Acetylation In Vitro 538</p> <p>36.5 Catalyst-Promoted Selective Acylation Targeting Proteins in Living Cells 540</p> <p>36.6 Chemical Catalyst-Promoted Regioselective Histone Acylation in Living Cells 543</p> <p>36.7 Concluding Remarks 544</p> <p>References 544</p> <p><b>37 Protein–Substrate Supramolecular Interactions for the Shape-Selective Hydroformylation of Long-Chain α-Olefins 547</b><br /> <i>Peter J. Deuss and Amanda G. Jarvis</i></p> <p>37.1 Introduction 547</p> <p>37.2 Design of Protein Templates for Shape-Selective ArMs 551</p> <p>37.3 Introduction of a Metal–Ligand Environment into SCP-2L 552</p> <p>37.4 SCP-2L as a Catalytic Scaffold 553</p> <p>37.5 Phosphine Modification of Proteins 554</p> <p>37.6 Application in Biphasic Hydroformylation 555</p> <p>37.7 Structural Studies on the Rhodium Hydroformylases 557</p> <p>37.8 Concluding Remarks 558</p> <p>Acknowledgments 558</p> <p>References 559</p> <p><b>38 Supramolecular Assembly of DNA- and Protein-Based Artificial Metalloenzymes 561<br /> </b><i>Gerard Roelfes</i></p> <p>38.1 Introduction 561</p> <p>38.2 DNA-Based Artificial Metalloenzymes 562</p> <p>38.3 Protein-Based Artificial Metalloenzymes 564</p> <p>38.4 Synergistic Catalysis with Artificial Metalloenzymes 567</p> <p>38.5 In Vivo Assembly and Application of LmrR-Based Artificial Metalloenzymes 568</p> <p>38.6 Conclusions 569</p> <p>References 569</p> <p><b>Part VII Supramolecular Allosteric Catalysts and Replicators 573</b></p> <p><b>39 Switchable Catalysis Using Allosteric Effects 575<br /> </b><i>Michael Schmittel</i></p> <p>39.1 Introduction 575</p> <p>39.2 Allosteric Regulation at Zinc Porphyrin Stations by Catalyst Release 576</p> <p>39.3 Allosteric Regulation of Catalysis at Copper(I) Sites 580</p> <p>39.4 Dynamic Allosteric Regulation of Catalysis 583</p> <p>39.5 The Future: From Allosteric Regulation of Catalysis in a Network to Smart and Autonomous Mixtures 585</p> <p>39.6 Concluding Remarks 586</p> <p>Acknowledgments 586</p> <p>References 587</p> <p><b>40 Supramolecularly Regulated Enantioselective Catalysts 591<br /> </b><i>Anton Vidal-Ferran</i></p> <p>40.1 Introduction 591</p> <p>40.2 Seminal Work 592</p> <p>40.3 Supramolecular Regulation of a Preformed Enantioselective Catalyst 593</p> <p>40.4 Supramolecular Regulation of a Prochiral Ligand or Catalyst 597</p> <p>40.5 Concluding Remarks 600</p> <p>Acknowledgments 601</p> <p>References 601</p> <p><b>41 Emergent Catalysis by Self-Replicating Molecules 605<br /> </b><i>Kai Liu, Jim Ottelé, and Sijbren Otto</i></p> <p>41.1 Introduction 605</p> <p>41.2 Implementation of Organocatalysis in Self-Replicating Systems 607</p> <p>41.3 The Implementation of Photocatalysis in Self-Replicating Systems 610</p> <p>41.4 Conclusions and Outlook 612</p> <p>References 612</p> <p>Index 615</p>
<p><b><i> Piet W.N.M. van Leeuwen</b> worked at the Koninklijke Shell Laboratorium Amsterdam (1968–1994) heading the homogeneous catalysis group, he is emeritus professor of homogeneous catalysis of the University of Amsterdam (1989–2007) and the Eindhoven University of Technology (2001–2006), the Netherlands, he was Group leader in ICIQ, Tarragona, Spain (2004–2015), and had an IDEX Chair at LPCNO in INSA-Toulouse, France (2015–2020).</i></p> <p><b><i> Matthieu Raynal</b> is a researcher at Sorbonne Université, Paris, France. His current research focuses on the development of supramolecular helical catalysts, the design of functional chiral assemblies, and the structure-property relationship of supramolecular polymers. </i>
<p><b>Provides a timely and detailed overview of the expanding field of supramolecular catalysis </b></p> <p>The subdiscpline of supramolecular catalysis has expanded in recent years, benefiting from the development of homogeneous catalysis and supramolecular chemistry. Supramolecular catalysis allows chemists to design custom-tailored metal and organic catalysts by devising non-covalent interactions between the various components of the reaction. <p>Edited by two world-renowned researchers, <i>Supramolecular Catalysis: New Directions and Developments</i> summarizes the most significant developments in the dynamic, interdisciplinary field. Contributions from an international panel of more than forty experts address a broad range of topics covering both organic and metal catalysts, including emergent catalysis by self-replicating molecules, switchable catalysis using allosteric effects, supramolecular helical catalysts, and transition metal catalysis in confined spaces. This authoritative and up-to-date volume: <ul><li>Covers ligand-ligand interactions, assembled multi-component catalysts, ligand-substrate interactions, and supramolecular organocatalysis and non-classical interactions</li> <li>Presents recent work on supramolecular catalysis in water, supramolecular allosteric catalysis, and catalysis promoted by discrete cages, capsules, and other confined environments</li> <li>Highlights current research trends and discusses the future of supramolecular catalysis</li> <li>Includes full references and numerous figures, tables, and color illustrations</li></ul> <p><i>Supramolecular Catalysis: New Directions and Developments</i> is essential reading for catalytic chemists, complex chemists, biochemists, polymer chemists, spectroscopists, and chemists working with organometallics.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €