Details

Carrier-bound Immobilized Enzymes


Carrier-bound Immobilized Enzymes

Principles, Application and Design
1. Aufl.

von: Linqiu Cao, Rolf D. Schmid

270,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 12.05.2006
ISBN/EAN: 9783527607082
Sprache: englisch
Anzahl Seiten: 578

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Carrier-bound Immobilized Enzymes</b> <p>The first systematic overview of this key technique since the early 1990s, this authoritative reference is the only handbook available to include all recent developments. The author draws on his wide-ranging experience in both academia and industry to systematically cover all types of enzyme immobilization methods, including such novel techniques as site-specific immobilization, imprinting and immobilization in organic solvents. <p>From the contents: <ul><li>Introduction to Immobilized Enzymes</li> <li>Adsorption-based Immobilization</li> <li>Covalent Enzyme Immobilization</li> <li>Enzyme Entrapment</li> <li>Enzyme Encapsulation</li> <li>Unconventional Enzyme Immobilization</li></ul> <p>Throughout, a careful review of materials and techniques for the preparation of functional immobilized enzymes that benefits both developers and users of carrier-bound enzymes. Essential reading for biotechnologists, chemists and food scientists using enzymes in their daily work.
<p>Foreword v</p> <p><b>1 Introduction: Immobilized Enzymes: Past, Present and Prospects 1</b></p> <p>1.1 Introduction 1</p> <p>1.2 The Past 4</p> <p>1.2.1 The Early Days (1916–1940s) 5</p> <p>1.2.2 The Underdeveloped Phase (1950s) 5</p> <p>1.2.3 The Developing Phase (1960s) 7</p> <p>1.2.4 The Developed Phase (1970s) 9</p> <p>1.2.5 The Post-developed Phase (1980s) 14</p> <p>1.2.6 Rational Design of Immobilized Enzymes (1990s–date) 16</p> <p>1.3 Immobilized Enzymes: Implications from the Past 20</p> <p>1.3.1 Methods of Immobilization 20</p> <p>1.3.2 Diversity versus Versatility 21</p> <p>1.3.3 Complimentary versus Alternative 23</p> <p>1.3.4 Modification versus Immobilization 25</p> <p>1.3.4.1 Enhanced Stability 25</p> <p>1.3.4.2 Enhanced Activity 26</p> <p>1.3.4.3 Improved Selectivity 29</p> <p>1.4 Prospective and Future Development 34</p> <p>1.4.1 The Room for Further Development 34</p> <p>1.4.2 An Integration Approach 36</p> <p>1.5 References 37</p> <p><b>2 Adsorption-based Immobilization 53</b></p> <p>2.1 Introduction 53</p> <p>2.2 Classification of Adsorption 54</p> <p>2.3 Principles Involved in Absorptive Enzyme Immobilization 55</p> <p>2.3.1 Monolayer Principle 56</p> <p>2.3.2 Stabilization Principle 57</p> <p>2.3.3 Enzyme Distribution 60</p> <p>2.4 Requirement of the Carriers 61</p> <p>2.4.1 Physical Requirements 61</p> <p>2.4.1.1 Pore-size and Available Surface 61</p> <p>2.4.1.2 Internal Structure 63</p> <p>2.4.1.3 Density of Binding Functionality 63</p> <p>2.4.1.4 Particle Size 64</p> <p>2.4.2 Chemical Nature of the Carriers 65</p> <p>2.4.2.1 Nature of Binding Functionality 65</p> <p>2.4.2.2 The Role of the Spacer 66</p> <p>2.4.2.3 The Nature of the Backbone 66</p> <p>2.5 Factors Which Dictate Enzyme Catalytic Performance 67</p> <p>2.5.1 Activity 67</p> <p>2.5.1.1 Diffusion-controlled Activity 67</p> <p>2.5.1.2 Conformation-controlled Activity 68</p> <p>2.5.1.3 Substrate-controlled Activity 70</p> <p>2.5.1.4 Loading-controlled Activity 70</p> <p>2.5.1.5 Medium-dependent Activity 72</p> <p>2.5.1.6 Microenvironment-dependent Activity 73</p> <p>2.5.1.7 Carrier Nature-dependent Activity 74</p> <p>2.5.1.8 Enzyme Nature-dependent Activity 75</p> <p>2.5.1.9 Additive-dependent Activity 75</p> <p>2.5.1.10 Hydrophilicity-dependent Activity 76</p> <p>2.5.1.11 Orientation-determined Activity 78</p> <p>2.5.1.12 Binding Nature-controlled Enzyme Activity 78</p> <p>2.5.1.13 Binding Density-controlled Enzyme Activity 80</p> <p>2.5.1.14 Reactor-dependent Activity 81</p> <p>2.5.1.15 Pore-size-dependent Activity 82</p> <p>2.5.1.16 Water-activity-dependent Activity 82</p> <p>2.5.2 Stability 83</p> <p>2.5.2.1 Conformation-controlled Stability 84</p> <p>2.5.2.2 Confinement-controlled Stability 85</p> <p>2.5.2.3 Enzyme Loading-dependent Stability 85</p> <p>2.5.2.4 Diffusion-controlled Stability 86</p> <p>2.5.2.5 Cross-linking-dependent Stability 86</p> <p>2.5.2.6 Carrier Nature-controlled Stability 86</p> <p>2.5.2.7 Aquaphilicity-controlled Stability 87</p> <p>2.5.2.8 Medium-controlled Stability 88</p> <p>2.5.2.9 Temperature-dependent Stability 88</p> <p>2.5.2.10 Microenvironment-controlled Stability 89</p> <p>2.5.2.11 Binding Nature-controlled Enzyme Stability 90</p> <p>2.5.2.12 Binding Density-controlled Enzyme Stability 91</p> <p>2.5.2.13 Additive-dependent Stability 91</p> <p>2.5.2.14 Enzyme Orientation-dependent Stability 91</p> <p>2.5.2.15 Enzyme-dependent Stability 91</p> <p>2.5.3 Selectivity 92</p> <p>2.5.3.1 Conformation-controlled Selectivity 93</p> <p>2.5.3.2 Diffusion-controlled Selectivity 94</p> <p>2.5.3.3 Binding Functionality-controlled Selectivity 94</p> <p>2.5.3.4 Additive-controlled Selectivity 95</p> <p>2.5.3.5 Orientation-controlled Selectivity 96</p> <p>2.5.3.6 Medium-controlled Enantioselectivity 96</p> <p>2.5.3.7 Water Activity-controlled Enantioselectivity 97</p> <p>2.6 Preparation of Immobilized Enzymes by Adsorption 97</p> <p>2.6.1 Conventional Adsorption 97</p> <p>2.6.1.1 Non-specific Physical Adsorption 99</p> <p>2.6.1.2 Ionic Adsorption 100</p> <p>2.6.1.3 Hydrophobic Adsorption 108</p> <p>2.6.1.4 Biospecific Adsorption 113</p> <p>2.6.1.5 Affinity Adsorption 116</p> <p>2.6.2 Unconventional Adsorption 121</p> <p>2.6.2.1 Immobilization via Reversible Denaturation 123</p> <p>2.6.2.2 Pseudo-covalent Immobilization 123</p> <p>2.6.2.3 Mediated Adsorption 124</p> <p>2.6.3 Adsorption-based Double Immobilization 128</p> <p>2.6.3.1 Modification–Adsorption 128</p> <p>2.6.3.2 Adsorption and Entrapment 131</p> <p>2.6.3.3 Adsorption–Cross-linking 134</p> <p>2.6.3.4 Adsorption–Covalent Attachment 142</p> <p>2.7 References 145</p> <p><b>3 Covalent Enzyme Immobilization 169</b></p> <p>3.1 Introduction 169</p> <p>3.2 Physical Nature of Carriers 171</p> <p>3.2.1 The Surface of the Carriers 172</p> <p>3.2.1.1 Internal and External Surface 173</p> <p>3.2.1.2 Accessible Surface/Efficient Surface 173</p> <p>3.2.1.3 A Theoretical Simulation 175</p> <p>3.2.2 Density of Binding Sites 176</p> <p>3.2.3 Pore Related Properties 177</p> <p>3.2.3.1 The Porosity 177</p> <p>3.2.3.2 Pore Size and Distribution 178</p> <p>3.2.4 Particle Size 180</p> <p>3.2.5 Shape of the Carriers 182</p> <p>3.3 Chemical Nature of Carriers 183</p> <p>3.3.1 Carrier-bound Active Groups (CAG) 185</p> <p>3.3.2 Carrier-bound Inert Groups (CIG) 187</p> <p>3.3.3 Spacer-Arm 188</p> <p>3.4 Enzyme: Amino Acid Residues for Covalent Binding 190</p> <p>3.4.1 Reactivity of Amino Acid Residues (AAR) 191</p> <p>3.4.2 Position of Active Amino Acids 192</p> <p>3.5 Factors Affecting Enzyme Performance 193</p> <p>3.5.1 Activity Retention 194</p> <p>3.5.1.1 Pore-size-dependent Activity 194</p> <p>3.5.1.2 CAG-controlled Activity 196</p> <p>3.5.1.3 CIG-controlled Retention of Activity 200</p> <p>3.5.1.4 Spacer-controlled Activity 205</p> <p>3.5.1.5 Enzyme Orientation-controlled Activity 210</p> <p>3.5.1.6 Binding Density-controlled Activity 210</p> <p>3.5.1.7 Diffusion-controlled Enzyme Activity 211</p> <p>3.5.1.8 Reactive Amino Acid Residues (RAAR)-controlled Activity 212</p> <p>3.5.1.9 Loading-dependent Activity 213</p> <p>3.5.1.10 Other Factors Controlling Activity 213</p> <p>3.5.2 Stability of Immobilized Enzymes 214</p> <p>3.5.2.1 Multipoint Attachment/binding density 215</p> <p>3.5.2.2 CAG-controlled Stability 217</p> <p>3.5.2.3 CIG-controlled Enzyme Stability 221</p> <p>3.5.2.4 Spacer-dependent Stability 224</p> <p>3.5.2.5 Molecular Confinement-controlled Stability 225</p> <p>3.5.2.6 Microenvironment-controlled Stability 227</p> <p>3.5.3 Selectivity of Immobilized Enzymes 228</p> <p>3.5.3.1 CAG-controlled Selectivity 228</p> <p>3.5.3.2 CIG-controlled Selectivity 230</p> <p>3.5.3.3 Spacer-controlled Enzyme Selectivity 232</p> <p>3.5.3.4 Diffusion-controlled Selectivity 233</p> <p>3.5.3.5 Aquaphilicity-controlled Selectivity 233</p> <p>3.5.3.6 Conformation-controlled Enantioselectivity 233</p> <p>3.5.3.7 Selectivity and Particle Size 234</p> <p>3.6 Preparation of Active Carriers 235</p> <p>3.6.1 Synthetic Active Carriers 237</p> <p>3.6.1.1 Polymers Bearing Acyl Azide 237</p> <p>3.6.1.2 Polymers Bearing Anhydrides 238</p> <p>3.6.1.3 Polymers Bearing Halogen Atoms 240</p> <p>3.6.1.4 Oxirane Functional Polymers 241</p> <p>3.6.1.5 Isocyanate/Thioisocyante Functional Polymers 244</p> <p>3.6.1.6 Polycarbonate 245</p> <p>3.6.1.7 Activated Carbonyl Polymers 247</p> <p>3.6.1.8 Polyphenolic Polymers 248</p> <p>3.6.1.9 Polymeric Carriers Bearing Aldehyde Groups 249</p> <p>3.6.1.10 Polymers Bearing Activated Ester 251</p> <p>3.6.1.11 Polymers Bearing Active Azalactone 252</p> <p>3.6.2 Inactive Pre-carriers 253</p> <p>3.6.2.1 Hydroxyl Functionality 253</p> <p>3.6.2.2 Polyacrylamide 254</p> <p>3.6.2.3 Insoluble Polyacrylic Acid or Derivatives 255</p> <p>3.6.2.4 Polymers Bearing Nitrile Groups 257</p> <p>3.6.2.5 Semi-synthetic Polysaccharides 258</p> <p>3.6.2.6 Synthetic Polypeptide 259</p> <p>3.6.2.7 Polymers Bearing Amino Groups 260</p> <p>3.6.3 Interconversion of Inert Carriers 260</p> <p>3.6.3.1 Polymers Containing Hydroxyl Groups 261</p> <p>3.6.3.2 Activation of Separate Hydroxyl Groups 268</p> <p>3.6.3.3 Polymers Containing Carboxylic or Ester Groups 272</p> <p>3.6.3.4 Polymers Containing Amino Groups 277</p> <p>3.6.3.5 Polymers Containing Amide Groups 283</p> <p>3.6.3.6 Polymers Containing Nitrile Groups 286</p> <p>3.6.3.7 Polymers Bearing Isonitrile Functional Groups 287</p> <p>3.6.4 Interconversion of Active Functionality 288</p> <p>3.6.4.1 Converting Epoxy Groups 289</p> <p>3.6.4.2 Converting Anhydride to New Functionality 290</p> <p>3.6.4.3 Aldehyde 292</p> <p>3.7 References 293</p> <p><b>4 Enzyme Entrapment 317</b></p> <p>4.1 Introduction 317</p> <p>4.2 Definition of Entrapment 319</p> <p>4.3 Requirement of the Carriers 321</p> <p>4.3.1 Physical Requirements 321</p> <p>4.3.1.1 Pore Size 321</p> <p>4.3.1.2 Porosity 322</p> <p>4.3.1.3 Geometry 322</p> <p>4.3.1.4 Particle Size 323</p> <p>4.3.2 Chemical Requirements 323</p> <p>4.3.2.1 Nature of the Active Functionality 323</p> <p>4.3.2.2 Aquaphilicity of the Carriers 324</p> <p>4.4 Effect of Entrapment 324</p> <p>4.4.1 Activity of the Entrapped Enzyme 324</p> <p>4.4.1.1 Loading-dependent Activity 325</p> <p>4.4.1.2 Matrix-dependent Activity 325</p> <p>4.4.1.3 Diffusion-controlled Enzyme Activity 326</p> <p>4.4.1.4 Conformation-controlled Enzyme Activity 327</p> <p>4.4.1.5 Additives-controlled Enzyme Activity 328</p> <p>4.4.2 Stability 328</p> <p>4.4.2.1 Confinement-determined Stability 329</p> <p>4.4.2.2 Matrix-nature-dependent Stability 329</p> <p>4.4.2.3 Enzyme-dependent Stability 330</p> <p>4.4.2.4 Enzyme Structure-dependent Stability 331</p> <p>4.4.3 Selectivity 331</p> <p>4.4.3.1 Microenvironment-dependent Selectivity 331</p> <p>4.4.3.2 Conformation-dependent Selectivity 332</p> <p>4.4.3.3 Carrier Nature-dependent Selectivity 333</p> <p>4.5 Preparation of Various Entrapped Enzymes 333</p> <p>4.5.1 Conventional Entrapment Process 334</p> <p>4.5.1.1 Formation of Entrapment Matrix by Chemical Cross-linking 334</p> <p>4.5.1.2 Physical Entrapment 342</p> <p>4.5.1.3 Covalent Entrapment 351</p> <p>4.5.1.4 Sol–Gel Process 356</p> <p>4.5.2 Non-conventional Entrapment 362</p> <p>4.5.2.1 Post-loading Entrapment (PLE) 362</p> <p>4.5.2.2 Entrapment-based Double-immobilization Technique 364</p> <p>4.5.2.3 Modification and Entrapment 368</p> <p>4.5.2.4 Supported Entrapment 371</p> <p>4.6 References 379</p> <p><b>5 Enzyme Encapsulation 397</b></p> <p>5.1 Introduction 397</p> <p>5.1.1 General Considerations 398</p> <p>5.1.2 An Historical Overview 398</p> <p>5.1.3 Pros and Cons of Micro-encapsulation 399</p> <p>5.2 Classification of Encapsulation 399</p> <p>5.2.1 Conventional Encapsulation 399</p> <p>5.2.1.1 Encapsulation by an Interfacial Process 400</p> <p>5.2.1.2 Encapsulation by Phase Inversion 401</p> <p>5.2.2 Non-conventional Encapsulation 401</p> <p>5.2.2.1 Encapsulation in Liquid Membrane 401</p> <p>5.2.2.2 Encapsulation–Reticulation 401</p> <p>5.2.3 Double Immobilization Based on Encapsulation 402</p> <p>5.2.3.1 Encapsulation–Cross-linking 402</p> <p>5.2.3.2 Encapsulation and Coating 402</p> <p>5.2.3.3 Entrapment and Coating 403</p> <p>5.2.3.4 Immobilization and Encapsulation 403</p> <p>5.2.4 Post-loading Encapsulation 404</p> <p>5.2.4.1 Encapsulation in Non-swellable Microcapsules 405</p> <p>5.2.4.2 Encapsulation in Soft Microcapsules 405</p> <p>5.3 Effect of Encapsulation 406</p> <p>5.3.1 Activity of the Encapsulated Enzymes 406</p> <p>5.3.2 Stability of the Encapsulated Enzymes 407</p> <p>5.3.3 Enantioselectivity 407</p> <p>5.4 Processes for Preparation of Encapsulated Enzymes 407</p> <p>5.4.1 Interfacial Processes 407</p> <p>5.4.1.1 Interfacial Cross-linking/Polymerization 408</p> <p>5.4.1.2 Interfacial Physical Gelation 411</p> <p>5.4.2 Surfactant-related Hollow Microsphere 412</p> <p>5.4.2.1 Microemulsion-based Encapsulated Enzymes 412</p> <p>5.4.2.2 Polymeric Micelles/Liposomes 416</p> <p>5.4.2.3 Liposome capsules 416</p> <p>5.4.2.4 Colloidal Liquid Aphrons (CLA) 421</p> <p>5.4.3 Phase Inversion 423</p> <p>5.4.3.1 Coacervation 423</p> <p>5.4.3.2 The Double-emulsion Method 423</p> <p>5.4.3.3 Modified Double-emulsion Methods 426</p> <p>5.4.3.4 Other Methods 429</p> <p>5.4.4 Pre-designed Capsules for Post-loading Encapsulation 429</p> <p>5.4.4.1 Introduction 429</p> <p>5.4.4.2 Theoretical Considerations 430</p> <p>5.4.5 Non-conventional Encapsulation Processes 430</p> <p>5.4.5.1 Encapsulation/Coating 430</p> <p>5.4.5.2 Encapsulation/Cross-linking 432</p> <p>5.4.5.3 Immobilization and Encapsulation 434</p> <p>5.4.5.4 Immobilization and Encagement 434</p> <p>5.5 References 438</p> <p><b>6 Unconventional Enzyme Immobilization 449</b></p> <p>6.1 Introduction 449</p> <p>6.2 Coating-based Enzyme Immobilization 450</p> <p>6.2.1 Monolayer Enzymes 451</p> <p>6.2.2 Phase-inversion Coating 451</p> <p>6.2.3 Multiple Enzyme Coating by Physical Adsorption 452</p> <p>6.2.4 Mediated Formation of Multiple Enzyme Layers 452</p> <p>6.2.5 Affinity-ligand-mediated Formation of Enzyme Coatings 455</p> <p>6.2.6 Coating of Soluble Enzyme–Polymer Complexes 456</p> <p>6.2.7 Enzymatically Gelified Multienzyme Layer 456</p> <p>6.2.8 Sol–Gel Coating and Covalent Attachment 457</p> <p>6.2.9 Electrochemical Deposition 457</p> <p>6.2.10 Enzyme Coating by Use of Small Pore-size Carriers 458</p> <p>6.3 Site-specific Immobilization 458</p> <p>6.3.1 Site-specific Immobilization via Biospecific Ligand–Enzyme Interaction 463</p> <p>6.3.2 Introduction of Chemical Tags 464</p> <p>6.3.2.1 Oxidation of the Sugar Moiety of Enzymes 466</p> <p>6.3.2.2 Introduction of a Cofactor into the Enzyme 466</p> <p>6.3.2.3 Orientation and Covalent Binding 466</p> <p>6.3.3 Immobilized Ligand (Substrate Analogue) Enzyme-binding 468</p> <p>6.3.3.1 Immobilized Substrate or Substrate Analogues 470</p> <p>6.3.3.2 Immobilized Non-substrate Ligand 470</p> <p>6.3.4 Genetically Engineered Tags 473</p> <p>6.3.4.1 Non-covalent Oriented Enzyme Immobilization 473</p> <p>6.3.4.2 Covalent Orientation in Enzyme Immobilization 477</p> <p>6.4 Immobilization in Organic Solvents 477</p> <p>6.4.1 Covalent Attachment in Organic Solvents 478</p> <p>6.4.2 Entrapment of Enzyme in Organic Solvent 479</p> <p>6.4.3 Immobilization of Organic-soluble Enzyme Derivatives 480</p> <p>6.4.4 Adsorption of Enzyme on to the Carrier in Organic Solvents 480</p> <p>6.5 Imprinting–Immobilization 481</p> <p>6.5.1 Imprinting-Multipoint Attachment 481</p> <p>6.5.2 Imprinting–Cross-linking 482</p> <p>6.5.3 Entrapment–Imprinting 484</p> <p>6.5.4 Crystallization and Cross-linking 484</p> <p>6.5.5 Aggregation and Cross-linking 485</p> <p>6.5.6 Intra-molecular Cross-linking – Imprinting 485</p> <p>6.5.7 Post-immobilization Imprinting 486</p> <p>6.5.8 Lyophilization Imprinting 486</p> <p>6.6 Stabilization–Immobilization 487</p> <p>6.6.1 Stabilization by Ligand Binding 488</p> <p>6.6.2 Stabilization by Addition of Stabilizer as the Excipient of the Conformation 490</p> <p>6.6.3 Stabilization by Pre-immobilization Modification 490</p> <p>6.6.3.1 Stabilization by Pre-immobilization Modification with Soluble Polymer 490</p> <p>6.6.3.2 Stabilization by Pre-immobilization Chemical Modification 492</p> <p>6.6.3.3 Chemical Cross-linking/Covalent Immobilization 493</p> <p>6.7 Modification-based Enzyme Immobilization 493</p> <p>6.7.1 Immobilization then Modification 494</p> <p>6.7.2 Modification then Polymerization 494</p> <p>6.7.3 Pre-immobilization Improvement Techniques (PIT) 496</p> <p>6.7.3.1 Introduction of Extra Charge 497</p> <p>6.7.3.2 Alteration of Enzyme Hydrophobicity 498</p> <p>6.7.3.3 Formation of Polymer–Enzyme Conjugate 498</p> <p>6.7.3.4 Introduction of Active Functionality for Covalent Binding 503</p> <p>6.7.3.5 Introduction of Mediators 505</p> <p>6.7.3.6 Interconversion of Amino Acid Residues (AAR) 505</p> <p>6.7.3.7 Cross-linking/Immobilization 506</p> <p>6.8 Post-Immobilization Techniques 506</p> <p>6.8.1 Introduction 506</p> <p>6.8.2 Classification of Post-treatments 507</p> <p>6.8.3 Physical Methods 507</p> <p>6.8.3.1 Increasing the pH 509</p> <p>6.8.3.2 Solvent Washing 510</p> <p>6.8.3.3 Lyophilization/Drying/Addition of Additives 510</p> <p>6.8.3.4 pH Imprinting 511</p> <p>6.8.3.5 Physical Entrapment 512</p> <p>6.8.3.6 Thermal Activation 512</p> <p>6.8.3.7 Activation by Denaturants 513</p> <p>6.8.3.8 Post-immobilization by Physical Coating 513</p> <p>6.8.3.9 Rehydration/water Activity Adjustment 514</p> <p>6.8.3.10 Sonication 515</p> <p>6.8.3.11 Acid or Alkaline Treatment 515</p> <p>6.8.4 Chemical Methods 515</p> <p>6.8.4.1 Consecutive Cross-linking of the Immobilized Enzymes 516</p> <p>6.8.4.2 Consecutive Chemical Modification of Immobilized Enzymes 518</p> <p>6.8.4.3 Conversion 518</p> <p>6.8.4.4 Consecutive Modification of the Carrier 519</p> <p>6.8.4.5 Chemical Coating 521</p> <p>6.8.5 Outlook 522</p> <p>6.9 Reversibly Soluble Immobilized Enzymes 522</p> <p>6.9.1 pH-responsive Smart Polymer 522</p> <p>6.9.2 Temperature-sensitive Smart Polymers 526</p> <p>6.9.3 Solvent-sensitive Enzyme–Polymer Conjugates 526</p> <p>6.9.4 Reversibly Soluble Immobilized Enzyme Based on Ionic Strengthsensitive Polymers 528</p> <p>6.9.5 Reversibly Soluble Immobilized Enzyme Based on Light-sensitive Polymers 528</p> <p>6.10 References 531</p> <p>Subject Index 551</p>
"The first systematic overview of this key technique since the early 1990s, this authoritative reference is the only handbook available to include all recent developments. (...) A must for biotechnologists, biochemists and preparative chemists using enzymes in their daily work." Clinical Laboratory<br> <br> "...the volume provides excellent and comprehensive review on the important field of enzyme immobilization technology covering both the history and present state of immobilization procedures. Numerous tables and figures throughout the volume provide illustrative material to support the detailed information presented in the text, and make this volume an excellent resource for biotechnologists, biochemists, biochemical engineers and enzyme technologists." Carbohydrate Polymers<br>
<p><b>Linqiu Cao</b> studied Organic Chemistry and Biotechnology at the Beijing University of Science and Technology (China). He was a visiting scientist at GBF (Gesellschaft fur Biotechnologische Forschung) in Braunschweig (Germany) and later moved to the University of Stuttgart (Germany) to obtain a PhD in Biotechnology. He then joined the group of Roger Sheldon at the Technical University in Delft (The Netherlands), where he pioneered a novel enzyme immobilisation technology with improved performance in biocatalytic transformations using cross-linked enzyme aggregates (CLEAs). In 2000, he joined the newly founded company Avantium in Amsterdam (The Netherlands) where he continued to develop novel enzyme crosslinking and immobilisation technology. Recently he moved to DMV in Veghel (The Netherlands). </p>
<p>The first systematic overview of this key technique since the early 1990s, this authoritative reference is the only handbook available to include all recent developments. The author draws on his wide-ranging experience in both academia and industry to systematically cover all types of enzyme immobilization methods, including such novel techniques as site-specific immobilization, imprinting and immobilization in organic solvents. </p> <p>From the contents: <ul><li>Introduction to Immobilized Enzymes</li> <li>Adsorption-based Immobilization</li> <li>Covalent Enzyme Immobilization</li> <li>Enzyme Entrapment</li> <li>Enzyme Encapsulation</li> <li>Unconventional Enzyme Immobilization</li></ul> <p>Throughout, a careful review of materials and techniques for the preparation of functional immobilized enzymes that benefits both developers and users of carrier-bound enzymes. Essential reading for biotechnologists, chemists and food scientists using enzymes in their daily work.

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €