Details

Essential Practical NMR for Organic Chemistry


Essential Practical NMR for Organic Chemistry


2. Aufl.

von: S. A. Richards, J. C. Hollerton

76,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 22.12.2022
ISBN/EAN: 9781119844822
Sprache: englisch
Anzahl Seiten: 288

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><i><b>Essential Practical NMR for Organic Chemistry</b></i></p> <p><b>A hands-on resource advocating an ordered approach to gathering and interpreting NMR data</b></p> <p>The second edition of <i>Essential Practical NMR for Organic Chemistry</i> delivers a pragmatic and accessible text demonstrating an ordered approach to gathering and interpreting NMR data. In this informal guide, you’ll learn to make sense of the high density of NMR information through the authors’ problem-solving strategies and interpretations.</p> <p>The book also discusses critical aspects of NMR theory, as well as data acquisition and processing strategy. It explains the use of NMR spectroscopy for dealing with problems of small organic molecule structural elucidation and includes a brand-new chapter on Nitrogen-15 NMR. Readers will also find:</p> <ul> <li>Strategies for preparing a sample, spectrum acquisition, processing, and interpreting your spectrum</li> <li>Fulsome discussions of Carbon-13 NMR spectroscopy</li> <li>Practical treatments of quantification, safety procedures, and relevant software</li> </ul> <p>An ideal handbook for anyone involved in using NMR to solve structural problems, this latest edition of <i>Essential Practical NMR for Organic Chemistry</i> will be particularly useful for chemists running and looking at their own NMR spectra, as well as those who work in small molecule NMR. It will also earn a place in the libraries of undergraduate and post-graduate organic chemistry students.</p>
<p>Preface xiii</p> <p><b>1 Getting Started 1</b></p> <p>1.1 The Technique 1</p> <p>1.2 Instrumentation 2</p> <p>1.2.1 CW Systems 2</p> <p>1.2.2 FT Systems 3</p> <p>1.2.3 Probes 5</p> <p>1.2.4 Shims 6</p> <p>1.3 Origin of the Chemical Shift 7</p> <p>1.4 Origin of ‘Splitting’ 8</p> <p>1.5 Integration 11</p> <p><b>2 Preparing the Sample 13</b></p> <p>2.1 How Much Sample Do I Need? 14</p> <p>2.2 Solvent Selection 15</p> <p>2.2.1 Deutero Chloroform (CDCl<sub>3</sub>) 16</p> <p>2.2.2 Deutero Dimethyl Sulfoxide (DMSO) 16</p> <p>2.2.3 Deutero Methanol (CD<sub>3</sub> Od) 17</p> <p>2.2.4 Deutero Water (D<sub>2</sub>O) 18</p> <p>2.2.5 Deutero Benzene (C<sub>6</sub>d 6) 18</p> <p>2.2.6 Carbon Tetrachloride (CCl <sub>4</sub>) 18</p> <p>2.2.7 Trifluoroacetic Acid (CF<sub>3</sub>Cooh) 18</p> <p>2.2.8 Using Mixed Solvents 19</p> <p>2.3 Spectrum Referencing (Proton NMR) 19</p> <p>2.4 Sample Preparation 20</p> <p>2.4.1 Filtration 21</p> <p><b>3 Spectrum Acquisition 25</b></p> <p>3.1 Number of Transients 25</p> <p>3.2 Number of Points 26</p> <p>3.3 Spectral Width 27</p> <p>3.4 Acquisition Time 27</p> <p>3.5 Pulse Width/Pulse Angle 27</p> <p>3.6 Relaxation Delay 29</p> <p>3.7 Number of Increments 29</p> <p>3.8 Non-Uniform Sampling (NUS) 30</p> <p>3.9 Shimming 30</p> <p>3.10 Tuning and Matching 32</p> <p>3.11 Frequency Lock 32</p> <p>3.11.1 Run Unlocked 32</p> <p>3.11.2 Internal Lock 32</p> <p>3.11.3 External Lock 32</p> <p>3.12 To Spin or Not to Spin? 33</p> <p><b>4 Processing 35</b></p> <p>4.1 Introduction 35</p> <p>4.2 Zero-Filling and Linear Prediction 35</p> <p>4.3 Apodization 36</p> <p>4.4 Fourier Transformation 37</p> <p>4.5 Phase Correction 37</p> <p>4.6 Baseline Correction 40</p> <p>4.7 Integration 40</p> <p>4.8 Referencing 40</p> <p>4.9 Peak Picking 41</p> <p><b>5 Interpreting Your Spectrum 43</b></p> <p>5.1 Common Solvents and Impurities 46</p> <p>5.2 Group 1 – Exchangeables and Aldehydes 48</p> <p>5.3 Group 2 – Aromatic and Heterocyclic Protons 50</p> <p>5.3.1 Monosubstituted Benzene Rings 52</p> <p>5.3.2 Multi-substituted Benzene Rings 55</p> <p>5.3.3 Heterocyclic Ring Systems (Unsaturated) and Polycyclic Aromatic Systems 57</p> <p>5.4 Group 3 – Double and Triple Bonds 61</p> <p>5.5 Group 4 – Alkyl Protons 64</p> <p><b>6 Delving Deeper 67</b></p> <p>6.1 Chiral Centres 67</p> <p>6.2 Enantiotopic and Diastereotopic Protons 72</p> <p>6.3 Molecular Anisotropy 73</p> <p>6.4 Accidental Equivalence 75</p> <p>6.5 Restricted Rotation 77</p> <p>6.6 Heteronuclear Coupling 81</p> <p>6.6.1 coupling between Protons and <sup>13</sup> C 81</p> <p>6.6.2 Coupling between Protons and <sup>19</sup> F 83</p> <p>6.6.3 Coupling between Protons and <sup>31</sup> P 85</p> <p>6.6.4 Coupling between <sup>1</sup>H and Other Heteroatoms 87</p> <p>6.7 Cyclic Compounds and the Karplus Curve 89</p> <p>6.8 Salts, Free Bases and Zwitterions 93</p> <p>6.9 Zwitterionic Compounds Are Worthy of Special Mention 94</p> <p><b>7 Further Elucidation Techniques – Part 1 97</b></p> <p>7.1 Chemical Techniques 97</p> <p>7.1.1 Deuteration 97</p> <p>7.1.2 Basification and Acidification 99</p> <p>7.1.3 Changing Solvents 99</p> <p>7.1.4 Trifluoroacetylation 100</p> <p>7.1.5 Lanthanide Shift Reagents 101</p> <p>7.1.6 Chiral Resolving Agents 102</p> <p><b>8 Further Elucidation Techniques – Part 2 105</b></p> <p>8.1 Introduction 105</p> <p>8.2 Spin-Decoupling (Homonuclear, 1-D) 105</p> <p>8.3 Correlated Spectroscopy (COSY) 106</p> <p>8.4 Total Correlation Spectroscopy (TOCSY) 1- and 2-D 110</p> <p>8.5 The Nuclear Overhauser Effect (NOE) and Associated Techniques 111</p> <p><b>9 Carbon-13 NMR Spectroscopy 121</b></p> <p>9.1 General Principles and 1-D <sup>13</sup> C 121</p> <p>9.2 2-D Proton–Carbon (Single Bond) Correlated Spectroscopy 124</p> <p>9.3 2-D Proton–Carbon (Multiple Bond) Correlated Spectroscopy 127</p> <p>9.4 Piecing It All Together 130</p> <p>9.5 Choosing the Right Tool 131</p> <p><b>10 Nitrogen-15 NMR Spectroscopy 137</b></p> <p>10.1 Introduction 137</p> <p>10.2 Referencing 138</p> <p>10.3 Using <sup>15</sup> N Data 138</p> <p>10.4 Amines 141</p> <p>10.4.1 Alkyl 141</p> <p>10.4.2 Aryl 143</p> <p>10.5 Conjugated Amines 145</p> <p>10.6 Amides 145</p> <p>10.7 Amidines 146</p> <p>10.8 Azides 147</p> <p>10.9 Carbamates 147</p> <p>10.10 Cyanates and Thiocyanates 148</p> <p>10.11 Diazo Compounds 149</p> <p>10.12 Formamides 149</p> <p>10.13 Hydrazines 150</p> <p>10.14 Hydroxamic Acids 151</p> <p>10.15 Hydroxylamines 152</p> <p>10.16 Imides (Alkyl and Aryl) 152</p> <p>10.17 Imines 152</p> <p>10.18 Isocyanates and Isothiocyanates 153</p> <p>10.19 Nitrogen-Bearing Heterocycles 154</p> <p>10.20 Nitriles 157</p> <p>10.21 Nitro Compounds 158</p> <p>10.22 Nitroso and N-Nitroso Compounds 158</p> <p>10.23 N-Oxides 159</p> <p>10.24 Oximes 160</p> <p>10.25 Sulfonamides 161</p> <p>10.26 Ureas and Thioureas 162</p> <p>10.27 Other Unusual Compounds 163</p> <p>10.28 <sup>15 </sup>N Topics 166</p> <p>10.28.1 1-, 2-, 3- and 4-bond Correlations 166</p> <p>10.28.2 ‘Through-Space’ Correlations 168</p> <p>10.28.3 Tautomerism in <sup>15</sup> N NMR 169</p> <p>10.28.4 Restricted Rotation 170</p> <p>10.28.5 Protonation and Zwitterions 170</p> <p><b>11 Some Other Techniques and Nuclei 173</b></p> <p>11.1 HPLC-NMR 173</p> <p>11.2 Flow NMR 174</p> <p>11.3 Solvent Suppression 175</p> <p>11.4 MAS (Magic Angle Spinning) NMR 176</p> <p>11.5 Pure Shift NMR 177</p> <p>11.6 Other 2-D Techniques 178</p> <p>11.6.1 INADEQUATE 178</p> <p>11.6.2 J-Resolved 178</p> <p>11.6.3 DOSY 178</p> <p>11.7 3-D Techniques 179</p> <p>11.8 Fluorine (<sup>19</sup> F) NMR 180</p> <p>11.9 Phosphorus (<sup>31</sup> P) NMR 182</p> <p><b>12 Dynamics 183</b></p> <p>12.1 Linewidths 187</p> <p>12.2 Chemical Shifts 187</p> <p>12.3 Splittings 188</p> <p>12.4 Relaxation Pathways 188</p> <p>12.5 Experimental Techniques 188</p> <p>12.6 In Practice 189</p> <p>12.7 In Conclusion 191</p> <p><b>13 Quantification 193</b></p> <p>13.1 Introduction 193</p> <p>13.2 Different Approaches to Quantification 193</p> <p>13.2.1 Relative Quantification 193</p> <p>13.2.2 Absolute Quantification 194</p> <p>13.2.3 Internal Standards 194</p> <p>13.2.4 External Standards 195</p> <p>13.2.5 Electronic Reference (ERETIC) 195</p> <p>13.2.6 QUANTAS196</p> <p>13.2.7 ERETIC 2 196</p> <p>13.3 Things to Watch Out For 197</p> <p>13.4 Quantification of Other Nuclei 197</p> <p>13.5 Conclusion 198</p> <p><b>14 Safety 199</b></p> <p>14.1 Magnetic Fields 199</p> <p>14.2 Cryogens 201</p> <p>14.3 Sample-Related Injuries 202</p> <p><b>15 Software 203</b></p> <p>15.1 Acquisition Software 203</p> <p>15.2 Processing Software 204</p> <p>15.3 Prediction and Simulation Software 205</p> <p>15.3.1 <sup>13</sup> C Prediction 205</p> <p>15.3.2 <sup>1</sup> H Prediction 207</p> <p>15.3.3 Incremental Approaches 207</p> <p>15.3.4 HOSE Code Databases 208</p> <p>15.3.5 Semi-Empirical Approaches 208</p> <p>15.3.6 Ab Initio Approaches 208</p> <p>15.3.7 Neural Networks 208</p> <p>15.5.8 Hybrid Approaches 209</p> <p>15.5.9 Simulation 209</p> <p>15.6 Structural Verification Software 209</p> <p>15.7 Structural Elucidation Software 211</p> <p>15.8 Summary 212</p> <p><b>16 Problems 213</b></p> <p>16.1 Questions 213</p> <p>16.2 Hints 227</p> <p>16.3 Answers 228</p> <p>16.4 A Closing Footnote 241</p> <p><b>17 Raising Your Game 243</b></p> <p>17.1 Spotting the Pitfalls 243</p> <p>17.2 The Wrong Solvent 244</p> <p>17.3 Choosing the Right Experiment 245</p> <p>Appendix A 261</p> <p>Glossary 263</p> <p>Index 269</p>
<p><b>S.A. Richards and J.C. Hollerton</b><br />The authors have worked in NMR for GlaxoSmithKline R&D for over 40 years each, solving organic chemistry structural problems supporting synthetic and medicinal chemists. This work has required the inference of structural information from complex NMR data as well as the design of experiments to test structural hypotheses. Their breadth of experience includes instrumental, chemical, and informatics approaches to answering those important structural questions.</p>
<p><b>A hands-on resource advocating an ordered approach to gathering and interpreting NMR data</b> <p>The second edition of <i>Essential Practical NMR for Organic Chemistry</i> delivers a pragmatic and accessible text demonstrating an ordered approach to gathering and interpreting NMR data. In this informal guide, you’ll learn to make sense of the high density of NMR information through the authors’ problem-solving strategies and interpretations. <p>The book also discusses critical aspects of NMR theory, as well as data acquisition and processing strategy. It explains the use of NMR spectroscopy for dealing with problems of small organic molecule structural elucidation and includes a brand-new chapter on Nitrogen-15 NMR. Readers will also find: <ul><li> Strategies for preparing a sample, spectrum acquisition, processing, and interpreting your spectrum</li> <li>Fulsome discussions of Carbon-13 NMR spectroscopy</li> <li>Practical treatments of quantification, safety procedures, and relevant software</li></ul> <p>An ideal handbook for anyone involved in using NMR to solve structural problems, this latest edition of <i>Essential Practical NMR for Organic Chemistry</i> will be particularly useful for chemists running and looking at their own NMR spectra, as well as those who work in small molecule NMR. It will also earn a place in the libraries of undergraduate and post-graduate organic chemistry students.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €