Details

High-Performance Materials from Bio-based Feedstocks


High-Performance Materials from Bio-based Feedstocks


Wiley Series in Renewable Resource 1. Aufl.

von: Andrew J. Hunt, Nontipa Supanchaiyamat, Kaewta Jetsrisuparb, Jesper T. N. Knijnenburg, Christian V. Stevens

153,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 22.03.2022
ISBN/EAN: 9781119655732
Sprache: englisch
Anzahl Seiten: 432

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>High-Performance Materials from Bio-based Feedstocks </b></p> <p><b>The latest advancements in the production, properties, and performance of bio-based feedstock materials </b></p> <p>In <i>High-Performance Materials from Bio-based Feedstocks</i>, an accomplished team of researchers delivers a comprehensive exploration of recent developments in the research, manufacture, and application of advanced materials from bio-based feedstocks. With coverage of bio-based polymers, the inorganic components of biomass, and the conversion of biomass to advanced materials, the book illustrates the research and commercial potential of new technologies in the area.</p> <p>Real-life applications in areas as diverse as medicine, construction, synthesis, energy storage, agriculture, packaging, and food are discussed in the context of the structural properties of the materials used. The authors offer deep insights into materials production, properties, and performance.</p> <p>Perfect for chemists, environmental scientists, engineers, and materials scientists, <i>High-Performance Materials from Bio-based Feedstocks</i> will also earn a place in the libraries of academics, industrial researchers, and graduate students with an interest in biomass conversion, green chemistry, and sustainability.</p> <ul> <li>A thorough introduction to the latest developments in advanced bio-based feedstock materials research</li> <li>Comprehensive explorations of a vast range of real-world applications, from tissue scaffolds and drug delivery to batteries, sorbents, and controlled release fertilizers</li> <li>Practical discussions of the organic and inorganic components of biomass and the conversion of biomass to advanced materials</li> <li>In-depth examinations of the structural properties of commercially and academically significant biomass materials</li> </ul> <p>For more information on the Wiley Series in Renewable Resources, visit <b>www.wiley.com/go/rrs</b></p>
<p>Series Preface xxi</p> <p>1 High-performance</p> <p>Materials from Bio-based</p> <p><b>Feedstocks: Introduction and Structure of the Book 1<br /></b><i>Kaewta Jetsrisuparb, Jesper T.N. Knijnenburg, Nontipa Supanchaiyamat and Andrew J. Hunt</i></p> <p>1.1 Introduction 1</p> <p>1.2 High-performance Bio-based Materials and Their Applications 4</p> <p>1.2.1 Biomass Constituents 4</p> <p>1.2.2 Bioderived Materials 7</p> <p>1.3 Structure of the Book 10</p> <p><b>2 Bio-based Carbon Materials for Catalysis 13<br /></b><i>Chaiyan Chaiya and Sasiradee Jantasee</i></p> <p>2.1 Introduction 13</p> <p>2.2 Biomass Resources for Carbon Materials 14</p> <p>2.2.1 Wood from Natural Forests 14</p> <p>2.2.2 Agricultural Residues 17</p> <p>2.3 Thermochemical Conversion Processes 18</p> <p>2.3.1 Carbonization and Pyrolysis 18</p> <p>2.3.2 Activation 20</p> <p>2.3.3 Hydrothermal Carbonization 23</p> <p>2.3.4 Graphene Preparation from Biomass 24</p> <p>2.4 Fundamentals of Heterogeneous Catalysis 25</p> <p>2.5 Catalysis Applications of Selected Bio-based Carbon Materials 26</p> <p>2.5.1 Biochar 26</p> <p>2.5.2 Modified Biochar 28</p> <p>2.5.3 Biomass-Derived Activated Carbon 30</p> <p>2.5.4 Hydrothermal Bio-based Carbons 34</p> <p>2.5.5 Sugar-Derived Carbon Catalysts 35</p> <p>2.5.6 Carbon Nanotubes from Biomass 36</p> <p>2.5.7 Graphene and Its Derivatives 37</p> <p>2.6 Summary and Future Aspects 37</p> <p><b>3 Starbon®: Novel Template-Free Mesoporous Carbonaceous Materials from Biomass – Synthesis, Functionalisation and Applications in Adsorption, and Catalysis 47<br /></b><i>Duncan J. Macquarrie, Tabitha H.M. Petchey and Cinthia J. Meña Duran</i></p> <p>3.1 Introduction 47</p> <p>3.2 Choice of Polysaccharide 48</p> <p>3.2.1 Synthetic Procedure 49</p> <p>3.2.2 Derivatisation 51</p> <p>3.2.3 Applications 56</p> <p>3.2.4 Adsorption Processes 63</p> <p>3.2.5 Conclusion 69</p> <p><b>4 Conversion of Biowastes into Carbon-based Electrodes 73<br /></b><i>Xiaotong Feng and Qiaosheng Pu</i></p> <p>4.1 Introduction 73</p> <p>4.2 Conversion Techniques of Biowastes 74</p> <p>4.2.1 Carbonization 75</p> <p>4.2.2 Activation 77</p> <p>4.3 Structure and Doping 79</p> <p>4.3.1 Biowaste Selection 79</p> <p>4.3.2 Structure Control 81</p> <p>4.3.3 Heteroatom Doping 83</p> <p>4.4 Electrochemical Applications 84</p> <p>4.4.1 Supercapacitors 84</p> <p>4.4.2 Capacitive Deionization Cells 86</p> <p>4.4.3 Hydrogen and Oxygen Evolution 88</p> <p>4.4.4 Fuel Cells 90</p> <p>4.4.5 Lithium-Ion Batteries and Others 94</p> <p>4.5 Conclusion and Outlook 95</p> <p><b>5 Bio-based Materials in Electrochemical Applications 105<br /></b><i>Itziar Iraola-Arregui, Mohammed Aqil, Vera Trabadelo, Ismael Saadoune and Hicham Ben Youcef</i></p> <p>5.1 Introduction 105</p> <p>5.2 Fundamentals of Bio-based Materials 106</p> <p>5.2.1 Bio-based Polymers 106</p> <p>5.2.2 Carbonaceous Materials from Biological Feedstocks 108</p> <p>5.3 Application of Bio-based Materials in Batteries 109</p> <p>5.3.1 General Concept of Metal-Ion Batteries 109</p> <p>5.4 Application of Bio-based Polymers in Capacitors 115</p> <p>5.4.1 General Concept of Electrochemical Capacitors 115</p> <p>5.4.2 Electrode Materials 116</p> <p>5.5 Alternative Binders for Sustainable Electrochemical Energy Storage 119</p> <p>5.5.1 Polysaccharides and Cellulose-based Binders 120</p> <p>5.5.2 Lignin 123</p> <p>5.6 Application of Bio-based</p> <p>Polymers in Fuel Cells 123</p> <p>5.6.1 Chitosan 124</p> <p>5.6.2 Other Biopolymers 125</p> <p>5.7 Conclusion and Outlook 126</p> <p><b>6 Bio-based Materials Using Deep Eutectic Solvent Modifiers 133<br /></b><i>Wanwan Qu, Sarah Key and Andrew P. Abbott</i></p> <p>6.1 Introduction 133</p> <p>6.2 Bio-based Materials 134</p> <p>6.2.1 Ionic Liquids 136</p> <p>6.2.2 Deep Eutectic Solvents 136</p> <p>6.2.3 Morphological/Mechanical Modification 137</p> <p>6.2.4 Chemical Modification 139</p> <p>6.2.5 Composite Formation 141</p> <p>6.2.6 Gelation 143</p> <p>6.3 Conclusion 145</p> <p><b>7 Biopolymer Composites for Recovery of Precious and Rare Earth Metals 151<br /></b><i>Jesper T.N. Knijnenburg and Kaewta Jetsrisuparb</i></p> <p>7.1 Introduction 151</p> <p>7.2 Mechanisms of Metal Adsorption 153</p> <p>7.2.1 Silver 153</p> <p>7.2.2 Gold and Platinum Group Metals 153</p> <p>7.2.3 Rare Earth Metals 154</p> <p>7.3 Composite Materials and Their Adsorption 154</p> <p>7.3.1 Cellulose-based Composite Adsorbents 154</p> <p>7.3.2 Chitosan-based Composite Adsorbents 163</p> <p>7.3.3 Alginate-based Adsorbents 170</p> <p>7.3.4 Lignin-based Composite Adsorbents 173</p> <p>7.4 Conclusion and Outlook 175</p> <p><b>8 Bio-Based Materials in Anti-HIV Drug Delivery 181<br /></b><i>Oranat Chuchuen and David F. Katz</i></p> <p>8.1 Introduction 181</p> <p>8.2 Biomedical Strategies for HIV Prophylaxis 182</p> <p>8.3 Properties of Anti-HIV Drug Delivery Systems 184</p> <p>8.4 Bio-based Materials for Anti-HIV Drug Delivery Systems 185</p> <p>8.4.1 Cellulose 186</p> <p>8.4.2 Chitosan 190</p> <p>8.4.3 Polylactic Acid 191</p> <p>8.4.4 Carrageenan 193</p> <p>8.4.5 Alginate 194</p> <p>8.4.6 Hyaluronic Acid 195</p> <p>8.4.7 Pectin 196</p> <p>8.5 Conclusion 196</p> <p><b>9 Chitin – A Natural Bio-feedstock and Its Derivatives: Chemistry and Properties for Biomedical Applications 207<br /></b><i>Anu Singh, Shefali Jaiswal, Santosh Kumar and Pradip K. Dutta</i></p> <p>9.1 Bio-feedstocks 207</p> <p>9.1.1 Chitin 208</p> <p>9.1.2 Chitosan 208</p> <p>9.1.3 Glucan 209</p> <p>9.1.4 Chitin–Glucan Complex 209</p> <p>9.1.5 Polyphenols 209</p> <p>9.2 Synthetic Route 210</p> <p>9.2.1 Isolation of ChGC 210</p> <p>9.2.2 Derivatives of ChGC and Its Modified Polymers 210</p> <p>9.2.3 Preparation of d-Glucosamine from Chitin/Chitosan–Glucan 212</p> <p>9.3 Properties of Chitin, ChGC, and Its Derivatives for Therapeutic Applications 212</p> <p>9.3.1 Antibacterial Activity 212</p> <p>9.3.2 Anticancer Activity 212</p> <p>9.3.3 Antioxidant Activity 212</p> <p>9.3.4 Therapeutic Applications 213</p> <p>9.4 Gene Therapy – A Biomedical Approach 213</p> <p>9.5 Cs: Properties and Factors Affecting Gene Delivery 214</p> <p>9.6 Organic Modifications of Cs Backbone for Enhancing the Properties of Cs Associated with Gene Delivery 215</p> <p>9.6.1 Modification of Cs with Hydrophilic Groups 215</p> <p>9.6.2 Modification in Cs by Hydrophobic Groups 216</p> <p>9.6.3 Modification by Cationic Substituents 216</p> <p>9.6.4 Modification by Target Ligands 217</p> <p>9.7 Multifunctional Modifications of Cs 218</p> <p>9.8 Miscellaneous 218</p> <p>9.9 Conclusion 218</p> <p><b>10 Carbohydrate-Based Materials for Biomedical Applications 235<br /></b><i>Chadamas Sakonsinsiri</i></p> <p>10.1 Introduction 235</p> <p>10.2 Bio-based Glycopolymers 236</p> <p>10.2.1 Chitin and Chitosan 236</p> <p>10.2.2 Cellulose 238</p> <p>10.2.3 Starch 239</p> <p>10.2.4 Dextran 239</p> <p>10.3 Synthetic Carbohydrate-based Functionalized Materials 240</p> <p>10.3.1 Glycomimetics 240</p> <p>10.3.2 Presentation of Glycomimetics in Multivalent Scaffolds 241</p> <p>10.4 Conclusion 243</p> <p><b>11 Organic Feedstock as Biomaterial for Tissue Engineering 247<br /></b><i>Poramate Klanrit</i></p> <p>11.1 Introduction 247</p> <p>11.2 Protein-based Natural Biomaterials 248</p> <p>11.2.1 Silk 249</p> <p>11.2.2 Collagen 249</p> <p>11.2.3 Decellularized Skins 251</p> <p>11.2.4 Fibrin/Fibrinogen 252</p> <p>11.3 Polysaccharide-based Natural Biomaterials 253</p> <p>11.3.1 Chitosan 253</p> <p>11.3.2 Alginate 254</p> <p>11.3.3 Agarose 255</p> <p>11.4 Summary 255</p> <p><b>12 Green Synthesis of Bio-based Metal–Organic Frameworks 261<br /></b><i>Emile R. Engel, Bernardo Castro-Dominguez and Janet L. Scott</i></p> <p>12.1 Introduction 261</p> <p>12.2 Green Synthesis of MOFs 262</p> <p>12.2.1 Solvent-Free and Low Solvent Synthesis 262</p> <p>12.2.2 Green Solvents 264</p> <p>12.2.3 Sonochemical Synthesis 266</p> <p>12.2.4 Electrochemical Synthesis 266</p> <p>12.3 Bio-based Ligands 266</p> <p>12.3.1 Amino Acids 266</p> <p>12.3.2 Aliphatic Diacids 267</p> <p>12.3.3 Cyclodextrins 269</p> <p>12.3.4 Other 270</p> <p>12.3.5 Exemplars: Bio-based MOFs Obtainable via Green Synthesis 271</p> <p>12.4 Metal Ion Considerations 271</p> <p>12.4.1 Calcium 272</p> <p>12.4.2 Magnesium 272</p> <p>12.4.3 Manganese 273</p> <p>12.4.4 Iron 273</p> <p>12.4.5 Titanium 274</p> <p>12.4.6 Zirconium 274</p> <p>12.4.7 Aluminium 275</p> <p>12.4.8 Zinc 275</p> <p>12.5 Challenges for Further Development Towards Applications 276</p> <p>12.5.1 Stability Issues 276</p> <p>12.5.2 Scalability and Cost 278</p> <p>12.5.3 Competing Alternative Materials 279</p> <p>12.6 Conclusion 280</p> <p><b>13 Geopolymers Based on Biomass Ash and Bio-based Additives for Construction Industry 289<br /></b><i>Prinya Chindaprasirt, Ubolluk Rattanasak and Patcharapol Posi</i></p> <p>13.1 Introduction 289</p> <p>13.2 Pozzolan and Agricultural Waste Ash 290</p> <p>13.3 Geopolymer 292</p> <p>13.4 Combustion of Biomass 294</p> <p>13.4.1 Open Field Burning 294</p> <p>13.4.2 Controlled Burning 294</p> <p>13.4.3 Boiler Burning 294</p> <p>13.4.4 Fluidized Bed Burning 295</p> <p>13.5 Properties and Utilization of Biomass Ashes 295</p> <p>13.6 Biomass Ash-based Geopolymer 299</p> <p>13.6.1 Rice Husk Ash-based Geopolymer 300</p> <p>13.6.2 Bagasse Ash-based Geopolymer 304</p> <p>13.6.3 Palm Oil Fuel Ash-based Geopolymer 306</p> <p>13.6.4 Other Biomass-based Geopolymers 308</p> <p>13.6.5 Use of Biomass in Making Sodium Silicate Solution and Other Products 308</p> <p>13.6.6 Fire Resistance of Bio-based Geopolymer 309</p> <p>13.7 Conclusion 309</p> <p><b>14 The Role of Bio-based Excipients in the Formulation of Lipophilic Nutraceuticals 315<br /></b><i>Alexandra Teleki, Christos Tsekou and Alan Connolly</i></p> <p>14.1 Introduction 315</p> <p>14.2 Emulsions and the Importance of Bio-based Materials as Emulsifiers 316</p> <p>14.2.1 Conventional Micro-and Nanoemulsions 316</p> <p>14.2.2 Pickering-Stabilised Emulsions 319</p> <p>14.3 Novel Formulation Technologies: Colloidal Delivery Vesicles 320</p> <p>14.3.1 Microgels 320</p> <p>14.3.2 Nanoprecipitation 321</p> <p>14.3.3 Liposomes 322</p> <p>14.3.4 Complex Coacervation 323</p> <p>14.3.5 Complexation 325</p> <p>14.4 Key Drying Technologies Employed During Formulation 325</p> <p>14.4.1 Spray Drying 325</p> <p>14.4.2 Spray-Freeze Drying 327</p> <p>14.4.3 Electrohydrodynamic Processing 328</p> <p>14.4.4 Fluid Bed Drying 329</p> <p>14.4.5 Extrusion 329</p> <p>14.5 Conclusions and Future Perspectives 330</p> <p><b>15 Bio-derived Polymers for Packaging 337<br /></b><i>Pornnapa Kasemsiri, Uraiwan Pongsa, Manunya Okhawilai, Salim Hiziroglu, </i><i>Nawadon Petchwattana, Wilaiporn Kraisuwan and Benjatham Sukkaneewat</i></p> <p>15.1 Introduction 337</p> <p>15.2 Starch 338</p> <p>15.3 Chitin/Chitosan 340</p> <p>15.4 Cellulose and Its Derivatives 342</p> <p>15.4.1 Cellulose Nanocrystals 343</p> <p>15.4.2 Cellulose Nanofibers 343</p> <p>15.4.3 Bacterial Nanocellulose 344</p> <p>15.4.4 Carboxymethyl Cellulose 344</p> <p>15.5 Poly(Lactic Acid) 345</p> <p>15.5.1 Bio-based Toughening Agents Used in PLA Toughness Improvement 346</p> <p>15.5.2 Toughening of PLA and Its Properties Related to Packaging Applications 346</p> <p>15.6 Bio-based Active and Intelligent Agents for Packaging 348</p> <p>15.6.1 Active Agents 348</p> <p>15.6.2 Intelligent Packaging 351</p> <p>15.7 Conclusion 351</p> <p><b>16 Recent Developments in Bio-Based Materials for Controlled-Release Fertilizers 361<br /></b><i>Kritapas Laohhasurayotin, Doungporn Yiamsawas and Wiyong Kangwansupamonkon</i></p> <p>16.1 Introduction and Historical Review 361</p> <p>16.1.1 Early Fertilizer Development and Its Impact on Environment 361</p> <p>16.1.2 Controlled-Release Fertilizer 362</p> <p>16.2 Mechanistic View of Controlled-Release Fertilizer from Bio-based Materials 365</p> <p>16.2.1 Coating Type 366</p> <p>16.2.2 Matrix Type 367</p> <p>16.2.3 Other Release Mechanisms 368</p> <p>16.3 Controlled Release Technologies from Bio-based Materials 368</p> <p>16.3.1 Natural Polymers and Their Fertilizer Applications 369</p> <p>16.3.2 Bio-based Modified Polymer Coatings for Controlled-Release Fertilizer 376</p> <p>16.3.3 Biochar and Other Carbon-based Fertilizers 380</p> <p>16.4 Conclusion and Foresight 385</p> <p>Index 399 </p>
<p>Editors<BR><p><b> Andrew J. Hunt, PhD,</b> <i>is a Lecturer in Applied Chemistry at the Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Thailand.</i></p> <p><b>Nontipa Supanchaiyamat, PhD,</b> <i>is a Lecturer in Applied Chemistry at the Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Thailand.</i> <p><b>Kaewta Jetsrisuparb, PhD,</b> <i>is a Lecturer in Chemical Engineering in the Department of Chemical Engineering, Khon Kaen University, Thailand.</i> <p><b>Jesper T.N. Knijnenburg, PhD,</b> <i>is a Lecturer in Biodiversity and Environmental Management at the International College, Khon Kaen University, Thailand.</i>
<p><b>High-Performance Materials from Bio-based Feedstocks </b></p> <p><b>The latest advancements in the production, properties, and performance of bio-based feedstock materials </b> <p>In <i>High-Performance Materials from Bio-based Feedstocks</i>, an accomplished team of researchers delivers a comprehensive exploration of recent developments in the research, manufacture, and application of advanced materials from bio-based feedstocks. With coverage of bio-based polymers, the inorganic components of biomass, and the conversion of biomass to advanced materials, the book illustrates the research and commercial potential of new technologies in the area. <p>Real-life applications in areas as diverse as medicine, construction, synthesis, energy storage, agriculture, packaging, and food are discussed in the context of the structural properties of the materials used. The authors offer deep insights into materials production, properties, and performance. <p>Perfect for chemists, environmental scientists, engineers, and materials scientists, <i>High-Performance Materials from Bio-based Feedstocks</i> will also earn a place in the libraries of academics, industrial researchers, and graduate students with an interest in biomass conversion, green chemistry, and sustainability. <ul><li>A thorough introduction to the latest developments in advanced bio-based feedstock materials research</li> <li>Comprehensive explorations of a vast range of real-world applications, from tissue scaffolds and drug delivery to batteries, sorbents, and controlled release fertilizers</li> <li>Practical discussions of the organic and inorganic components of biomass and the conversion of biomass to advanced materials</li> <li>In-depth examinations of the structural properties of commercially and academically significant biomass materials</li></ul> <p>For more information on the Wiley Series in Renewable Resources, visit <b>www.wiley.com/go/rrs </b>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €