Details

The Model Legume Medicago truncatula


The Model Legume Medicago truncatula


1. Aufl.

von: Frans J. de Bruijn

470,99 €

Verlag: Wiley-Blackwell
Format: PDF
Veröffentl.: 01.11.2019
ISBN/EAN: 9781119409175
Sprache: englisch
Anzahl Seiten: 1264

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Fully covers the biology, biochemistry, genetics, and genomics of Medicago truncatula</b></p> <p>Model plant species are valuable not only because they lead to discoveries in basic biology, but also because they provide resources that facilitate translational biology to improve crops of economic importance. Plant scientists are drawn to models because of their ease of manipulation, simple genome organization, rapid life cycles, and the availability of multiple genetic and genomic tools. This reference provides comprehensive coverage of the Model Legume Medicago truncatula. It features review chapters as well as research chapters describing experiments carried out by the authors with clear materials and methods. Most of the chapters utilize advanced molecular techniques and biochemical analyses to approach a variety of aspects of the Model.</p> <p><i>The Model Legume Medicago truncatula</i> starts with an examination of <i>M. truncatula</i> plant development; biosynthesis of natural products; stress and <i>M. truncatula</i>; and the <i>M. truncatula</i>-<i>Sinorhizobium meliloti</i> symbiosis. Symbiosis of <i>Medicago truncatula</i> with arbuscular mycorrhiza comes next, followed by chapters on the common symbiotic signaling pathway (CSSP or SYM) and infection events in the Rhizobium-legume symbiosis. Other sections look at hormones and the rhizobial and mycorrhizal symbioses; autoregulation of nodule numbers (AON) in <i>M. truncatula</i>; <i>Medicago truncatula</i> databases and computer programs; and more.</p> <ul> <li>Contains reviews, original research chapters, and methods</li> <li>Covers most aspects of the <i>M. truncatula</i> Model System, including basic biology, biochemistry, genetics, and genomics of this system</li> <li>Offers molecular techniques and advanced biochemical analyses for approaching a variety of aspects of the Model Legume <i>Medicago truncatula</i></li> <li>Includes introductions by the editor to each section, presenting the summary of selected chapters in the section</li> <li>Features an extensive index, to facilitate the search for key terms</li> </ul> <p><i>The Model Legume Medicago truncatula</i> is an excellent book for researchers and upper level graduate students in microbial ecology, environmental microbiology, plant genetics and biochemistry. It will also benefit legume biologists, plant molecular biologists, agrobiologists, plant breeders, bioinformaticians, and evolutionary biologists.</p>
<p><b>Volume I</b></p> <p>Preface xv</p> <p>Acknowledgments xvi</p> <p>List of contributors xvii</p> <p><b>Section 1</b></p> <p>1.1 General introduction 3<br /><i>Frans J. de Bruijn</i></p> <p><b>Section 2: Overview chapters 7</b></p> <p>2.1 A snapshot of functional genetic studies in <i>Medicago truncatula</i> 9<br /><i>Yun Kang, Minguye Li, Senjuti Sinharoy, and Jerome Verdier</i></p> <p>2.2 <i>Medicago truncatula </i>as an ecological evolutionary and forage legume model: new directions forward 31<br /><i>Eric J.B. von Wettberg, Jayanti Muhkerjee, Ken Moriuchi, and Stephanie S. Porter</i></p> <p><b>Section 3: <i>Medicago truncatula </i>plant development 41</b></p> <p>3.1 Seed development: introduction 43<br /><i>Frans J. de Bruijn</i></p> <p>3.1.1 A physiological perspective of late maturation processes and establishment of seed quality in <i>Medicago truncatula </i>seeds 44<br /><i>Jerome Verdier, Olivier Leprince, and Julia Buitink</i></p> <p>3.1.2 <i>Medicago truncatula</i> an informative model to investigate the DNA damage response during seed germination 55<br /><i>Anca Macovei, Andrea Pagano, Chiara Forti, Susana Ara</i><i>újo, and Alma Balestrazzi</i></p> <p>3.1.3 Transcriptional networks in early <i>Medicago truncatula </i>embryo development 61<br /><i>Ray J. Rose</i></p> <p>3.1.4 Embryo development and the oil and protein bodies in <i>Medicago truncatula</i> 71<br /><i>Youhong Song, Xin-Ding Wang, Nathan Smith, Simon Wheeler, and Ray J. Rose</i></p> <p>3.1.5 Role of thioredoxins and NADP-thioredoxin reductases in legume seeds and seedlings 80<br /><i>Fran</i><i>çoise Montrichard, Pierre Frendo, Pascal Rey, and Bob Buchanan</i></p> <p>3.1.6 Seed shape quantification in the model legumes: methods and applications 92<br /><i>Emilio Cervantes, Ezzeddine Saadaoui, </i><i>Ángel Tocino, and Jos</i><i>é Javier Mart</i><i>ín G</i><i>ómez</i></p> <p>3.1.7 The underlying processes governing seed size plasticity: impact of endoploidy on seed coat development and cell expansion in <i>Medicago truncatula</i> 99<br /><i>S. Ochatt and M. Abirached-Darmency</i></p> <p>3.2 Root development: introduction 117<br /><i>Frans J. de Bruijn</i></p> <p>3.2.1 Nitrate signaling pathway via the transporter MtNPF6.8 involves abscisic acid for the regulation of primary root elongation in <i>Medicago truncatula</i> 118<br /><i>Anis M. Limami and Marie-Christine Mor</i><i>ère Le Paven</i></p> <p>3.2.2 <i>SCARECROW </i>and <i>SHORT</i>-<i>ROOT </i>show an overlapping expression pattern in the <i>Medicago truncatula </i>nodule central meristem 125<br /><i>Henk J. Franssen, Olga Kulikova, Xi Wan, Auke Adams, and Renze Heidstra</i></p> <p>3.2.3 Lateral root formation and patterning in <i>Medicago truncatula</i> 130<br /><i>Sandra Bensmihen</i></p> <p>3.2.4 Modulation of root elongation by abscisic acid and LATERAL ROOT ORGAN DEFECTIVE/NUMEROUS INFECTIONS AND POLYPHENOLICS via reactive oxygen species in <i>Medicago truncatula</i> 136<br /><i>Jeanne M. Harris and Chang Zhang</i></p> <p>3.2.5 FYVE and PH protein domains present in MtZR1 a PRAF protein modulate the development of roots and symbiotic root nodules of <i>Medicago truncatula </i>via potential phospholipids signaling 144<br /><i>Julie Hopkins, Olivier Pierre, Pierre Frendo, and Eric Boncompagni</i></p> <p>3.3 Leaf development: introduction 153<br /><i>Frans J. de Bruijn</i></p> <p>3.3.1 Compound leaf development in <i>Medicago truncatula</i> 154<br /><i>Rujin Chen</i></p> <p>3.3.2 Mechanistic insights into <i>STENOFOLIA </i>mediated leaf blade outgrowth in <i>Medicago truncatula</i> 173<br /><i>Fei Zhang, Hui Wang, and Million Tadege</i></p> <p>3.4 Flower development: introduction 181<br /><i>Frans J. de Bruijn</i></p> <p>3.4.1 Genetic control of flowering time in legumes 182<br /><i>James L. Weller, Richard C. Macknight</i></p> <p>3.4.2 Forward and reverse screens to identify genes that control vernalization and flowering time in <i>Medicago truncatula</i> 189<br /><i>Mauren Jaudal, Geoffrey Thomson, Lulu Zhang, Chong Che, Jiangqi Wen, Kirankumar S. Mysore, Million Tadege, and Joanna Putterill</i></p> <p>3.4.3 <i>MtNAM </i>regulates floral organ identity and lateral organ separation in <i>Medicago truncatula</i> 197<br /><i>Xiaofei Cheng, Jianling Peng, Rujin Chen, Kirankumar S. Mysore, and Jiangqi Wen</i></p> <p><b>Section 4: Biosynthesis of natural products: introduction 207</b></p> <p>4.1 Organization and regulation of triterpene saponin biosynthesis in <i>Medicago truncatula</i> 209<br /><i>Jan Mertens and Alain Goossens</i></p> <p>4.2 Saponins in <i>Medicago truncatula</i>: structures and activities 220<br /><i>Catherine Sivignon, Isabelle Rahioui, and Pedro da Silva</i></p> <p>4.3 Saponin synthesis in <i>Medicago truncatula </i>plants: CYP450-mediated formation of sapogenins in the different plant organs 225<br /><i>Maria Carelli, Massimo Confalonieri, Aldo Tava, Elisa Biazzi, Ornella Calderini, Pamela Abbruscato, Maria Cammareri, and Carla Scotti</i></p> <p><b>Section 5: Stress and <i>Medicago truncatula</i> 237</b></p> <p>5.1 Abiotic stress: introduction 239<br /><i>Frans J. de Bruijn</i></p> <p>5.1.1 Genomic and transcriptomic basis of salinity adaptation and transgenerational plasticity in <i>Medicago truncatula</i> 240<br /><i>Maren L. Friesen</i></p> <p>5.1.2 Isolation and functional characterization of salt-stress induced <i>RCI2</i>-like genes from <i>Medicago sativa </i>and <i>Medicago truncatula</i> 243<br /><i>Ruicai Long, Fan Zhang, Tiejun Zhang, Junmei Kang, and Qingchuan Yang</i></p> <p>5.1.3 Rhizobial symbiosis influences response to early salt and drought stress of the <i>Medicago truncatula </i>root proteome 253<br /><i>Reinhard Turetschek, Christiana Staudinger, and StefanieWienkoop</i></p> <p>5.1.4 Deciphering the role of the alternative respiration under salt stress in <i>Medicago truncatula</i> 261<br /><i>Nestor F Del-Saz, Francisco Palma, Jose Antonio Herrera-Cervera, and Miquel Ribas-Carbo</i></p> <p>5.1.5 Effect of arsenic on legumes: analysis in the model <i>Medicago truncatula–Ensifer </i>interaction 268<br /><i>Elo</i><i>ísa Pajuelo, Ignacio D. Rodr</i><i>íguez-Llorente, and Miguel A. Caviedes</i></p> <p>5.1.6 Dual oxidative stress control involving antioxidant defense system and alternative oxidase pathways within the model legume <i>Medicago truncatula </i>under biotic and abiotic constraints 281<br /><i>Haythem Mhadhbi</i></p> <p><b>Section 5.2: Biotic stress: interaction of <i>Medicago truncatula </i>with pathogens and pests 289</b></p> <p>5.2.1 Interaction with root and foliar pathogens: introduction 291<br /><i>Frans J. de Bruijn</i></p> <p>5.2.1.1 <i>Medicago truncatula </i>and other annual <i>Medicago </i>spp. – interactions with root and foliar fungal oomycete and viral pathogens 293<br /><i>Martin J. Barbetti, Ming Pei You, and Roger A.C. Jones</i></p> <p>5.2.1.2 Deciphering resistance mechanisms to the root rot disease of legumes caused by <i>Aphanomyces euteiches </i>with <i>Medicago truncatula </i>genetic and genomic resources 307<br /><i>Christophe Jacquet and Maxime Bonhomme</i></p> <p>5.2.1.3 <i>Medicago truncatula </i>as a model organism to study conserved and contrasting aspects of symbiotic and pathogenic signaling pathways 317<br /><i>Aleksandr Gavrin and Sebastian Schornack</i></p> <p>5.2.1.4 Tools and strategies for genetic and molecular dissection of <i>Medicago truncatula </i>resistance against <i>Fusarium </i>wilt disease 331<br /><i>Louise F. Thatcher, Brendan N. Kidd, and Karam B. Singh</i></p> <p>5.2.1.5 <i>Medicago truncatula </i>as a model host for genetic and molecular dissection of resistance to <i>Rhizoctonia solani</i> 340<br /><i>Jonathan P. Anderson, Brendan N. Kidd, and Karam B. Singh</i></p> <p>5.2.1.6 Phosphorus control of plant interactions with mutualistic and pathogenic microorganisms: a mini-review and a case study of the <i>Medicago truncatula </i>B9 mutant 346<br /><i>Elise Thalineau, Carine Fournier, Sylvain Jeandroz, and Hoai-Nam Truong</i></p> <p>5.2.1.7 The <i>Medicago truncatula–Ralstonia solanacearum </i>pathosystem opens up many research perspectives 355<br /><i>Fabienne Vailleau</i></p> <p>5.2.2 Aphid stress: introduction 362<br /><i>Frans J. de Bruijn</i></p> <p>5.2.2.1 <i>Medicago truncatula</i>–aphid interactions 363<br /><i>Lars G. Kamphuis, Ling-Ling Gao, Colin G.N. Turnbull, and Karam B. Singh</i></p> <p>5.2.2.2 <i>Medicago truncatula</i>–pea aphid interaction in the context of global climate change 369<br /><i>Yucheng Sun, Huijuan Guo, and Feng Ge</i></p> <p>5.2.3 Interactions with other pathogens and parasites: introduction 377<br /><i>Frans J. de Bruijn</i></p> <p>5.2.3.1 Characterization of defense mechanisms to parasitic plants in the model <i>Medicago truncatula</i> 378<br /><i>M. </i><i>Ángeles Castillejo, M</i><i>ónica Fern</i><i>ández-Aparicio, and Diego Rubiales</i></p> <p>5.2.3.2 <i>Medicago truncatula </i>host/nonhost legume rust interactions 384<br /><i>Maria Carlota Vaz Patto and Diego Rubiales</i></p> <p>5.2.3.3 <i>Medicago truncatula </i>as a model to study powdery mildew resistance 390<br /><i>Nicolas Rispail, Elena Prats, and Diego Rubiales</i></p> <p>5.2.3.4 Antifungal defensins from <i>Medicago truncatula</i>: structure–activity relationships modes of action and biotech applications 398<br /><i>Siva L.S. Velivelli, Kazi T. Islam, and Dilip M. Shah</i></p> <p>5.2.3.5 Leaf me alone: <i>Medicago truncatula </i>defenses against foliar lepidopteran herbivores 409<br /><i>Jacqueline C. Bede</i></p> <p><b>Section 6: The <i>Medicago truncatula–Sinorhizobium meliloti </i>symbiosis 429</b></p> <p>6.1 Symbiotic nitrogen fixation: introduction 431<br /><i>Frans J. de Bruijn</i></p> <p>6.2 Signaling and early infection events in the rhizobium–legume symbiosis: introduction 432<br /><i>Frans J. de Bruijn</i></p> <p>6.2.1 The role of the flavonoid pathway in <i>Medicago truncatula </i>in root nodule formation. A review 434<br /><i>Ulrike Mathesius</i></p> <p>6.2.2 Expression and function of the <i>Medicago truncatula </i>lysin motif receptor-like kinase (LysM-RLK) gene family in the legume–rhizobia symbiosis 439<br /><i>Jean-Jacques Bono, Judith Fliegmann, Clare Gough, and Julie Cullimore</i></p> <p>6.2.3 Nod factor hydrolysis in <i>Medicago truncatula</i>: signal inactivation or formation of secondary signals? 448<br /><i>Jie Cai, Ru-Jie Li, Yi-Han Wang, Zhi-Ping Xie, and Christian Staehelin</i></p> <p>6.2.4 The <i>Medicago truncatula </i>E3 ubiquitin ligase PUB1 negatively regulates rhizobial and arbuscular mycorrhizal symbioses through its ubiquitination activity 453<br /><i>Tatiana Verni</i><i>é, Malick Mbengue, and Christine Herv</i><i>é</i></p> <p>6.2.5 Encoding nuclear calcium oscillations in root symbioses 461<br /><i>Aisling Cooke and Myriam Charpentier</i></p> <p><b>Section 7: Symbiosis of <i>Medicago truncatula </i>with arbuscular mycorrhiza 467</b></p> <p>7.1 Signaling and infection events in the arbuscular mycorrhiza–<i>Medicago truncatula </i>symbiosis: introduction 469<br /><i>Frans J. de Bruijn</i></p> <p>7.1.1 The symbiosis of <i>Medicago truncatula </i>with arbuscular mycorrhizal fungi 471<br /><i>Nazli Merve Dursun, Eva Nouri, and Didier Reinhardt</i></p> <p>7.1.2 Role of phytohormones in arbuscular mycorrhiza development 485<br /><i>Debatosh Das and Caroline Gutjahr</i></p> <p>7.1.3 Laser microdissection of arbuscular mycorrhiza 501<br /><i>Erik Limpens</i></p> <p>7.1.4 Truncated arbuscules formed in the <i>Medicago truncatula </i>mutant MtHA1 maintain mycorrhiza-induced resistance 513<br /><i>Haoqiang Zhang and Philipp Franken</i></p> <p><b>Section 8: The common symbiotic signaling pathway (CSSP or SYM) 521</b></p> <p>8.1 The common symbiotic signaling pathway 523<br /><i>Fr</i><i>éd</i><i>éric Debell</i><i>é</i></p> <p>8.2 Contribution of model legumes to knowledge of actinorhizal symbiosis 529<br /><i>Didier Bogusz and Claudine Franche</i></p> <p>8.3 DELLA proteins are common components of the symbiotic rhizobial and mycorrhizal signaling pathways 537<br /><i>Qiujin Xie and Ertao Wang</i></p> <p><b><br />Volume II</b></p> <p>Preface xv</p> <p>Acknowledgments xvi</p> <p>List of contributors xvii</p> <p><b>Section 9: Infection events in the Rhizobium–legume symbiosis 543</b></p> <p>9.1 Genes induced during the rhizobial infection process: introduction 545<br /><i>Frans J. de Bruijn</i></p> <p>9.1.1 Comparative analysis of tubulin cytoskeleton rearrangements in nodules of <i>Medicago truncatula </i>and <i>Pisum sativum</i> 547<br /><i>Viktor E. Tsyganov, Anna B. Kitaeva, and Kirill N. Demchenko</i></p> <p>9.1.2 Post-transcriptional reprogramming during root nodule symbiosis 554<br /><i>Mauricio Alberto Reynoso, Soledad Traubenik, Karen Hobecker, Flavio Blanco, and Mar</i><i>ía Eugenia Zanetti</i></p> <p>9.1.3 MtKNOX3 – a possible regulator of cytokinin pathway during nodule development in <i>Medicago truncatula</i> 563<br /><i>M. Azarakhsh, Maria A. Lebedeva, and L.A. Lutova</i></p> <p>9.1.4 Features of <i>Sinorhizobium meliloti </i>exopolysaccharide succinoglycan required for successful invasion of <i>Medicago truncatula </i>nodules 571<br /><i>Kathryn M. Jones</i></p> <p>9.1.5 Infection thread development in model legumes 579<br /><i>Daniel J. Gage</i></p> <p>9.2 Rhizobial release symbiosomes and bacteroid formation: introduction 589<br /><i>Frans J. de Bruijn</i></p> <p>9.2.1 The <i>Defective in Nitrogen Fixation </i>genes of <i>Medicago truncatula </i>reveal key features in the intracellular association with rhizobia 591<br /><i>Xiaoyi Wu and Dong Wang</i></p> <p>9.2.2 Terminal bacteroid differentiation in the <i>Medicago–Rhizobium </i>interaction – a tug of war between plant and bacteria 600<br /><i>Andreas F. Haag and Peter Mergaert</i></p> <p>9.2.3 More than antimicrobial: nodule cysteine-rich peptides maintain a working balance between legume plant hosts and rhizobia bacteria during nitrogen-fixing symbiosis 617<br /><i>Huairong Pan</i></p> <p>9.2.4 Functional dissection of <i>Medicago truncatula </i>NODULES WITH ACTIVATED DEFENSE 1 in maintenance of rhizobial endosymbiosis 627<br /><i>Haixiang Yu, Chao Wang, Liuyang Cai, Bei Huang, and Zhongming Zhang</i></p> <p>9.2.5 Which role for <i>Medicago truncatula </i>non-specific lipid transfer proteins in rhizobial infection? 637<br /><i>Chiara Santi, Barbara Molesini, and Tiziana Pandolfini</i></p> <p>9.2.6 Syntaxin MtSYP132 defines symbiotic membranes in <i>Medicago truncatula </i>root nodules 645<br /><i>Madhavi Avadhani, Christina M. Catalano, and D. Janine Sherrier</i></p> <p>9.3 Nodule and bacteroid functioning: introduction 650<br /><i>Frans J. de Bruijn</i></p> <p>9.3.1 Metal transport in <i>Medicago truncatula </i>nodule rhizobia-infected cells 652<br /><i>Isidro Abreu, Viviana Escudero, Jes</i><i>ús Montiel, Rosario Castro-Rodr</i><i>íguez, and Manuel Gonz</i><i>ález-Guerrero</i></p> <p>9.3.2 Inhibition of glutamine synthetase leads to a fast transcriptional activation of defense responses in root nodules 665<br /><i>Ana Rita Seabra and Helena Carvalho</i></p> <p>9.3.3 Complex dynamics and synchronization of N-feedback and C alteration in the nodules of <i>Medicago truncatula </i>under abundant N or sub-optimal P supply 674<br /><i>Saad Sulieman</i></p> <p>9.4 Bacteroid senescence: introduction 681<br /><i>Frans J. de Bruijn</i></p> <p>9.4.1 Involvement of proteases during nodule senescence in leguminous plants 683<br /><i>Li Yang, Camille Syska, Isabelle Garcia, Pierre Frendo, and Eric Boncompagni</i></p> <p>9.4.2 Senescence of <i>Medicago truncatula </i>root nodules: NO balance 694<br /><i>Pauline Blanquet, Claude Bruand, and Eliane Meilhoc</i></p> <p>9.4.3 <i>Medicago truncatula ESN1</i> a key regulator of nodule senescence and symbiotic nitrogen fixation 701<br /><i>Yuhui Chen, Jiejun Xi, and Rujin Chen</i></p> <p>9.5 Structure of indeterminate <i>Medicago truncatula </i>nodules: introduction 706<br /><i>Frans J. de Bruijn</i></p> <p>9.5.1 Development and structures of the meristems of roots and indeterminate nodules: introduction 708<br /><i>Frans J. de Bruijn</i></p> <p>9.5.1.1 Organization and ultrastructure of <i>Medicago truncatula </i>root apical meristem 709<br /><i>Monika Skawi</i><i>ńska, Izabela Sa</i><i>ńko-Sawczenko, Dominika Dmitruk,Weronika Czarnocka, and Barbara Łotocka</i></p> <p>9.5.1.2 Organization and ultrastructure of <i>Medicago truncatula </i>root nodule meristem 726<br /><i>Monika Skawi</i><i>ńska, Izabela Sa</i><i>ńko-Sawczenko, Weronika Czarnocka, and Barbara Łotocka</i></p> <p><b>Section 10: Hormones and the rhizobial and mycorrhizal symbioses 741</b></p> <p>10.1 Phytohormone regulation of <i>Medicago truncatula</i>–rhizobia interactions. A review 743<br /><i>Ulrike Mathesius</i></p> <p>10.2 Plant hormones play common and divergent roles in nodulation and arbuscular mycorrhizal symbioses 753<br /><i>Eloise Foo</i></p> <p>10.3 Auxins and other phytohormones as signals in arbuscular mycorrhiza formation 766<br /><i>Jutta Ludwig-Muller</i></p> <p>10.4 Ethylene-responsive miRNAs in roots of <i>Medicago truncatula </i>identified by high-throughput sequencing at the whole genome level 777<br /><i>Lei Chen, Tianzuo Wang, Mingui Zhao, and Wen-Hao Zhang</i></p> <p>10.5 Hormone-induced nodule-like structures in land plants: an update 785<br /><i>Jacklyn Thomas and Arijit Mukherjee</i></p> <p>10.6 Structural studies of <i>Medicago truncatula </i>proteins participating in cytokinin signal transduction and nodulation 794<br /><i>Milosz Ruszkowski</i></p> <p>10.7 Identifying auxin response factor genes and their co-expression networks in <i>Medicago truncatula</i> 802<br /><i>David J. Burks and Rajeev K. Azad</i></p> <p><b>Section 11: Autoregulation of nodule numbers (AON) in <i>Medicago truncatula</i> 809</b></p> <p>11.1 The autoregulation gene <i>SUNN </i>mediates changes in nodule and lateral root formation in response to nitrogen through changes of shoot-to-root auxin transport 811<br /><i>Ulrike Mathesius, Giel E. van Noorden, and Jian Jin</i></p> <p><b>Section 12: Genetics and genomics of <i>Medicago truncatula</i> 817</b></p> <p>12.1 Genetic map of <i>Medicago truncatula</i> 819<br /><i>Frans J. de Bruijn</i></p> <p>12.2 The genome sequence of <i>Medicago truncatula</i>: introduction 821<br /><i>Frans J. de Bruijn</i></p> <p>12.2.1 An improved genome release (Version Mt4.0) for the model legume <i>Medicago truncatula</i> 822<br /><i>Christopher D. Town</i></p> <p>12.2.2 The sequenced genomes of <i>Medicago truncatula</i> 828<br /><i>Nevin D. Young, and Peng Zhou</i></p> <p>12.3 Quantitative trait loci mapping: introduction 835<br /><i>Frans J. de Bruijn</i></p> <p>12.3.1 QTL analyses of seed germination and seedling pre-emergence growth under abiotic stresses in <i>Medicago truncatula</i> 837<br /><i>Beatrice Teulat</i></p> <p>12.3.2 Unraveling the determinants of freezing tolerance in <i>Medicago truncatula</i>: a first step toward improving the response of crop legumes to freezing stress using translational genomics 849<br /><i>Nadim Tayeh, Komlan Avia, Isabelle Lejeune-H</i><i>énaut, and Bruno Delbreil</i></p> <p>12.4 Genome-wide association and <i>Medicago truncatula</i>: introduction 862<br /><i>Frans J. de Bruijn</i></p> <p>12.4.1 Multi-locus GWAS and genome-wide composite interval mapping (GCIM) 863<br /><i>Yuan-Ming Zhang</i></p> <p>12.4.2 Genome-wide association mapping and population genomic features in <i>Medicago truncatula</i> 870<br /><i>Maxime Bonhomme and Christophe Jacquet</i></p> <p>12.4.3 The use of CRISPR/Cas9 as a reverse genetics tool to validate genome-wide association candidates 882<br /><i>Shaun J. Curtin, Peter Tiffin, and Nevin D. Young</i></p> <p>12.5 Transposons gene instability and gene tagging: introduction 887<br /><i>Frans J. de Bruijn</i></p> <p>12.5.1 Class II transposable elements in <i>Medicago truncatula</i> 888<br /><i>Dariusz Grzebelus</i></p> <p>12.6 <i>Medicago truncatula </i>and evolution: introduction 893<br /><i>Frans J. de Bruijn</i></p> <p>12.6.1 Comparative genomics suggests that an ancestral polyploidy event leads to enhanced root nodule symbiosis in the <i>Papilionoideae</i> 895<br /><i>Li Zhang, Qigang Li, Jim M. Dunwell, and Yuan-Ming Zhang</i></p> <p>12.6.2 Patterns of polymorphism recombination and selection in <i>Medicago truncatula</i> 903<br /><i>Timothy Paape</i></p> <p>12.6.3 Genome-wide determination of poly(A) sites in <i>Medicago truncatula</i>: evolutionary conservation of alternative poly(A) site choice 911<br /><i>Xiaohui Wu, Arthur G. Hunt, and Qingshun Q. Li</i></p> <p>12.7 The <i>Medicago truncatula </i>genome and translational genomics: introduction 921<br /><i>Frans J. de Bruijn</i></p> <p>12.7.1 GBS-based genome-wide association and genomic selection for alfalfa (<i>Medicago sativa</i>) forage quality improvement 923<br /><i>Elisa Biazzi, Nelson Nazzicari, Luciano Pecetti, and Paolo Annicchiarico</i></p> <p>12.8 Genomic and genetic markers in <i>Medicago truncatula</i>: introduction 928<br /><i>Frans J. de Bruijn</i></p> <p>12.8.1 Development and characterization of simple sequence repeat (SSR) markers based on RNA-sequencing of <i>Medicago sativa </i>and <i>in silico </i>mapping onto the <i>Medicago truncatula </i>genome 930<br /><i>Zan Wang</i></p> <p>12.8.2 Genome-wide development of microRNA-based SSR markers in <i>Medicago truncatula </i>with their transferability analysis and utilization in related legume species 936<br /><i>Wenxian Liu, Xueyang Min, and Yanrong Wang</i></p> <p>12.9 Small RNAs in <i>Medicago truncatula</i>: introduction 946<br /><i>Frans J. de Bruijn</i></p> <p>12.9.1 Small RNA diversity and roles in model legumes 948<br /><i>H</i><i>él</i><i>ène Proust, J</i><i>ér</i><i>émy Moreau, Martin Crespi, Caroline Hartmann, and Christine Lelandais-Bri</i><i>ère</i></p> <p>12.9.2 Small RNA deep sequencing identifies novel and salt-stress-regulated microRNAs from roots of <i>Medicago sativa </i>and <i>Medicago truncatula</i> 963<br /><i>Ruicai Long, Mingna Li, Junmei Kang, Tiejun Zhang, Yan Sun, and Qingchuan Yang</i></p> <p>12.9.3 MiR171h restricts root symbioses and shows like its target <i>NSP2</i> a complex transcriptional regulation in <i>Medicago truncatula</i> 975<br /><i>Emanuel A. Devers</i></p> <p>12.9.4 MicroRNA-based biotechnology for <i>Medicago </i>improvement 987<br /><i>Baohong Zhang and Turgay Unver</i></p> <p>12.9.5 Expression and regulation of small RNAs in the plant–microorganism symbioses in <i>Medicago truncatula</i> 991<br /><i>Danfeng Jin, Xianwen Meng, Yue Wang, Jingjing Wang, Yuhua Zhao, and Ming Chen</i></p> <p>12.10 Mutagenesis forward and reverse genetics in <i>Medicago truncatula</i>: introduction 1003<br /><i>Frans J. de Bruijn</i></p> <p>12.10.1 Isolation and characterization of non-transposon symbiotic nitrogen fixing mutants of <i>Medicago truncatula</i> 1006<br /><i>Gy</i><i>öngyi Zs. Kov</i><i>áts, Lili Fodor, Beatrix Horv</i><i>áth, </i><i>Ágota Domonkos, Gergely Iski, Yuhui Chen, Rujin Chen, and P</i><i>éter Kal</i><i>ó</i></p> <p>12.10.2 Targeted mutagenesis by an optimized agrobacterium-delivered CRISPR/Cas9 system in the model legume <i>Medicago truncatula</i> 1015<br /><i>Yingying Meng, ChongnanWang, Pengcheng Yin, Butuo Zhu, Pengcheng Zhang, Lifang Niu, and Hao Lin</i></p> <p>12.10.3 Whole genome sequencing of symbiotic nitrogen fixation mutants from the <i>Medicago truncatula Tnt1 </i>mutant population to identify relevant <i>Tnt1 </i>and <i>MERE1 </i>insertion sites 1019<br /><i>Vijaykumar Veerappan, Taylor Troiani, and Rebecca Dickstein</i></p> <p>12.10.4 A simple method for genetic crossing in <i>Medicago truncatula</i> 1027<br /><i>Marc Bosseno, Annie Lambert, Daniel Beucher, Marie Le Gleuher, Catherine Aubry, Nicolas Pauly, Fran</i><i>çoise Montrichard, and Alexandre Boscari</i></p> <p>12.10.5 An artificial-microRNA system based on an endogenous microRNA of <i>Medicago truncatula </i>to unravel the function of root endosymbiosis related genes 1033<br /><i>Emanuel A. Devers</i></p> <p>12.11 Transcriptomics in <i>Medicago truncatula</i>: introduction 1043<br /><i>Frans J. de Bruijn</i></p> <p>12.11.1 Synergism and symbioses: unpacking complex mutualistic species interactions using transcriptomic approaches 1045<br /><i>Damian Hernandez, Kasey N. Kiesewetter, Sathvik Palakurty, John R. Stinchcombe, and Michelle E. Afkhami</i></p> <p>12.11.2 Comparative genomic and transcriptomic analyses of legume genes controlling the nodulation process 1055<br /><i>Lise Pingault, Zhenzhen Qiao, and Marc Libault</i></p> <p>12.11.3 Transcriptomic profiling of genes and pathways associated with osmotic and salt stress responses in <i>Medicago truncatula</i> 1062<br /><i>Tianzuo Wang, Xiuxiu Zhang, Min Liu, and Wen-Hao Zhang</i></p> <p>12.12 <i>Medicago truncatula </i>proteomics: introduction 1069<br /><i>Frans J. de Bruijn</i></p> <p>12.12.1 Organelle protein changes in arbuscular mycorrhizal <i>Medicago truncatula </i>roots as  deciphered by subcellular proteomics 1070<br /><i>Ghislaine Recorbet, Christelle Lemaıtre-Guillier, and Daniel Wipf</i></p> <p>12.12.2 Leveraging proteome and phosphoproteome to unravel the molecular mechanisms of legume–rhizobia symbiosis 1081<br /><i>Dhileepkumar Jayaraman, Muthusubramanian Venkateshwaran, and Jean-Michel An</i><i>é</i></p> <p>12.12.3 Application of bottom-up and top-down proteomics in <i>Medicago </i>spp. 1087<br /><i>Annelie Gutsch, Kjell Sergeant, and Jenny Renaut</i></p> <p>12.12.4 <i>Medicago truncatula</i>: local response of the root nodule proteome to drought stress 1096<br /><i>Esther M. Gonzalez, Stefanie Wienkoop, Christiana Staudinger, David Lyon, and Erena Gil-Quintana</i></p> <p>12.12.5 Comparative proteomic analysis reveals differential root proteins in <i>Medicago sativa </i>and <i>Medicago truncatula </i>in response to salt stress 1102<br /><i>Ruicai Long, Mingna Li, Tiejun Zhang, Junmei Kang, Yan Sun, and Qingchuan Yang</i></p> <p>12.13 <i>Medicago truncatula </i>metabolomics: introduction 1112<br /><i>Frans J. de Bruijn</i></p> <p>12.13.1 Multifaceted investigation of metabolites during nitrogen fixation in <i>Medicago truncatula </i>via high resolution MALDI<b>-</b>MS imaging and ESI<b>-</b>MS 1113<br /><i>Erin Gemperline, Caitlin Keller, and Lingjun Li</i></p> <p><b>Section 13: <i>Medicago truncatula </i>databases and computer programs 1121</b></p> <p>13.1 MTGD: the <i>Medicago truncatula </i>genome database 1123<br /><i>Vivek Krishnakumar</i></p> <p>13.2 Transcriptional factor databases for legume plants 1131<br /><i>Quang Ong, Van-Anh Le, Nguyen Phuong Thao, and Lam-Son Phan Tran</i></p> <p>13.3 Plant Omics Data Center and CATchUP: web databases for effective gene mining utilizing public RNA-Seq-based transcriptome data 1137<br /><i>Matt Shenton, Toru Kudo, Masaaki Kobayashi, Yukino Nakamura, Hajime Ohyanagi, and Kentaro Yano</i></p> <p><b>Section 14: <i>Medicago truncatula </i>and transformation 1147</b></p> <p>14.1 Recent advances in <i>Medicago </i>spp. genetic engineering strategies 1149<br /><i>Massimo Confalonieri and Francesca Sparvoli</i></p> <p>14.2 <i>Agrobacterium tumefaciens </i>transformation of <i>Medicago truncatula </i>cell suspensions 1162<br /><i>Anelia Iantcheva and Miglena Revalska</i></p> <p>14.3 The Jemalong 2HA line used for <i>Medicago truncatula </i>transformation: hormonology and epigenetics 1170<br /><i>Ray J. Rose and Youhong Song</i></p> <p>14.4 Creation of composite plants – transformation of <i>Medicago truncatula </i>roots 1179<br /><i>Bettina Hause and Heena Yadav</i></p> <p>Index 1185</p>
<p><b>Frans de Bruijn</b> was Director of the Laboratory for Plant-Microbe Interaction, a mixed INRA/CNRS research facility with about 100 scientists and support staff in Toulouse, France. He served as Director for two years and is currently Director of Recherche DR1.</p>
<p><b>Fully covers the biology, biochemistry, genetics, and genomics of Medicago truncatula</b></p> <p>Model plant species are valuable not only because they lead to discoveries in basic biology, but also because they provide resources that facilitate translational biology to improve crops of economic importance. Plant scientists are drawn to models because of their ease of manipulation, simple genome organization, rapid life cycles, and the availability of multiple genetic and genomic tools. This reference provides comprehensive coverage of the Model Legume Medicago truncatula. It features review chapters as well as research chapters describing experiments carried out by the authors with clear materials and methods. Most of the chapters utilize advanced molecular techniques and biochemical analyses to approach a variety of aspects of the Model.</p> <p><i>The Model Legume Medicago truncatula</i> starts with an examination of <i>M. truncatula</i> plant development; biosynthesis of natural products; stress and <i>M. truncatula</i>; and the <i>M. truncatula</i>-<i>Sinorhizobium meliloti</i> symbiosis. Symbiosis of <i>Medicago truncatula</i> with arbuscular mycorrhiza comes next, followed by chapters on the common symbiotic signaling pathway (CSSP or SYM) and infection events in the Rhizobium-legume symbiosis. Other sections look at hormones and the rhizobial and mycorrhizal symbioses; autoregulation of nodule numbers (AON) in <i>M. truncatula</i>; <i>Medicago truncatula</i> databases and computer programs; and more.</p> <ul> <li>Contains reviews, original research chapters, and methods</li> <li>Covers most aspects of the <i>M. truncatula</i> Model System, including basic biology, biochemistry, genetics, and genomics of this system</li> <li>Offers molecular techniques and advanced biochemical analyses for approaching a variety of aspects of the Model Legume <i>Medicago truncatula</i></li> <li>Includes introductions by the editor to each section, presenting the summary of selected chapters in the section</li> <li>Features an extensive index, to facilitate the search for key terms</li> </ul> <p><i>The Model Legume Medicago truncatula</i> is an excellent book for researchers and upper level graduate students in microbial ecology, environmental microbiology, plant genetics and biochemistry. It will also benefit legume biologists, plant molecular biologists, agrobiologists, plant breeders, bioinformaticians, and evolutionary biologists.</p>

Diese Produkte könnten Sie auch interessieren:

Zukunftstechnologie Tissue Engineering
Zukunftstechnologie Tissue Engineering
von: Will W. Minuth, Raimund Strehl, Karl Schumacher
PDF ebook
114,99 €
Biologische Bodensanierung
Biologische Bodensanierung
von: Kassem Alef
PDF ebook
40,99 €
Zukunftstechnologie Tissue Engineering
Zukunftstechnologie Tissue Engineering
von: Will W. Minuth, Raimund Strehl, Karl Schumacher
EPUB ebook
114,99 €