Details

Viral Therapy of Cancer


Viral Therapy of Cancer


1. Aufl.

von: Kevin J. Harrington, Richard G. Vile, Hardev S. Pandha

144,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 23.05.2008
ISBN/EAN: 9780470985786
Sprache: englisch
Anzahl Seiten: 432

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

In the last decade there has been an explosion of interest in viral therapies for cancer. Viral agents have been developed that are harmless to normal tissues but selectively able to kill cancer cells. These agents have been endowed with additional selectivity and potency through genetic manipulation. Increasingly these viruses are undergoing evaluation in clinical trials, both as single agents and in combination with standard chemotherapy and radiotherapy.  <p>This book provides a comprehensive yet succinct overview of the current status of viral therapy of cancer. Chapters coherently present the advances made with individual agents and review the biological and clinical background to a range of viral therapies: structured to proceed from basic science at the bench to the patient’s bedside, they give an up-to-date and realistic evaluation of a therapy’s potential utility for the cancer patient.</p> <ul> <li>Presents state of the art knowledge on how viruses can be, and have been, used in novel therapeutic approaches for the treatment of cancer</li> <li>Describes the use of viruses as oncolytic agents, killing cells directly</li> <li>Editors are experts in the field, with experience of both laboratory and clinical research</li> </ul> <p><i>Viral Therapy of Cancer</i> is essential reading for both basic scientists and clinicians with an interest in viral therapy and gene therapy.</p>
<p>Foreword xiii</p> <p>Preface xv</p> <p>Contributors xvii</p> <p><b>1 Adenoviruses 1</b><br /><i>Kate Relph, Kevin J. Harrington, Alan Melcher and Hardev S. Pandha</i></p> <p>1.1 Introduction 1</p> <p>1.2 Viral structure and life cycle 1</p> <p>1.3 Adenoviral vectors 5</p> <p>1.4 Targeting adenoviral vectors 6</p> <p>1.5 Clinical applications of adenoviral gene therapy 7</p> <p>1.6 Adenoviral vectors for immunotherapy 7</p> <p>1.7 Adenoviral vectors for suicide gene therapy 10</p> <p>1.8 Adenoviral vectors for gene replacement therapy 11</p> <p>1.9 Oncolytic adenoviral therapy 12</p> <p>1.10 Adverse outcomes of adenoviral gene therapy 13</p> <p>1.11 Summary 13</p> <p>References 14</p> <p><b>2 Application of HSV-1 vectors to the treatment of cancer 19</b><br /><i>Paola Grandi, Kiflai Bein, Costas G. Hadjipanayis, Darren Wolfe, Xandra O. Breakefield and Joseph C. Glorioso</i></p> <p>2.1 Introduction 19</p> <p>2.2 Basic biology of HSV 19</p> <p>2.3 Replication competent or oncolytic vectors 24</p> <p>2.4 Replication defective vectors 28</p> <p>2.5 Amplicons 30</p> <p>2.6 Impediments to the efficacy of HSV vectors for cancer gene therapy 32</p> <p>2.7 Strategies to enhance the efficacy and specificity of HSV vectors for cancer gene therapy 36</p> <p>2.8 Summary and conclusions 42</p> <p>Acknowledgements 42</p> <p>References 42</p> <p><b>3 Adeno-associated virus 55</b><br /><i>Selvarangan Ponnazhagan</i></p> <p>3.1 Introduction 55</p> <p>3.2 Biology and life cycle of AAV 55</p> <p>3.3 AAV serotypes 57</p> <p>3.4 Production of recombinant AAV 57</p> <p>3.5 Gene therapy for cancer treatment 57</p> <p>3.6 Anti-oncogenic properties of AAV 58</p> <p>3.7 Molecular chemotherapy studies with rAAV 59</p> <p>3.8 AAV-mediated sustained transgene expression as a potential cancer gene therapy strategy 59</p> <p>3.9 rAAV vectors have advantages in stimulating T helper 1/cytotoxic T lymphocyte responses 60</p> <p>3.10 rAAV vectors can be used to initiate immune responses 61</p> <p>3.11 Altering AAV tropism for tumour-specific delivery 62</p> <p>3.12 Clinical trials involving rAAV 62</p> <p>3.13 Conclusion 63</p> <p>Acknowledgements 63</p> <p>References 63</p> <p><b>4 Retroviruses 69</b><br /><i>Simon Chowdhury and Yasuhiro Ikeda</i></p> <p>4.1 Introduction 69</p> <p>4.2 Structure of retroviral particles 69</p> <p>4.3 Retroviral genome 69</p> <p>4.4 Retroviral life cycle 70</p> <p>4.5 Retroviral vectors 71</p> <p>4.6 Safety of retroviral vectors: insertional mutagenesis 72</p> <p>4.7 Gene therapy of X-linked SCID 72</p> <p>4.8 Retroviral cancer gene therapy 75</p> <p>4.9 Immunomodulatory approaches 78</p> <p>4.10 Conclusions 79</p> <p>References 80</p> <p><b>5 Lentiviral vectors for cancer gene therapy 83</b><br /><i>Antonia Follenzi and Elisa Vigna</i></p> <p>5.1 Development of lentiviral vectors (LV) 83</p> <p>5.2 Targeting of transgene expression 85</p> <p>5.3 Host immune responses to LV and their transgene 86</p> <p>5.4 Transgenesis 87</p> <p>5.5 Haematopoietic stem cell gene transfer 87</p> <p>5.6 Cancer treatment by LV 89</p> <p>5.7 Approved clinical trials using LV 91</p> <p>5.8 Conclusions 91</p> <p>References 91</p> <p><b>6 Poxviruses as immunomodulatory cancer therapeutics 95</b><br /><i>Kevin J. Harrington, Hardev S. Pandha and Richard G. Vile</i></p> <p>6.1 Introduction 95</p> <p>6.2 General features of poxvirus structure and biology 95</p> <p>6.3 Clinically applicable poxviruses 97</p> <p>6.4 Poxviruses as potential cancer therapeutics 99</p> <p>6.5 Clinical experience with poxviruses 102</p> <p>6.6 Conclusions 110</p> <p>References 110</p> <p><b>7 Oncolytic herpes simplex viruses 115</b><br /><i>Guy R. Simpson and Robert S. Coffin</i></p> <p>7.1 Introduction 115</p> <p>7.2 Herpes simplex virology 115</p> <p>7.3 Properties of HSV relevant to oncolytic virus therapy 117</p> <p>7.4 Mutations giving tumour-selective replication 118</p> <p>7.5 Oncolytic HSV expressing fusogenic membrane glycoproteins (FMG) 125</p> <p>7.6 Prodrug activation therapy and oncolytic HSV 126</p> <p>7.7 Combination of oncolytic HSV with immunomodulatory gene expression 127</p> <p>7.8 Combination of conventional therapies with oncolytic HSV 128</p> <p>7.9 Summary 129</p> <p>Acknowledgement 130</p> <p>References 130</p> <p><b>8 Selective tumour cell cytotoxicity by reoviridae – preclinical evidence and clinical trial results 139</b><br /><i>Laura Vidal, Matt Coffey and Johann de Bono</i></p> <p>8.1 Introduction 139</p> <p>8.2 Reovirus structure 139</p> <p>8.3 Reovirus replication 140</p> <p>8.4 Reovirus and human infection 141</p> <p>8.5 Oncolytic activitiy 142</p> <p>8.6 Mechanism of reovirus-induced cytotoxicity 145</p> <p>8.7 Preclinical experience 145</p> <p>8.8 Immunogenicity 146</p> <p>8.9 Clinical experience 146</p> <p>8.10 Conclusions 147</p> <p>References 148</p> <p><b>9 Oncolytic vaccinia 151</b><br /><i>M. Firdos Ziauddin and David L. Bartlett</i></p> <p>9.1 Introduction 151</p> <p>9.2 Biology of vaccinia virus 151</p> <p>9.3 Tumour selectivity and antitumour effect 153</p> <p>9.4 Improving antitumour effects through bystander effects 160</p> <p>9.5 Immune response to vaccinia and vaccinia immune evasion strategies 161</p> <p>9.6 Virus-driven antitumour immune response 163</p> <p>9.7 Imaging 164</p> <p>9.8 Current and potential clinical applications 165</p> <p>References 166</p> <p><b>10 Newcastle Disease virus: a promising vector for viral therapy of cancer 171</b><br /><i>Volker Schirrmacher and Philippe Fournier</i></p> <p>10.1 Introduction 171</p> <p>10.2 Structure, taxonomy, pathogenicity and oncolytic properties of NDV 171</p> <p>10.3 Human application and safety 172</p> <p>10.4 Tumour-selective replication of NDV 174</p> <p>10.5 Virally based cancer immunotherapy and danger signals 174</p> <p>10.6 NDV: a danger signal inducing vector 175</p> <p>10.7 The human cancer vaccine ATV-NDV 176</p> <p>10.8 Pre-existing antitumour memory T cells from cancer patients and their activation by antitumour vaccination with ATV-NDV 177</p> <p>10.9 Clinical trials of antitumour vaccination with ATV-NDV 177</p> <p>10.10 NDV-specific recombinant bispecific antibodies to augment antitumour immune responses 179</p> <p>10.11 NDV-binding bispecific fusion proteins to improve cancer specific virus targeting 180</p> <p>10.12 Recombinant NDV as a new vector for vaccination and gene therapy 180</p> <p>10.13 Conclusion 181</p> <p>References 182</p> <p><b>11 Vesicular stomatitis virus 187</b><br /><i>John Bell, Kelly Parato and Harold Atkins</i></p> <p>11.1 Introduction 187</p> <p>11.2 VSV: genomic organization and life cycle 187</p> <p>11.3 Host range and pathogenesis of VSV infection 188</p> <p>11.4 Control of VSV infection by the innate type I interferon response 189</p> <p>11.5 Cancer cells are insensitive to type I interferon 190</p> <p>11.6 VSV preferentially replicates in and lyses tumour cells in vitro 190</p> <p>11.7 VSV attenuation: enhanced tumour selectivity and therapeutic index 192</p> <p>11.8 Engineered/recombinant VSV 192</p> <p>11.9 VSV effectively eradicates tumours in vivo 193</p> <p>11.10 VSV and the host immune response 194</p> <p>11.11 Host immunity vs. therapeutic efficacy 195</p> <p>11.12 VSV is a potent vaccine 195</p> <p>11.13 Innate sensing of VSV and the antitumour response 196</p> <p>11.14 So what is a good oncolytic virus? 197</p> <p>11.15 Future challenges for VSV 198</p> <p>References 199</p> <p><b>12 Measles as an oncolytic virus 205</b><br /><i>Adele Fielding</i></p> <p>12.1 Introduction 205</p> <p>12.2 Measles virus and the consequences of natural infection 205</p> <p>12.3 MV vaccine 206</p> <p>12.4 MV genetics and engineering 206</p> <p>12.5 MV receptors 207</p> <p>12.6 Animal models for the study of MV pathogenesis and oncolysis 207</p> <p>12.7 Oncolytic activity of MV 208</p> <p>12.8 Mechanism of specificity 208</p> <p>12.9 Targeting MV entry 209</p> <p>12.10 Enhancing the oncolytic activity of MV 210</p> <p>12.11 Interactions with the immune system 210</p> <p>12.12 Potential specific toxicities of clinical use of replicating attenuated MV 211</p> <p>12.13 Clinical trials 211</p> <p>12.14 Conclusions 212</p> <p>References 212</p> <p><b>13 Alphaviruses 217</b><br /><i>Ryuya Yamanaka</i></p> <p>13.1 Introduction 217</p> <p>13.2 RNA viruses as gene expression vectors 218</p> <p>13.3 The biology of alphaviruses 218</p> <p>13.4 Heterologous gene expression using alphavirus vectors 220</p> <p>13.5 Cancer gene therapy strategies using alphavirus vectors 221</p> <p>13.6 Alphavirus vector development for gene therapy application 223</p> <p>13.7 Conclusions 224</p> <p>References 225</p> <p><b>14 Tumour-suppressor gene therapy 229</b><br /><i>Bingliang Fang and Jack A. Roth</i></p> <p>14.1 Tumour-suppressor genes 229</p> <p>14.2 Use of tumour-suppressing genes for cancer therapy 231</p> <p>14.3 Clinical trials of p53 gene replacement 232</p> <p>14.4 Tumour-suppressor gene therapy in multimodality anticancer treatment 233</p> <p>14.5 Future prospects 235</p> <p>Acknowledgements 235</p> <p>References 236</p> <p><b>15 RNA interference and dominant negative approaches 241</b><br /><i>Charlotte Moss and Nick Lemoine</i></p> <p>15.1 Introduction 241</p> <p>15.2 Oligonucleotide agents 241</p> <p>15.3 Mechanism of RNAi 242</p> <p>15.4 RNAi and antisense compared 243</p> <p>15.5 siRNA design 244</p> <p>15.6 Off-target effects 244</p> <p>15.7 Induction of innate immunity 246</p> <p>15.8 Methods of delivery 247</p> <p>15.9 Antisense 251</p> <p>15.10 Dominant negative approaches 252</p> <p>15.11 Research applications of siRNA 252</p> <p>15.12 Therapeutic applications of siRNA 252</p> <p>References 253</p> <p><b>16 Gene-directed enzyme prodrug therapy 255</b><br /><i>Silke Schepelmann, Douglas Hedley, Lesley M. Ogilvie and Caroline J. Springer</i></p> <p>16.1 Introduction 255</p> <p>16.2 Enzyme-prodrug systems for GDEPT 255</p> <p>16.3 Gene delivery vectors for GDEPT 262</p> <p>16.4 Conclusions 268</p> <p>References 269</p> <p><b>17 Immunomodulatory gene therapy 277</b><br /><i>Denise Boulanger and Andrew Bateman</i></p> <p>17.1 Introduction 277</p> <p>17.2 Immunotherapy strategies using viral vectors 277</p> <p>17.3 Viruses used as viral vectors in cancer immunotherapy 280</p> <p>17.4 Clinical trials against specific TAA 283</p> <p>17.5 Conclusions and future prospects 289</p> <p>References 290</p> <p><b>18 Antiangiogenic gene delivery 295</b><br /><i>Anita T. Tandle and Steven K. Libutti</i></p> <p>18.1 Angiogenesis: role in tumour development and metastasis 295</p> <p>18.2 Targeting tumour vasculature as an approach for cancer treatment 297</p> <p>18.3 Viral vectors to deliver antiangiogenic gene products 299</p> <p>18.4 Viral targeting 303</p> <p>18.5 Concluding remarks 306</p> <p>References 306</p> <p><b>19 Radiosensitization in viral gene therapy 313</b><br /><i>Jula Veerapong, Kai A. Bickenbach and Ralph R. Weichselbaum</i></p> <p>19.1 Introduction 313</p> <p>19.2 Adenovirus 313</p> <p>19.3 Adeno-associated viruses 314</p> <p>19.4 Herpes simplex viruses 314</p> <p>19.5 Enhancing the effect of radiation by delivering tumour suppressor genes 316</p> <p>19.6 Virus-directed enzyme prodrug therapy 316</p> <p>19.7 Conclusions 322</p> <p>References 324</p> <p><b>20 Radioisotope delivery 327</b><br /><i>Inge D.L. Peerlinck and Georges Vassaux</i></p> <p>20.1 Introduction 327</p> <p>20.2 History of iodine therapy 327</p> <p>20.3 Genetic therapy 330</p> <p>20.4 Conclusion 338</p> <p>References 338</p> <p><b>21 Radioprotective gene therapy: current status and future goals 341</b><br /><i>Joel S. Greenberger and Michael W. Epperly</i></p> <p>21.1 Introduction 341</p> <p>21.2 Organ-specific radiation protection: oral cavity/oropharynx 342</p> <p>21.3 MnSOD-PL treatment reduces pulmonary irradiation damage 354</p> <p>21.4 MnSOD-PL gene therapy down-modulates marrow cell migration to the lungs 357</p> <p>21.5 MnSOD-PL systemic administration for radiation protection from TBI 358</p> <p>21.6 Summary and future directions 359</p> <p>References 360</p> <p><b>22 Chemoprotective gene delivery 377</b><br /><i>Michael Milsom, Axel Schambach, David Williams and Christopher Baum</i></p> <p>22.1 Introduction 377</p> <p>22.2 The promise of chemoselection strategies 377</p> <p>22.3 The limitations of chemoselection strategies 381</p> <p>22.4 Which expression level of chemoprotective genes is appropriate? 384</p> <p>22.5 Vector design to achieve optimal expression levels 385</p> <p>22.6 Exploring side effects of continued transgene expression and insufficient chemoprotection 387</p> <p>22.7 The future: inducible expression of drug resistance genes 388</p> <p>Acknowledgements 389</p> <p>References 389</p> <p>Index 393</p>
"The book is easy to read and is likely to be consulted by students, experienced researchers and medical practitioners alike." (<i>Society for General Microbiology</i>, November 2008)
<p><strong>Dr K. J. Harrington</strong>, Targeted Therapy Laboratory, Cancer Research UK, Centre for Cell and Molecular Biology, Institute of Cancer Research, London, UK. <p><strong>Dr H. S. Pandha</strong>, Department of Medical Oncology, St. George's Hospital Medical School, London, UK. <p><strong>Professor R. G. Vile</strong>, Molecular Medicine Program,?Mayo Clinic, Rochester, USA.
In the last decade there has been an explosion of interest in viral therapies for cancer. Viral agents have been developed that are harmless to normal tissues but selectively able to kill cancer cells. These agents have been endowed with additional selectivity and potency through genetic manipulation. Increasingly these viruses are undergoing evaluation in clinical trials, both as single agents and in combination with standard chemotherapy and radiotherapy. <p>This book provides a comprehensive yet succinct overview of the current status of viral therapy of cancer. Chapters coherently present the advances made with individual agents and review the biological and clinical background to a range of viral therapies: structured to proceed from basic science at the bench to the patient's bedside, they give an up-to-date and realistic evaluation of a therapy's potential utility for the cancer patient.</p> <ul> <li> <div>Presents state-of-the-art knowledge on how viruses can be, and have been,used in novel therapeutic approaches for the treatment of cancer</div> </li> <li> <div>Describes the use of viruses as oncolytic agents, killing cells directly</div> </li> <li> <div>Editors are experts in the field, with experience of both laboratory and clinical research</div> </li> </ul> <p>Viral Therapy of Cancer is essential reading for both basic scientists and clinicians with an interest in viral therapy and gene therapy.</p>

Diese Produkte könnten Sie auch interessieren:

Automatische genetische Analytik
Automatische genetische Analytik
von: Jörg vom Stein, Thomas Schäfer, Günter Mertes
PDF ebook
67,99 €
Grüne Gentechnik im Widerstreit
Grüne Gentechnik im Widerstreit
von: Wolfgang van den Daele, Herbert Sukopp, Alfred Pühler
PDF ebook
53,99 €