Details

Ultrasound Elastography for Biomedical Applications and Medicine


Ultrasound Elastography for Biomedical Applications and Medicine


Wiley Series in Acoustics Noise and Vibration 1. Aufl.

von: Ivan Z. Nenadic, Matthew W. Urban, James F. Greenleaf, Jean-Luc Gennisson, Miguel Bernal, Mickael Tanter

139,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 25.10.2018
ISBN/EAN: 9781119021544
Sprache: englisch
Anzahl Seiten: 616

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Ultrasound Elastography for Biomedical Applications and Medicine</b></p> <p>Ivan Z. Nenadic, Matthew W. Urban, James F. Greenleaf, Mayo Clinic Ultrasound Research Laboratory, Mayo Clinic College of Medicine, USA</p> <p>Jean-Luc Gennisson, Miguel Bernal, Mickael Tanter, Institut Langevin – Ondes et Images, ESPCI ParisTech CNRS, France</p> <p><b><i>Covers all major developments and techniques of Ultrasound Elastography and biomedical applications</i></b></p> <p>The field of ultrasound elastography has developed various techniques with the potential to diagnose and track the progression of diseases such as breast and thyroid cancer, liver and kidney fibrosis, congestive heart failure, and atherosclerosis. Having emerged in the last decade, ultrasound elastography is a medical imaging modality that can noninvasively measure and map the elastic and viscous properties of soft tissues.</p> <p><i>Ultrasound Elastography for Biomedical Applications and Medicine</i> covers the basic physics of ultrasound wave propagation and the interaction of ultrasound with various media. The book introduces tissue elastography, covers the history of the field, details the various methods that have been developed by research groups across the world, and describes its novel applications, particularly in shear wave elastography.</p> <p>Key features:</p> <ul> <li>Covers all major developments and techniques of ultrasound elastography and biomedical applications.</li> <li>Contributions from the pioneers of the field secure the most complete coverage of ultrasound elastography available.</li> </ul> <p>The book is essential reading for researchers and engineers working in ultrasound and elastography, as well as biomedical engineering students and those working in the field of biomechanics.</p>
<p>List of Contributors xix</p> <p>Section I Introduction 1</p> <p><b>1 Editors’ Introduction 3<br /></b><i>Ivan Nenadic, Matthew Urban, James Greenleaf, Jean-Luc Gennisson,Miguel Bernal, and Mickael Tanter</i></p> <p>References 5</p> <p><b>Section II Fundamentals of Ultrasound Elastography 7</b></p> <p><b>2 Theory of Ultrasound Physics and Imaging 9<br /></b><i>Roberto Lavarello andMichael L. Oelze</i></p> <p>2.1 Introduction 9</p> <p>2.2 Modeling the Response of the Source to Stimuli [h(t)] 10</p> <p>2.3 Modeling the Fields from Sources [p(t, x)] 12</p> <p>2.4 Modeling an Ultrasonic Scattered Field [s(t, x)] 15</p> <p>2.5 Modeling the Bulk Properties of the Medium [a(t, x)] 19</p> <p>2.6 Processing Approaches Derived from the Physics of Ultrasound [Ω] 21</p> <p>2.7 Conclusions 26</p> <p>References 27</p> <p><b>3 Elastography and the Continuum of Tissue Response 29<br /></b><i>Kevin J. Parker</i></p> <p>3.1 Introduction 29</p> <p>3.2 Some Classical Solutions 31</p> <p>3.3 The Continuum Approach 32</p> <p>3.4 Conclusion 33</p> <p>Acknowledgments 33</p> <p>References 34</p> <p><b>4 Ultrasonic Methods for Assessment of TissueMotion in Elastography 35<br /></b><i>Jingfeng Jiang and Bo Peng</i></p> <p>4.1 Introduction 35</p> <p>4.2 Basic Concepts and their Relevance in Tissue Motion Tracking 36</p> <p>4.3 Tracking Tissue Motion through Frequency-domain Methods 37</p> <p>4.4 Maximum Likelihood (ML) Time-domain Correlation-based Methods 39</p> <p>4.5 Tracking Tissue Motion through Combining Time-domain and Frequency-domain Information 44</p> <p>4.6 Time-domain Maximum A Posterior (MAP) Speckle Tracking Methods 45</p> <p>4.7 Optical Flow-based Tissue Motion Tracking 53</p> <p>4.8 Deformable Mesh-based Motion-tracking Methods 55</p> <p>4.9 Future Outlook 57</p> <p>4.10 Conclusions 63</p> <p>Acknowledgments 63</p> <p>Acronyms 63</p> <p>Additional Nomenclature of Definitions and Acronyms 64</p> <p>References 65</p> <p><b>Section III Theory of Mechanical Properties of Tissue 71</b></p> <p><b>5 Continuum Mechanics Tensor Calculus and Solutions toWave Equations 73<br /></b><i>Luiz Vasconcelos, Jean-Luc Gennisson, and Ivan Nenadic</i></p> <p>5.1 Introduction 73</p> <p>5.2 Mathematical Basis and Notation 73</p> <p>5.3 Solutions toWave Equations 75</p> <p>References 81</p> <p><b>6 TransverseWave Propagation in Anisotropic Media 82<br /></b><i>Jean-Luc Gennisson</i></p> <p>6.1 Introduction 82</p> <p>6.2 Theoretical Considerations from General to Transverse Isotropic Models for Soft Tissues 82</p> <p>6.3 Experimental Assessment of Anisotropic Ratio by ShearWave Elastography 87</p> <p>6.4 Conclusion 88</p> <p>References 88</p> <p><b>7 TransverseWave Propagation in Bounded Media 90<br /></b><i>Javier Brum</i></p> <p>7.1 Introduction 90</p> <p>7.2 TransverseWave Propagation in Isotropic Elastic Plates 90</p> <p>7.3 Plate in Vacuum: LambWaves 93</p> <p>7.4 Viscoelastic Plate in Liquid: Leaky LambWaves 96</p> <p>7.5 Isotropic Plate Embedded Between Two Semi-infinite Elastic Solids 99</p> <p>7.6 TransverseWave Propagation in Anisotropic Viscoelastic Plates Surrounded by Non-viscous Fluid 100</p> <p>7.7 Conclusions 103</p> <p>Acknowledgments 103</p> <p>References 103</p> <p><b>8 Rheological Model-based Methods for Estimating Tissue Viscoelasticity 105<br /></b><i>Jean-Luc Gennisson</i></p> <p>8.1 Introduction 105</p> <p>8.2 Shear Modulus and Rheological Models 106</p> <p>8.3 Applications of Rheological Models 113</p> <p>References 116</p> <p><b>9 Wave Propagation in ViscoelasticMaterials 118<br /></b><i>YueWang andMichael F. Insana</i></p> <p>9.1 Introduction 118</p> <p>9.2 Estimating the Complex Shear Modulus from PropagatingWaves 119</p> <p>9.3 Wave Generation and Propagation 120</p> <p>9.4 Rheological Models 122</p> <p>9.5 Experimental Results and Applications 124</p> <p>9.6 Summary 125</p> <p>References 126</p> <p><b>Section IV Static and Low Frequency Elastography 129</b></p> <p><b>10 Validation of Quantitative Linear and Nonlinear Compression Elastography 131<br /></b><i>Jean Francois Dord, Sevan Goenezen, Assad A. Oberai, Paul E. Barbone, Jingfeng Jiang,Timothy J. Hall, and Theo Pavan</i></p> <p>10.1 Introduction 131</p> <p>10.2 Methods 132</p> <p>10.3 Results 134</p> <p>10.4 Discussion 137</p> <p>10.5 Conclusions 140</p> <p>Acknowledgement 141</p> <p>References 141</p> <p><b>11 Cardiac Strain and Strain Rate Imaging 143<br /></b><i>Brecht Heyde, OanaMirea, and Jan D’hooge</i></p> <p>11.1 Introduction 143</p> <p>11.2 Strain Definitions in Cardiology 143</p> <p>11.3 Methodologies Towards Cardiac Strain (Rate) Estimation 145</p> <p>11.4 Experimental Validation of the Proposed Methodologies 149</p> <p>11.4.1 Synthetic Data Testing 150</p> <p>11.5 Clinical Applications 151</p> <p>11.6 Future Developments 153</p> <p>References 154</p> <p><b>12 Vascular and Intravascular Elastography 161<br /></b><i>Marvin M. Doyley</i></p> <p>12.1 Introduction 161</p> <p>12.2 General Principles 161</p> <p>12.3 Conclusion 168</p> <p>References 168</p> <p><b>13 Viscoelastic Creep Imaging 171<br /></b><i>Carolina Amador Carrascal</i></p> <p>13.1 Introduction 171</p> <p>13.2 Overview of Governing Principles 172</p> <p>13.3 Imaging Techniques 173</p> <p>13.4 Conclusion 187</p> <p>References 187</p> <p><b>14 Intrinsic CardiovascularWave and Strain Imaging 189<br /></b><i>Elisa Konofagou</i></p> <p>14.1 Introduction 189</p> <p>14.2 Cardiac Imaging 189</p> <p>14.3 Vascular Imaging 208</p> <p>Acknowledgements 219</p> <p>References 219</p> <p><b>Section V Harmonic ElastographyMethods 227</b></p> <p><b>15 Dynamic Elasticity Imaging 229<br /></b><i>Kevin J. Parker</i></p> <p>15.1 Vibration Amplitude Sonoelastography: Early Results 229</p> <p>15.2 Sonoelastic Theory 229</p> <p>15.3 Vibration Phase Gradient Sonoelastography 232</p> <p>15.4 CrawlingWaves 233</p> <p>15.5 Clinical Results 233</p> <p>15.6 Conclusion 234</p> <p>Acknowledgments 235</p> <p>References 235</p> <p><b>16 Harmonic ShearWave Elastography 238<br /></b><i>Heng Zhao</i></p> <p>16.1 Introduction 238</p> <p>16.2 Basic Principles 239</p> <p>16.3 Ex Vivo Validation 242</p> <p>16.4 In Vivo Application 244</p> <p>16.5 Summary 246</p> <p>Acknowledgments 247</p> <p>References 247</p> <p><b>17 Vibro-acoustography and its Medical Applications 250<br /></b><i>Azra Alizad andMostafa Fatemi</i></p> <p>17.1 Introduction 250</p> <p>17.2 Background 250</p> <p>17.3 Application of Vibro-acoustography for Detection of Calcifications 251</p> <p>17.4 In Vivo Breast Vibro-acoustography 254</p> <p>17.5 In VivoThyroid Vibro-acoustography 259</p> <p>17.6 Limitations and Further Future Plans 260</p> <p>Acknowledgments 261</p> <p>References 261</p> <p><b>18 Harmonic Motion Imaging 264<br /></b><i>Elisa Konofagou</i></p> <p>18.1 Introduction 264</p> <p>18.2 Background 264</p> <p>18.3 Methods 267</p> <p>18.4 Preclinical Studies 273</p> <p>18.5 Future Prospects 277</p> <p>Acknowledgements 279</p> <p>References 279</p> <p><b>19 ShearWave Dispersion Ultrasound Vibrometry 284<br /></b><i>Pengfei Song and Shigao Chen</i></p> <p>19.1 Introduction 284</p> <p>19.2 Principles of ShearWave Dispersion Ultrasound Vibrometry (SDUV) 284</p> <p>19.3 Clinical Applications 286</p> <p>19.4 Summary 291</p> <p>References 292</p> <p><b>Section VI Transient ElastographyMethods 295</b></p> <p><b>20 Transient Elastography: From Research to Noninvasive Assessment of Liver Fibrosis Using Fibroscan<sup>®</sup> 297<br /></b><i>Laurent Sandrin,Magali Sasso, Stéphane Audière, Cécile Bastard, Céline Fournier,Jennifer Oudry, Véronique Miette, and Stefan Catheline</i></p> <p>20.1 Introduction 297</p> <p>20.2 Principles of Transient Elastography 297</p> <p>20.3 Fibroscan 301</p> <p>20.4 Application of Vibration-controlled Transient Elastography to Liver Diseases 306</p> <p>20.5 Other Applications of Transient Elastography 309</p> <p>20.6 Conclusion 310</p> <p>References 311</p> <p><b>21 From Time Reversal to Natural ShearWave Imaging 318<br /></b><i>Stefan Catheline</i></p> <p>21.1 Introduction: Time Reversal ShearWave in Soft Solids 318</p> <p>21.2 ShearWave Elastography using Correlation: Principle and Simulation Results 320</p> <p>21.3 Experimental Validation in Controlled Media 323</p> <p>21.4 Natural ShearWave Elastography: First In Vivo Results in the Liver, theThyroid, and the Brain 328</p> <p>21.5 Conclusion 331</p> <p>References 331</p> <p><b>22 Acoustic Radiation Force Impulse Ultrasound 334<br /></b><i>Tomasz J. Czernuszewicz and Caterina M. Gallippi</i></p> <p>22.1 Introduction 334</p> <p>22.2 Impulsive Acoustic Radiation Force 334</p> <p>22.3 Monitoring ARFI-induced Tissue Motion 335</p> <p>22.4 ARFI Data Acquisition 340</p> <p>22.5 ARFI Image Formation 341</p> <p>22.6 Real-time ARFI Imaging 343</p> <p>22.7 Quantitative ARFI Imaging 345</p> <p>22.8 ARFI Imaging in Clinical Applications 346</p> <p>22.9 Commercial Implementation 350</p> <p>22.10 Related Technologies 350</p> <p>22.11 Conclusions 351</p> <p>References 351</p> <p><b>23 Supersonic Shear Imaging 357<br /></b><i>Jean-Luc Gennisson andMickael Tanter</i></p> <p>23.1 Introduction 357</p> <p>23.2 Radiation Force Excitation 357</p> <p>23.3 Ultrafast Imaging 362</p> <p>23.4 ShearWave Speed Mapping 364</p> <p>23.5 Conclusion 365</p> <p>References 366</p> <p><b>24 Single Tracking Location ShearWave Elastography 368<br /></b><i>Stephen A.McAleavey</i></p> <p>24.1 Introduction 368</p> <p>24.2 SMURF 370</p> <p>24.3 STL-SWEI 373</p> <p>24.4 Noise in SWE/Speckle Bias 376</p> <p>24.5 Estimation of viscoelastic parameters (STL-VE) 380</p> <p>24.6 Conclusion 384</p> <p>References 384</p> <p><b>25 Comb-push Ultrasound Shear Elastography 388<br /></b><i>Pengfei Song and Shigao Chen</i></p> <p>25.1 Introduction 388</p> <p>25.2 Principles of Comb-push Ultrasound Shear Elastography (CUSE) 389</p> <p>25.3 Clinical Applications of CUSE 396</p> <p>25.4 Summary 396</p> <p>References 397</p> <p><b>Section VII Emerging Research Areas in Ultrasound Elastography 399</b></p> <p><b>26 Anisotropic ShearWave Elastography 401<br /></b><i>Sara Aristizabal</i></p> <p>26.1 Introduction 401</p> <p>26.2 ShearWave Propagation in Anisotropic Media 402</p> <p>26.3 Anisotropic ShearWave Elastography Applications 403</p> <p>26.4 Conclusion 420</p> <p>References 420</p> <p><b>27 Application of GuidedWaves for Quantifying Elasticity and Viscoelasticity of Boundary Sensitive Organs 422<br /></b><i>Sara Aristizabal, Matthew Urban, Luiz Vasconcelos, BenjaminWood,Miguel Bernal,Javier Brum, and Ivan Nenadic</i></p> <p>27.1 Introduction 422</p> <p>27.2 Myocardium 422</p> <p>27.3 Arteries 426</p> <p>27.4 Urinary Bladder 431</p> <p>27.5 Cornea 433</p> <p>27.6 Tendons 435</p> <p>27.7 Conclusions 439</p> <p>References 439</p> <p><b>28 Model-free Techniques for Estimating Tissue Viscoelasticity 442<br /></b><i>Daniel Escobar, Luiz Vasconcelos, Carolina Amador Carrascal, and Ivan Nenadic</i></p> <p>28.1 Introduction 442</p> <p>28.2 Overview of Governing Principles 442</p> <p>28.3 Imaging Techniques 443</p> <p>28.4 Conclusion 449</p> <p>References 449</p> <p><b>29 Nonlinear Shear Elasticity 451<br /></b><i>Jean-Luc Gennisson and Sara Aristizabal</i></p> <p>29.1 Introduction 451</p> <p>29.2 Shocked Plane ShearWaves 451</p> <p>29.3 Nonlinear Interaction of Plane ShearWaves 455</p> <p>29.4 Acoustoelasticity Theory 460</p> <p>29.5 Assessment of 4th Order Nonlinear Shear Parameter 465</p> <p>29.6 Conclusion 468</p> <p>References 468</p> <p><b>Section VIII Clinical Elastography Applications 471</b></p> <p><b>30 Current and Future Clinical Applications of Elasticity Imaging Techniques 473<br /></b><i>Matthew Urban</i></p> <p>30.1 Introduction 473</p> <p>30.2 Clinical Implementation and Use of Elastography 474</p> <p>30.3 Clinical Applications 475</p> <p>30.3.1 Liver 475</p> <p>30.3.2 Breast 476</p> <p>30.3.3 Thyroid 476</p> <p>30.3.4 Musculoskeletal 476</p> <p>30.3.5 Kidney 477</p> <p>30.3.6 Heart 478</p> <p>30.3.7 Arteries and Atherosclerotic Plaques 479</p> <p>30.4 FutureWork in Clinical Applications of Elastography 480</p> <p>30.5 Conclusions 480</p> <p>Acknowledgments 480</p> <p>References 481</p> <p><b>31 Abdominal Applications of ShearWave Ultrasound Vibrometry and Supersonic Shear Imaging 492<br /></b><i>Pengfei Song and Shigao Chen</i></p> <p>31.1 Introduction 492</p> <p>31.2 Liver Application 492</p> <p>31.3 Prostate Application 494</p> <p>31.4 Kidney Application 495</p> <p>31.5 Intestine Application 496</p> <p>31.6 Uterine Cervix Application 497</p> <p>31.7 Spleen Application 497</p> <p>31.8 Pancreas Application 497</p> <p>31.9 Bladder Application 498</p> <p>31.10 Summary 499</p> <p>References 499</p> <p><b>32 Acoustic Radiation Force-based Ultrasound Elastography for Cardiac Imaging Applications 504<br /></b><i>Stephanie A. Eyerly-Webb,MaryamVejdani-Jahromi, Vaibhav Kakkad, Peter Hollender,David Bradway, andGregg Trahey</i></p> <p>32.1 Introduction 504</p> <p>32.2 Acoustic Radiation Force-based Elastography Techniques 504</p> <p>32.3 ARF-based Elasticity Assessment of Cardiac Function 505</p> <p>32.4 ARF-based Image Guidance for Cardiac Radiofrequency Ablation Procedures 510</p> <p>32.5 Conclusions 515</p> <p>Funding Acknowledgements 515</p> <p>References 516</p> <p><b>33 Cardiovascular Application of ShearWave Elastography 520<br /></b><i>Pengfei Song and Shigao Chen</i></p> <p>33.1 Introduction 520</p> <p>33.2 Cardiovascular ShearWave Imaging Techniques 521</p> <p>33.3 Clinical Applications of Cardiovascular ShearWave Elastography 525</p> <p>33.4 Summary 529</p> <p>References 530</p> <p><b>34 Musculoskeletal Applications of Supersonic Shear Imaging 534<br /></b><i>Jean-Luc Gennisson</i></p> <p>34.1 Introduction 534</p> <p>34.2 Muscle Stiffness at Rest and During Passive Stretching 535</p> <p>34.3 Active and Dynamic Muscle Stiffness 537</p> <p>34.4 Tendon Applications 539</p> <p>34.5 Clinical Applications 541</p> <p>34.6 Future Directions 542</p> <p>References 542</p> <p><b>35 Breast ShearWave Elastography 545<br /></b><i>Azra Alizad</i></p> <p>35.1 Introduction 545</p> <p>35.2 Background 545</p> <p>35.3 Breast Elastography Techniques 546</p> <p>35.4 Application of CUSE for Breast Cancer Detection 548</p> <p>35.5 CUSE on a Clinical Ultrasound Scanner 549</p> <p>35.6 Limitations of Breast ShearWave Elastography 551</p> <p>35.7 Conclusion 552</p> <p>Acknowledgments 552</p> <p>References 552</p> <p><b>36 Thyroid ShearWave Elastography 557<br /></b><i>Azra Alizad</i></p> <p>36.1 Introduction 557</p> <p>36.2 Background 557</p> <p>36.3 Role of Ultrasound and its Limitation inThyroid Cancer Detection 557</p> <p>36.4 Fine Needle Aspiration Biopsy (FNAB) 558</p> <p>36.5 The Role of Elasticity Imaging 558</p> <p>36.6 Application of CUSE onThyroid 561</p> <p>36.7 CUSE on Clinical Ultrasound Scanner 561</p> <p>36.8 Conclusion 563</p> <p>Acknowledgments 564</p> <p>References 564</p> <p><b>Section IX Perspective on Ultrasound Elastography 567</b></p> <p><b>37 Historical Growth of Ultrasound Elastography and Directions for the Future 569<br /></b><i>Armen Sarvazyan andMatthewW. Urban</i></p> <p>37.1 Introduction 569</p> <p>37.2 Elastography Publication Analysis 569</p> <p>37.3 Future Investigations of Acoustic Radiation Force for Elastography 574</p> <p>37.3.1 Nondissipative Acoustic Radiation Force 574</p> <p>37.3.2 Nonlinear Enhancement of Acoustic Radiation Force 575</p> <p>37.3.3 SpatialModulation of Acoustic Radiation Force Push Beams 575</p> <p>37.4 Conclusions 576</p> <p>Acknowledgments 577</p> <p>References 577</p> <p>Index 581</p>
<p>Ivan Z. Nenadic, Matthew W. Urban, James F. Greenleaf, Mayo Clinic, USA. <p>Jean-Luc Gennisson, Imagerie par Résonance Magnétique Médicale et Multi-Modalités, France. <p>Miguel Bernal, Universidad Pontificia Bolivariana, Colombia. <p>Mickael Tanter, Institut Langevin – Ondes et Images, ESPCI ParisTech CNRS, France.
<p><b>ULTRASOUND ELASTOGRAPHY FOR BIOMEDICAL APPLICATIONS AND MEDICINE</b> <p><b><i>Covers all major developments and techniques of Ultrasound Elastography and biomedical applications</i></b> <p>The field of ultrasound elastography has developed various techniques with the potential to diagnose and track the progression of diseases such as breast and thyroid cancer, liver and kidney fibrosis, congestive heart failure, and atherosclerosis. Having emerged in the last decade, ultrasound elastography is a medical imaging modality that can noninvasively measure and map the elastic and viscous properties of soft tissues. <p><i>Ultrasound Elastography for Biomedical Applications and Medicine</i> covers the basic physics of ultrasound wave propagation and the interaction of ultrasound with various media. The book introduces tissue elastography, covers the history of the field, details the various methods that have been developed by research groups across the world, and describes its novel applications, particularly in shear wave elastography. <p>Key features: <ul> <li>Covers all major developments and techniques of ultrasound elastography and biomedical applications.</li> <li>Contributions from the pioneers of the field secure the most complete coverage of ultrasound elastography available.</li> </ul> <p>The book is essential reading for researchers and engineers working in ultrasound and elastography, as well as biomedical engineering students and those working in the field of biomechanics.

Diese Produkte könnten Sie auch interessieren:

Biomedical Imaging
Biomedical Imaging
von: Reiner Salzer
PDF ebook
120,99 €
Clinical Reasoning in Occupational Therapy
Clinical Reasoning in Occupational Therapy
von: Linda Robertson
PDF ebook
38,99 €
Clinical Reasoning in Occupational Therapy
Clinical Reasoning in Occupational Therapy
von: Linda Robertson
EPUB ebook
38,99 €