Details

Tribology of Ceramics and Composites


Tribology of Ceramics and Composites

A Materials Science Perspective
1. Aufl.

von: Bikramjit Basu, Mitjan Kalin

160,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 11.10.2011
ISBN/EAN: 9781118021644
Sprache: englisch
Anzahl Seiten: 550

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This book helps students and practicing scientists alike understand that a comprehensive knowledge about the friction and wear properties of advanced materials is essential to further design and development of new materials. With important introductory chapters on the fundamentals, processing, and applications of tribology, the book then examines in detail the nature and properties of materials, the friction and wear of structural ceramics, bioceramics, biocomposites, and nanoceramics, as well as lightweight composites and the friction and wear of ceramics in a cryogenic environment.
PREFACE xvii <p>FOREWORD BY PROF. IAN HUTCHINGS xxi</p> <p>FOREWORD BY PROF. KARL-HEINZ ZUM GAHR xxiii</p> <p>ABOUT THE AUTHORS xxv</p> <p><b>SECTION I FUNDAMENTALS</b></p> <p><b>CHAPTER 1 INTRODUCTION 3</b></p> <p>References 6</p> <p><b>CHAPTER 2 OVERVIEW: TRIBOLOGICAL MATERIALS 7</b></p> <p>2.1 Introduction 7</p> <p>2.2 Definition and Classification of Ceramics 8</p> <p>2.3 Properties of Structural Ceramics 9</p> <p>2.4 Applications of Structural Ceramics 11</p> <p>2.5 Closing Remarks 14</p> <p>References 16</p> <p><b>CHAPTER 3 OVERVIEW: MECHANICAL PROPERTIES OF CERAMICS 18</b></p> <p>3.1 Theory of Brittle Fracture 18</p> <p>3.2 Cracking in Brittle Materials 23</p> <p>3.3 Definition and Measurement of Basic Mechanical Properties 24</p> <p>3.4 Toughening Mechanisms 33</p> <p>3.5 Closing Remarks 37</p> <p>References 37</p> <p><b>CHAPTER 4 SURFACES AND CONTACTS 39</b></p> <p>4.1 Surface Roughness 39</p> <p>4.2 Surface Topography and Asperities 41</p> <p>4.3 Real Contact Area 42</p> <p>4.4 Contact Load Distribution and Hertzian Stresses 44</p> <p>4.5 Closing Remarks 47</p> <p>References 48</p> <p><b>CHAPTER 5 FRICTION 49</b></p> <p>5.1 Introduction 49</p> <p>5.2 Laws of Friction 49</p> <p>5.3 Friction Mechanisms 51</p> <p>5.4 Friction of Common Engineering Materials 54</p> <p>5.5 Closing Remarks 58</p> <p>References 59</p> <p><b>CHAPTER 6 FRICTIONAL HEATING AND CONTACT TEMPERATURE 60</b></p> <p>6.1 Tribological Process and Contact Temperature 60</p> <p>6.2 Concept of “Bulk” and “Flash” Temperature 61</p> <p>6.3 Importance and Relevance of Some Ready-to-Use Analytical Models 63</p> <p>6.4 Review of Some Frequently Employed Ready-to-Use Models 64</p> <p>References 68</p> <p><b>CHAPTER 7 WEAR MECHANISMS 70</b></p> <p>7.1 Introduction 70</p> <p>7.2 Classification of Wear Mechanisms 72</p> <p>7.3 Closing Remarks 98</p> <p>References 99</p> <p>CHAPTER 8 LUBRICATION 101</p> <p>8.1 Lubrication Regimes 101</p> <p>8.2 Stribeck Curve 107</p> <p>References 109</p> <p><b>SECTION II FRICTION AND WEAR OF STRUCTURAL CERAMICS</b></p> <p><b>CHAPTER 9 OVERVIEW: STRUCTURAL CERAMICS 113</b></p> <p>9.1 Introduction 113</p> <p>9.2 Zirconia Crystal Structures and Transformation Characteristics of Tetragonal Zirconia 114</p> <p>9.3 Transformation Toughening 116</p> <p>9.4 Stabilization of Tetragonal Zirconia 117</p> <p>9.5 Different Factors Infl uencing Transformation Toughening 118</p> <p>9.6 Stress-Induced Microcracking 125</p> <p>9.7 Development of SiAlON Ceramics 126</p> <p>9.8 Microstructure of S-sialon Ceramics 127</p> <p>9.9 Mechanical Properties and Crack Bridging of SiAlON Ceramic 129</p> <p>9.10 Properties of Titanium Diboride Ceramics 132</p> <p>References 138</p> <p><b>CHAPTER 10 CASE STUDY: TRANSFORMATION-TOUGHENED ZIRCONIA 142</b></p> <p>10.1 Background 142</p> <p>10.2 Wear Resistance 144</p> <p>10.3 Morphological Characterization of the Worn Surfaces 146</p> <p>10.4 Zirconia Phase Transformation and Wear Behavior 149</p> <p>10.5 Wear Mechanisms 152</p> <p>10.6 Relationship among Microstructure, Toughness, and Wear 154</p> <p>10.7 Infl uence of Humidity on Tribological Properties of Self-Mated Zirconia 156</p> <p>10.8 Wear Mechanisms in Different Humidity 157</p> <p>10.9 Tribochemical Wear in High Humidity 160</p> <p>10.10 Closing Remarks 163</p> <p>References 164</p> <p><b>CHAPTER 11 CASE STUDY: SIALON CERAMICS 167</b></p> <p>11.1 Introduction 167</p> <p>11.2 Materials and Experiments 168</p> <p>11.3 Tribological Properties of Compositionally Tailored Sialon versus β-Sialon 172</p> <p>11.4 Tribological Properties of S-Sialon Ceramic 179</p> <p>11.5 Concluding Remarks 182</p> <p>References 183</p> <p><b>CHAPTER 12 CASE STUDY: MAX PHASE—TI3SIC2 185</b></p> <p>12.1 Background 185</p> <p>12.2 Frictional Behavior 188</p> <p>12.3 Wear Resistance and Wear Mechanisms 188</p> <p>12.4 Raman Spectroscopy and Atomic Force Microscopy Analysis 190</p> <p>12.5 Transition in Wear Mechanisms 193</p> <p>12.6 Summary 194</p> <p>References 195</p> <p><b>CHAPTER 13 CASE STUDY: TITANIUM DIBORIDE CERAMICS AND COMPOSITES 197</b></p> <p>13.1 Introduction 197</p> <p>13.2 Materials and Experiments 198</p> <p>13.3 Tribological Properties of TiB2–MoSi2 Ceramics 200</p> <p>13.4 Tribological Properties of TiB2–TiSi2 Ceramics 204</p> <p>13.5 Closing Remarks 206</p> <p>References 208</p> <p><b>SECTION III FRICTION AND WEAR OF BIOCERAMICS AND BIOCOMPOSITES</b></p> <p><b>CHAPTER 14 OVERVIEW: BIOCERAMICS AND BIOCOMPOSITES 213</b></p> <p>14.1 Introduction 213</p> <p>14.2 Some Useful Definitions and Their Implications 215</p> <p>14.3 Experimental Evaluation of Biocompatibility 217</p> <p>14.4 Wear of Implants 221</p> <p>14.5 Coating on Metals 223</p> <p>14.6 Glass-Ceramics 224</p> <p>14.7 Biocompatible Ceramics 226</p> <p>14.8 Outlook 228</p> <p>References 229</p> <p><b>CHAPTER 15 CASE STUDY: POLYMER-CERAMIC BIOCOMPOSITES 233</b></p> <p>15.1 Introduction 233</p> <p>15.2 Materials and Experiments 235</p> <p>15.3 Frictional Behavior 237</p> <p>15.4 Wear-Resistance Properties 240</p> <p>15.5 Wear Mechanisms 242</p> <p>15.6 Correlation among Wear Resistance, Wear Mechanisms, Material Properties, and Contact Pressure 247</p> <p>15.7 Concluding Remarks 248</p> <p>References 249</p> <p><b>CHAPTER 16 CASE STUDY: NATURAL TOOTH AND DENTAL RESTORATIVE MATERIALS 251</b></p> <p>16.1 Introduction 251</p> <p>16.2 Materials and Methods 254</p> <p>16.3 Tribological Tests on Tooth Material 255</p> <p>16.4 Production and Characterization of Glass-Ceramics 255</p> <p>16.5 Wear Experiments on Glass-Ceramics 256</p> <p>16.6 Microstructure and Hardness of Human Tooth Material 257</p> <p>16.7 Tribological Properties of Human Tooth Material 260</p> <p>16.8 Wear Properties of Glass-Ceramics 262</p> <p>16.9 Discussion of Wear Mechanisms of Glass-Ceramics 266</p> <p>16.10 Comparison with Existing Glass-Ceramic Materials 271</p> <p>16.11 Concluding Remarks 273</p> <p>References 274</p> <p><b>CHAPTER 17 CASE STUDY: GLASS-INFILTRATED ALUMINA 276</b></p> <p>17.1 Introduction 276</p> <p>17.2 Materials and Experiments 277</p> <p>17.3 Frictional Properties 278</p> <p>17.4 Wear Resistance and Wear Mechanisms 278</p> <p>17.5 Wear Debris Analysis and Tribochemical Reactions 282</p> <p>17.6 Influence of Glass Infi ltration on Wear Properties 283</p> <p>17.7 Concluding Remarks 284</p> <p>References 285</p> <p><b>CHAPTER 18 TRIBOLOGICAL PROPERTIES OF CERAMIC BIOCOMPOSITES 287</b></p> <p>18.1 Background 287</p> <p>18.2 Tribological Properties of Mullite-Reinforced Hydroxyapatite 288</p> <p>18.3 Friction and Wear Rate 288</p> <p>18.4 Concluding Remarks 298</p> <p>References 302</p> <p><b>SECTION IV FRICTION AND WEAR OF NANOCERAMICS</b></p> <p><b>CHAPTER 19 OVERVIEW: NANOCERAMIC COMPOSITES 307</b></p> <p>19.1 Introduction 307</p> <p>19.2 Processing of Bulk Nanocrystalline Ceramics 309</p> <p>19.3 Overview of Developed Nanoceramics and Ceramic Nanocomposites 309</p> <p>19.4 Overview of Tribological Properties of Ceramic Nanocomposites 318</p> <p>19.5 Concluding Remarks 320</p> <p>References 322</p> <p><b>CHAPTER 20 CASE STUDY: NANOCRYSTALLINE YTTRIA-STABILIZED TETRAGONAL ZIRCONIA POLYCRYSTALLINE CERAMICS 325</b></p> <p>20.1 Introduction 325</p> <p>20.2 Materials and Experiments 327</p> <p>20.3 Tribological Properties 329</p> <p>20.4 Tribomechanical Wear of Yttria-Stabilized Zirconia Nanoceramic with Varying Yttria Dopant 330</p> <p>20.5 Comparison with Other Stabilized Zirconia Ceramics 335</p> <p>20.6 Concluding Remarks 335</p> <p>References 336</p> <p><b>CHAPTER 21 CASE STUDY: NANOSTRUCTURED TUNGSTEN CARBIDE–ZIRCONIA NANOCOMPOSITES 338</b></p> <p>21.1 Introduction 338</p> <p>21.2 Materials and Experiments 339</p> <p>21.3 Friction and Wear Characteristics 340</p> <p>21.4 Wear Mechanisms 345</p> <p>21.5 Explanation of High Wear Resistance of Ceramic Nanocomposites 347</p> <p>21.6 Concluding Remarks 349</p> <p>References 349</p> <p><b>SECTION V LIGHTWEIGHT COMPOSITES AND CERMETS</b></p> <p><b>CHAPTER 22 OVERVIEW: LIGHTWEIGHT METAL MATRIX COMPOSITES AND CERMETS 353</b></p> <p>22.1 Development of Metal Matrix Composites 353</p> <p>22.2 Development of Cermets 356</p> <p>References 358</p> <p><b>CHAPTER 23 CASE STUDY: MAGNESIUM–SILICON CARBIDE PARTICULATEREINFORCED COMPOSITES 362</b></p> <p>23.1 Introduction 362</p> <p>23.2 Materials and Experiments 363</p> <p>23.3 Load-Dependent Friction and Wear Properties 363</p> <p>23.4 Fretting-Duration-Dependent Tribological Properties 366</p> <p>23.5 Tribochemical Wear of Magnesium–Silicon Carbide Particulate-Reinforced Composites 371</p> <p>23.6 Concluding Remarks 375</p> <p>References 376</p> <p><b>CHAPTER 24 CASE STUDY: TITANIUM CARBONITRIDE–NICKELBASED CERMETS 377</b></p> <p>24.1 Introduction 377</p> <p>24.2 Materials and Experiments 379</p> <p>24.3 Energy Dissipation and Abrasion at Low Load 381</p> <p>24.4 Influence of Type of Secondary Carbides on Sliding Wear of Titanium Carbonitride–Nickel Cermets 386</p> <p>24.5 Tribochemical Wear of Titanium Carbonitride–Based Cermets 387</p> <p>24.6 Influence of Tungsten Carbide Content on Load-Dependent Sliding Wear Properties 393</p> <p>24.7 High Temperature Wear of Titanium Carbonitride–Nickel Cermets 397</p> <p>24.8 Summary of Key Results 403</p> <p>References 404</p> <p><b>CHAPTER 25 CASE STUDY: (W,Ti)C–CO CERMETS 407</b></p> <p>25.1 Introduction 407</p> <p>25.2 Materials and Experiments 408</p> <p>25.3 Microstructure and Mechanical Properties 409</p> <p>25.4 Wear Properties 410</p> <p>25.5 Correlation between Mechanical Properties and Wear Resistance 413</p> <p>25.6 Concluding Remarks 418</p> <p>References 419</p> <p><b>SECTION VI FRICTION AND WEAR OF CERAMICS IN A CRYOGENIC ENVIRONMENT</b></p> <p><b>CHAPTER 26 OVERVIEW: CRYOGENIC WEAR PROPERTIES OF MATERIALS 423</b></p> <p>26.1 Background 423</p> <p>26.2 Designing a High-Speed Cryogenic Wear Tester 425</p> <p>26.3 Summary of Results Obtained with Ductile Metals 427</p> <p>26.4 Summary 437</p> <p>References 437</p> <p><b>CHAPTER 27 CASE STUDY: SLIDING WEAR OF ALUMINA IN A CRYOGENIC ENVIRONMENT 439</b></p> <p>27.1 Background 439</p> <p>27.2 Materials and Experiments 440</p> <p>27.3 Tribological Properties of Self-Mated Alumina 442</p> <p>27.4 Genesis of Tribological Behavior in a Cryogenic Environment 449</p> <p>27.5 Concluding Remarks 452</p> <p>References 452</p> <p><b>CHAPTER 28 CASE STUDY: SLIDING WEAR OF SELF-MATED TETRAGONAL ZIRCONIA CERAMICS IN LIQUID NITROGEN 454</b></p> <p>28.1 Introduction 454</p> <p>28.2 Materials and Experiments 456</p> <p>28.3 Friction of Self-Mated Y-TZP Material in LN2 456</p> <p>28.4 Cryogenic Wear of Zirconia 459</p> <p>28.5 Cryogenic Sliding-Induced Zirconia Phase Transformation 460</p> <p>28.6 Wear Mechanisms of Zirconia in LN2 464</p> <p>28.7 Concluding Remarks 466</p> <p>References 467</p> <p><b>CHAPTER 29 CASE STUDY: SLIDING WEAR OF SILICON CARBIDE IN A CRYOGENIC ENVIRONMENT 469</b></p> <p>29.1 Introduction 469</p> <p>29.2 Materials and Experiments 470</p> <p>29.3 Friction and Wear Properties 470</p> <p>29.4 Thermal Aspect and Limited Tribochemical Wear 473</p> <p>29.5 Tribomechanical Stress-Assisted Deformation and Damage 479</p> <p>29.6 Comparison with Sliding Wear Properties of Oxide Ceramics 481</p> <p>29.7 Concluding Remarks 482</p> <p>References 483</p> <p><b>SECTION VII WATER-LUBRICATED WEAR OF CERAMICS</b></p> <p><b>CHAPTER 30 FRICTION AND WEAR OF OXIDE CERAMICS IN AN AQUEOUS ENVIRONMENT 487</b></p> <p>30.1 Background 487</p> <p>30.2 Tribological Behavior of Alumina in an Aqueous Solution 488</p> <p>30.3 Tribological Behavior of Self-Mated Zirconia in an Aqueous Environment 493</p> <p>30.4 Concluding Remarks 499</p> <p>References 500</p> <p><b>SECTION VIII CLOSURE</b></p> <p><b>CHAPTER 31 PERSPECTIVE FOR DESIGNING MATERIALS FOR TRIBOLOGICAL APPLICATIONS 505</b></p> <p>INDEX 509</p>
<b>Bikramjit Basu</b>, PhD, is Associate Professor in the Department of Materials Science and Engineering at the Indian Institute of Technology Kanpur (on leave) and currently at the Materials Research Center, Indian Institute of Science, Bangalore, India. <p><b>Mitjan Kalin</b>, PhD, is Professor and Head of the Centre for Tribology and Technical Diagnostics at the University of Ljubljana, Slovenia, where he is also Vice-Dean for Research and International Affairs in the Faculty of Mechanical Engineering.</p>
<b>Explore the principles of friction, lubrication, and wear from a materials science perspective</b> <p>Any engineered product assembly, wherein one material slides over or rubs against another is affected by complex tribological interactions, and understanding the science behind these interactions is essential for anyone working to improve the efficacy of new materials and manufacturing technologies. <i>Tribology of Ceramics and Composites</i> provides a rigorous study of how materials science can be used to understand, explore, and harness these interactions. Including introductory chapters on the fundamentals, processing, and applications of tribology, the book is designed primarily to provide students and practicing scientists with a comprehensive understanding of the fundamentals of the nature and properties of ceramic and composite materials as well as the friction and wear of structural ceramics in unlubricated, water-lubricated, and cryogenic environments. This book also includes thematic sections on tribological properties of bioceramics, biocomposites, and nanoceramics, as well as lightweight composites.</p> <p>"Ceramics and composites represent an important class of engineering materials. The authors are commended for an excellent compilation that brings together some of the fundamental issues and applications of this class of materials as related to their tribological properties."<br /> —<b>Dr. Said Jahanmir</b>, Mohawk Innovative Technology, Inc., Albany, NY, USA</p> <p>"This book very well describes attractive tribo-properties of ceramics and composites with fundamentals of friction and wear and many examples of modern applications. Students, engineers, and researchers will find this book very useful for understanding the present state of the tribology of ceramics and composites and as an introduction to modern high-tech needs."<br /> —<b>Prof. Koji Kato</b>, Tohoku University and Nihon University, Japan</p> <p><b>With Forewords by Profs. Ian Hutchings and K. H. Zum Gahr</b></p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €