Details

Transportation Electrification


Transportation Electrification

Breakthroughs in Electrified Vehicles, Aircraft, Rolling Stock, and Watercraft
IEEE Press Series on Power and Energy Systems 1. Aufl.

von: Ahmed A. Mohamed, Ahmad Arshan Khan, Ahmed T. Elsayed, Mohamed A. Elshaer

103,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 05.12.2022
ISBN/EAN: 9781119812333
Sprache: englisch
Anzahl Seiten: 560

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Transportation Electrification</b> <p><b>Dive deep into the latest breakthroughs in electrified modes of transport</b> <p>In <i>Transportation Electrification</i>, an accomplished team of researchers and industry experts delivers a unique synthesis of detailed analyses of recent breakthroughs in several modes of electric transportation and a holistic overview of how those advances can or cannot be applied to other modes of transportation. The editors include resources that examine electric aircraft, rolling stock, watercraft, and vehicle transportation types and comparatively determine their stages of development, distinctive and common barriers to advancement, challenges, gaps in technology, and possible solutions to developmental problems. <p>This book offers readers a breadth of foundational knowledge combined with a deep understanding of the issues afflicting each mode of transportation. It acts as a roadmap and policy framework for transportation companies to guide the electrification of transportation vessels. <p>Readers will benefit from an overview of key standards and regulations in the electrified transportation industry, as well as: <ul><li> A thorough introduction to the various modes of electric transportation, including recent advances in each mode, and the technological and policy challenges posed by them</li> <li> An exploration of different vehicle systems, including recent advanced in hybrid and EV powertrain architectures and advanced energy management strategies</li> <li> Discussions of electrified aircraft, including advanced technologies and architecture optimizations for cargo air vehicle, passenger air vehicles, and heavy lift vertical take-off and landing craft</li> <li> In-depth examinations of rolling stock and watercraft-type vehicles, and special vehicles, including various system architectures and energy storage systems relevant to each</li></ul> <p>Perfect for practicing professionals in the electric transport industry, <i>Transportation Electrification</i> is also a must-read resource for standardization body members, regulators, officials, policy makers, and undergraduate students in electrical and electronics engineering.
<p>About the Editors xvii</p> <p>List of Contributors xix</p> <p>Introduction xxiii</p> <p><b>1 Electrical Machines for Traction and Propulsion Applications </b><b>1<br /></b><i>Ayman M. EL-Refaie</i></p> <p>1.1 Introduction 1</p> <p>1.2 Light-Duty Vehicles 1</p> <p>1.3 Medium- and Heavy-Duty Vehicles 7</p> <p>1.4 Off-Highway Vehicles 9</p> <p>1.5 Locomotives 9</p> <p>1.6 Ship Propulsion 10</p> <p>1.7 High Specific Torque/Power Electrical Machines 13</p> <p>1.7.1 Electrical Machines for Land Vehicles 13</p> <p>1.7.2 Electrical Machines for Aerospace Applications 15</p> <p>1.7.3 Key System Tradeoffs and Considerations 21</p> <p>1.7.3.1 Specific Power vs Efficiency 21</p> <p>1.7.3.2 Fault Tolerance 21</p> <p>1.7.3.3 System Voltage 21</p> <p>1.7.3.4 Machine Controllability 22</p> <p>1.8 How Does the Future Look Like? 22</p> <p>References 25</p> <p><b>2 Advances and Developments in Batteries and Charging Technologies </b><b>27<br /></b><i>Satish Chikkannanavar and Gunho Kwak</i></p> <p>2.1 Introduction 27</p> <p>2.2 Advances in Cathodes/Anodes Covering Energy Density Increase for EV Applications 27</p> <p>2.2.1 Cathode Challenges for High Energy Density 28</p> <p>2.2.2 Anode Challenges for High Energy Density 30</p> <p>2.3 High Power/Energy Cell Designs for xEVs 31</p> <p>2.4 Post Li-Ion Batteries: Solid-State Batteries 32</p> <p>2.4.1 Roadmap and Collaborative Relationships 33</p> <p>2.4.2 Current Development Status and Key Challenges 33</p> <p>2.5 Advances in Charging Batteries 36</p> <p>2.5.1 Methods of Fast Charging Batteries 36</p> <p>2.5.2 Li Plating Effects 37</p> <p>2.5.3 Overcharge Induced Thermal Runaway 38</p> <p>2.6 Degradation Considerations 40</p> <p>2.7 Future Outlook 42</p> <p>Acronyms 43</p> <p>References 43</p> <p><b>3 Applications of Wide Bandgap (WBG) Devices in the Transportation Sector. Recent Advances in (WBG) Semiconductor Material (e.g. Silicon Carbide and Gallium Nitride) and Circuit Topologies </b><b>47<br /></b><i>Amir Ranjbar</i></p> <p>3.1 History of Semiconductor Technology Evolution 47</p> <p>3.2 Semiconductor Technologies for Transportation Electrification 49</p> <p>3.2.1 Trends in Transportation Electrification 49</p> <p>3.3 Challenges Associated with GaNs in Practical Applications 53</p> <p>3.3.1 Device Physics Level Challenges with GaNs 53</p> <p>3.3.1.1 Electron Trapping 53</p> <p>3.3.1.2 Gate Edge Degradation 54</p> <p>3.3.1.3 Punch Through Current 54</p> <p>3.3.1.4 Substrate Choice 54</p> <p>3.3.2 Application Level Challenges with GaNs 55</p> <p>3.3.2.1 GaN’s Narrow Gate Voltage Margin 55</p> <p>3.3.2.2 d<i>v</i>/d<i>t </i>Immunity and False Turn-On in GaN Devices 57</p> <p>3.3.2.3 d<i>i</i>/d<i>t </i>Immunity in GaNs 57</p> <p>3.4 SiC-MOSFET Challenges in Transportation Electrification 58</p> <p>3.4.1 Low Gain of SiC-MOSFETs 58</p> <p>3.4.2 Fault Detection in SiC-MOSFETs 59</p> <p>3.4.3 Driving SiC-MOSFETs 60</p> <p>3.4.4 Maximum Gate Voltage Swing in SiC-MOSFETs 60</p> <p>3.4.5 Layout Considerations 61</p> <p>3.5 Advanced Power Module Packaging to Accommodate WBG Devices 61</p> <p>3.5.1 Advanced Substrate Materials 63</p> <p>3.5.2 Advanced Die Attach Methods 64</p> <p>3.5.3 Interconnection 64</p> <p>3.5.4 Advanced Encapsulation Materials 67</p> <p>3.5.5 Advanced Cooling Methods 68</p> <p>3.6 Summary 69</p> <p>References 70</p> <p><b>4 An Overview of Inductive Power Transfer Technology for Static and Dynamic EV Battery Charging </b><b>73<br /></b><i>Ahmed A. S. Mohamed, Ahmed A. Shaier, and Hamid Metwally</i></p> <p>4.1 Introduction 73</p> <p>4.2 IPT System Components 74</p> <p>4.3 Static IPT System 75</p> <p>4.3.1 Coupler Components 76</p> <p>4.3.2 Structures of Inductive Pad 78</p> <p>4.3.3 Research and Development (R&D) and Standardization Activities 79</p> <p>4.4 Dynamic IPT System 83</p> <p>4.4.1 DIPT with a Single Long Coil Track 84</p> <p>4.4.2 DIPT with Segmented Coil Array 86</p> <p>4.4.3 R&D and Standardization Activities 90</p> <p>4.4.3.1 Historical Background 90</p> <p>4.4.3.2 R&D on DIPT 91</p> <p>4.5 Quasi-Dynamic IPT System 94</p> <p>4.6 Technology Challenges and Opportunities 94</p> <p>4.7 Conclusion 95</p> <p>References 95</p> <p><b>5 Effectiveness Analysis of Control Strategies in Acoustic Noise and Vibration Reduction of PMSM-Driven Coupled System for EV and HEV Applications </b><b>105<br /></b><i>Rishi Kant Thakur, Rajesh Manjibhai Pindoriya, Rajeev Kumar, and Bharat Singh Rajpurohit</i></p> <p>5.1 Chapter Organization 105</p> <p>5.2 Origin of ANV and its Consequences in the PMSM-Based Coupled System 105</p> <p>5.2.1 Mechanical Noise 106</p> <p>5.2.2 Electromagnetic Noise 106</p> <p>5.2.3 Aerodynamic Sources 108</p> <p>5.3 Recent Trends of Control Strategies for ANV Reduction 108</p> <p>5.3.1 Control Aspects at the Site of Vibration (Mechanical) 108</p> <p>5.3.2 Control Aspects at the Source of Vibration (Electrical) 109</p> <p>5.4 Detailing of PMSM-Driven Experimental Setup 111</p> <p>5.5 Methodology of Various Control Strategies and Their Implementation for ANV Reduction 113</p> <p>5.5.1 Pseudorandom Triangular Pulse Width Modulation Technique (PTPWM) 113</p> <p>5.5.2 Random Pulse Position Pulse Width Modulation Technique (RPPM) 114</p> <p>5.6 Analysis of Torsional Vibration Response at Resonance 116</p> <p>5.7 Implementation of MPF Accuracy Enhancement Technique in Lumped Model for Number of Modes or DoF Selection 118</p> <p>5.7.1 Mathematical Modeling of Torsional Vibration Equation for All Lumped Elements 118</p> <p>5.7.2 Calculation of Parameters Required in Resonance Response of Torsional Vibration 120</p> <p>5.7.3 Natural Frequency, Mode Shape, and Orthonormalization of Modes 120</p> <p>5.7.4 Calculation of Computationally Optimum Number of Lumped Elements 123</p> <p>5.7.4.1 Calculation of Coefficient Vector {L} 123</p> <p>5.7.4.2 Calculation of Model Participation Factor (MPF) 123</p> <p>5.7.4.3 Calculation of Effective Mass 123</p> <p>5.8 Extended Mathematical Modeling for the Effectiveness of Control Strategies Over Torsional Vibration Reduction 125</p> <p>5.8.1 Calculation of Generalized Damping Matrix ([Cg]) 126</p> <p>5.8.2 Calculation of Generalized Torque Corresponding to Each Control Strategy 127</p> <p>5.9 Results and Discussion 128</p> <p>5.9.1 Validation of Torsional Vibration Response at Resonance 128</p> <p>5.9.2 Analysis of Dynamic Response Corresponding to Various Control Strategies 128</p> <p>5.9.3 Simulation Results of SPWM, RPPM, and PTPWM Techniques for PMSM Drive 128</p> <p>5.9.4 Experimental Results of SPWM, RPPM, and PTPWM Techniques for PMSM Drive 131</p> <p>5.10 Conclusions and Future Scope 136</p> <p>References 136</p> <p><b>6 Challenges and Applications of Blockchain Technology in Electric Road Vehicles </b><b>139<br /></b><i>Nabeel Mehdi</i></p> <p>6.1 Mobility and Electric Vehicles 139</p> <p>6.2 Electric Vehicle Overview 140</p> <p>6.3 Challenges of the Electric Vehicle Industry 141</p> <p>6.3.1 Range Anxiety 141</p> <p>6.3.2 Lengthy Charging Times 142</p> <p>6.3.3 Battery Safety Concerns 142</p> <p>6.3.4 Lack of Standardization 143</p> <p>6.3.5 Electricity Grid Disruption 144</p> <p>6.3.6 Battery Waste 146</p> <p>6.3.7 Cyber-Security Hazard 146</p> <p>6.4 Applications of Blockchain Technology 146</p> <p>6.4.1 Energy Blockchain Ledger 148</p> <p>6.4.2 Blockchain-Powered Billing in E-mobility Systems 148</p> <p>6.4.3 Charging-as-a-Service (CaaS) Ecosystem 150</p> <p>6.4.4 Electric Vehicle Battery Management with Blockchain 151</p> <p>6.4.5 Vehicle to Grid (V2G) 151</p> <p>6.4.6 Blockchain-Enabled Security in Electric Vehicles Computing 152</p> <p>6.4.7 Privacy-Preserving Blockchain-Based EV Charging 153</p> <p>6.4.8 Battery Analytics 153</p> <p>6.4.9 Supply-Chain Traceability and Provenance 154</p> <p>6.5 Vehicle Insurance Management 155</p> <p>6.5.1 Electric Vehicle Crypto Mining 155</p> <p>6.6 Summary 156</p> <p>References 157</p> <p><b>7 Starter/Generator Systems and Solid-State Power Controllers </b><b>159<br /></b><i>Tao Yang, Xiaoyu Lang, and Zhen Huang</i></p> <p>7.1 Background 159</p> <p>7.2 Future Design Options 160</p> <p>7.3 The Starters/Generators and Their Power Electronics Control 162</p> <p>7.4 System Analysis and Control Design 163</p> <p>7.4.1 Current Control Design 164</p> <p>7.4.2 Field-Weakening Control Design 167</p> <p>7.4.3 Analysis and Control Design of the DC Voltage Loop 170</p> <p>7.4.4 DC Bus Voltage Control: The Control Plant 170</p> <p>7.4.5 DC Bus Voltage Control Design 172</p> <p>7.4.6 Simulation Results of the Single-Bus Power-Generation Center 176</p> <p>7.4.7 Appendix 178</p> <p>7.5 The Solid-State Power Controllers and the Protection Features 180</p> <p>7.5.1 Background of Solid-State Power Controllers 180</p> <p>7.5.2 Design of Solid-State Power Controllers 181</p> <p>7.5.3 Protection of Solid-State Power Controllers 182</p> <p>References 186</p> <p><b>8 DC–DC Converter and On-board DC Microgrid Stability </b><b>189<br /></b><i>Giampaolo Buticchi and Jiajun Yang</i></p> <p>8.1 Introduction 189</p> <p>8.2 The Dual Active Bridge Converter 189</p> <p>8.3 The LLC Series-Resonant Converter 192</p> <p>8.4 Constant Power Load 194</p> <p>8.5 Stability Criteria 194</p> <p>8.6 Impedance Modeling and Stability Analysis 196</p> <p>8.6.1 Impedance Model of PMSG 196</p> <p>8.6.2 Controller Design 197</p> <p>8.6.3 Impedance Model of DAB Converter 199</p> <p>8.6.4 Impedance-Based Stability Analysis 201</p> <p>8.6.5 Specifications 202</p> <p>8.6.6 Impedance Model Validation 203</p> <p>8.6.7 System Instability 204</p> <p>8.6.8 Proposed Control Techniques for Stabilization 204</p> <p>8.7 Conclusion 206</p> <p>References 206</p> <p><b>9 Packed U-Cell Inverter and Its Variants with Fault Tolerant Capabilities for More Electric Aircraft </b><b>209<br /></b><i>Haroon Rehman, Mohd Tariq, Hasan Iqbal, Arif I. Sarwat, and Adil Sarwar</i></p> <p>9.1 Introduction 209</p> <p>9.2 Power System Architecture in MEA 210</p> <p>9.3 Power Converters in MEA 212</p> <p>9.4 PUC Topologies and Control 215</p> <p>9.5 Fault Tolerant Capability of PUC Inverter 218</p> <p>9.6 Results and Discussion 220</p> <p>9.7 Conclusions 225</p> <p>Acknowledgments 225</p> <p>References 226</p> <p><b>10 Standards and Regulations Pertaining to Aircraft </b><b>231<br /></b><i>Lujia Chen, Prem Ranjan, Qinghua Han, Abir Alabani, and Ian Cotton</i></p> <p>10.1 Introduction 231</p> <p>10.2 Power Generation 232</p> <p>10.2.1 Characteristics of Aircraft Electrical Systems 232</p> <p>10.2.2 Electrical Machines 233</p> <p>10.2.3 Power Conversion 234</p> <p>10.2.4 Batteries 235</p> <p>10.2.5 Challenges for Higher Voltage Aerospace Systems 236</p> <p>10.3 Cable 236</p> <p>10.3.1 Cable Component and Type 236</p> <p>10.3.2 Digital Data and Signal Transmission 237</p> <p>10.3.3 Cable Identification Marking 237</p> <p>10.3.4 Cable Test Specifications 238</p> <p>10.4 Connectors and Contacts 238</p> <p>10.4.1 Classification 238</p> <p>10.4.2 Connectors 239</p> <p>10.4.3 Contacts 239</p> <p>10.4.4 Testing of Tools, Contacts, and Connectors 239</p> <p>10.5 Switching Device 240</p> <p>10.5.1 Circuit Breaker Classification 240</p> <p>10.5.2 Design of Circuit Breakers 240</p> <p>10.5.2.1 Low-Current Range 240</p> <p>10.5.2.2 High-Current Range 241</p> <p>10.5.2.3 Arc Fault Circuit Breaker (AFCB) 241</p> <p>10.5.3 Circuit Breaker Testing Specifications 241</p> <p>10.6 Material 242</p> <p>10.6.1 Metallic Materials 242</p> <p>10.6.2 Non-metallic Material 243</p> <p>References 243</p> <p><b>11 Overview of Rolling Stock </b><b>249<br /></b><i>Deepak Ronanki</i></p> <p>11.1 Introduction 249</p> <p>11.2 Rolling Stock Architectures 250</p> <p>11.2.1 Railway Traction Power Systems 250</p> <p>11.2.2 Classification of Rolling Stock 250</p> <p>11.2.2.1 Light Rail Vehicle (LRV) 252</p> <p>11.2.2.2 Heavy Rail-Diesel Locomotive 252</p> <p>11.2.2.3 Heavy Rail-Electric Locomotive 253</p> <p>11.2.2.4 Electric Multiple Units [EMUs] (AC or DC) 254</p> <p>11.3 Sub-Systems and Components of Rolling Stock Architectures 256</p> <p>11.3.1 Electric Propulsion Systems 256</p> <p>11.3.2 Power Converter Systems and its Components 256</p> <p>11.3.3 Auxiliary Power Systems 258</p> <p>11.3.4 Traction Drive Control 259</p> <p>11.3.5 Control Hierarchy of Rolling Stock 260</p> <p>11.3.6 Standards and Regulations 262</p> <p>11.4 Solid State Transformer (SST) Technology-Based Rolling Stock 262</p> <p>11.4.1 Two-Stage (AC/HFAC) Power Conversion Topologies 267</p> <p>11.4.2 Single-Stage (AC/HFAC) Power Conversion Topologies 269</p> <p>11.4.3 Auxiliary Systems for SSTT Systems 271</p> <p>11.5 Advancements and Challenges in Modern Rolling Stock 272</p> <p>11.5.1 Semiconductor Technology and Cooling Systems 272</p> <p>11.5.2 Advanced Materials for Passive Components 273</p> <p>11.5.3 Reversible Substations and Off-Board Energy Storage Systems 275</p> <p>11.5.4 On-Board Energy Storage Systems in Rolling Stock 276</p> <p>11.6 Concluding Remarks 278</p> <p>References 278</p> <p><b>12 Electromagnetic Compatibility in Railways </b><b>283<br /></b><i>Sahil Bhagat</i></p> <p>12.1 Introduction 283</p> <p>12.2 The Phenomenon of Electromagnetic Interference 284</p> <p>12.2.1 The Interference Model 284</p> <p>12.3 EMC Strategy 286</p> <p>12.4 Design and Installation 288</p> <p>12.4.1 Equipment Layout 288</p> <p>12.4.2 Minimizing the Earth Network Impedance 288</p> <p>12.4.3 Minimizing the Earth Bond Impedance 289</p> <p>12.4.4 Grounding of Cable Shields 290</p> <p>12.4.5 Appropriate Design of Cables Routes 290</p> <p>12.4.5.1 Minimizing CM Loops 291</p> <p>12.4.5.2 Minimizing DM Loops 291</p> <p>12.5 Cable Tray Assembling and Earthing 291</p> <p>12.5.1 Cable Segregation 291</p> <p>12.5.2 Cables Classification 292</p> <p>12.5.3 Separation Distances 292</p> <p>12.5.4 Filtering 293</p> <p>12.6 Overvoltage Arrestors 294</p> <p>12.7 EMC Analysis 294</p> <p>12.8 EMC Tests 295</p> <p>References 297</p> <p><b>13 Stray Current and Rail Potential Control Strategies in Electric Railway Systems </b><b>299<br /></b><i>Aydin Zaboli and Behrooz Vahidi</i></p> <p>13.1 Introduction 299</p> <p>13.2 Principle of Stray Current and Corrosion Calculation 300</p> <p>13.2.1 Mathematical Calculation of Stray Current 300</p> <p>13.2.2 Corrosion Formulation 300</p> <p>13.3 Literature Review of Control Strategies 302</p> <p>13.4 Stray Current Control and Limitation Methods 303</p> <p>13.4.1 Increase of Rail-to-Earth Resistance 303</p> <p>13.4.2 Locating TPSs Adjacent to the Points of Maximum Train Acceleration or Adding TPSs 304</p> <p>13.4.3 Traction Supply Voltage Increase 305</p> <p>13.4.4 Stray Current Collection Mats 306</p> <p>13.4.5 Grounding Schemes 310</p> <p>13.4.5.1 Ungrounded System 310</p> <p>13.4.5.2 Directly Grounded System 311</p> <p>13.4.5.3 Diode-Grounded System 312</p> <p>13.4.5.4 Thyristor-Grounded System 312</p> <p>13.4.6 Insulating Pad 313</p> <p>13.4.7 Welding Running Rails 313</p> <p>13.4.8 4th Rail for Returning Current Path 314</p> <p>13.4.9 Traction Power Substations Based on DC Auto-Transformer 315</p> <p>13.4.10 Resistance of the Earth Wire to Reinforcing Bar 316</p> <p>13.5 Conclusion 319</p> <p>References 319</p> <p><b>14 Earthing, Bonding, and Stray Current </b><b>325<br /></b><i>Sahil Bhagat</i></p> <p>14.1 E&B provisions for Traction Power Supply 326</p> <p>14.1.1 DC Traction Return System 326</p> <p>14.1.2 Wayside Earthing and Bonding in DC Traction System 326</p> <p>14.1.2.1 Rail Potential and Return Circuit 327</p> <p>14.1.3 Earthing and Bonding in DC Traction Power Substations 328</p> <p>14.1.3.1 Equipment Frames 328</p> <p>14.1.3.2 Voltage-Limiting Device (VLD) 328</p> <p>14.2 AC Traction Return System 329</p> <p>14.2.1 Wayside Earthing and Bonding in AC Traction 329</p> <p>14.2.1.1 Rail Potential and Return Circuit 331</p> <p>14.3 E&B Provisions for Station and Technical Buildings 331</p> <p>14.3.1 Electrical Safety of Persons 331</p> <p>14.3.1.1 Direct Contact 331</p> <p>14.3.1.2 Indirect Contact 332</p> <p>14.3.1.3 Touch Voltages 332</p> <p>14.4 Protection 334</p> <p>14.4.1 Protection Against Thermal Stress 334</p> <p>14.4.2 Protection Against Overvoltage 334</p> <p>14.5 Structure Earthing and Bonding System 334</p> <p>14.6 Earthing and Equipotential Bonding 335</p> <p>14.6.1 Indoor Equipment 335</p> <p>14.6.2 Outdoor Equipment 335</p> <p>14.7 Stray Current 336</p> <p>14.7.1 Stray Current Corrosion 336</p> <p>14.7.2 Parameters to Control Stray Current 337</p> <p>14.7.3 Criteria for Stray Current Assessment 338</p> <p>14.7.4 Design Provisions to Reduce Stray Current 338</p> <p>14.7.5 Trackwork 338</p> <p>14.7.5.1 Maximum Longitudinal Resistance of the Rail 338</p> <p>14.7.5.2 Insulation Measures 338</p> <p>14.7.6 Stray Current Collection System (SCCS) 339</p> <p>14.7.7 Power Supply Design 339</p> <p>14.7.8 Earthing and Bonding 340</p> <p>References 340</p> <p><b>15 Regenerative Braking Energy in Electric Railway Systems </b><b>343<br /></b><i>Mahdiyeh Khodaparastan, Ahmed A. Mohamed, and Constantine Spanos</i></p> <p>15.1 Introduction 343</p> <p>15.2 Regenerative Braking Energy 343</p> <p>15.3 Regenerative Braking Energy Recuperation Methods 344</p> <p>15.3.1 Train Timetable Optimization 344</p> <p>15.3.2 Storage-Based Solutions 345</p> <p>15.3.2.1 Onboard Energy Storage 348</p> <p>15.3.2.2 Wayside Energy Storage 349</p> <p>15.3.3 Reversible Substation 350</p> <p>15.3.4 Hybrid Reversible Substation and Wayside Energy Storage Modeling 352</p> <p>15.3.5 Choosing the Right Application 355</p> <p>15.4 New York City Transit – Case Study 356</p> <p>15.4.1 NYC Transit Systems 356</p> <p>15.4.2 Wayside Energy Storage 356</p> <p>15.4.3 Reversible Substation 361</p> <p>15.4.4 Hybrid Reversible Substation and Wayside Energy Storage 361</p> <p>References 362</p> <p><b>16 Flywheel Wayside Energy Storage for Electric Rail Systems </b><b>367<br /></b><i>Ahmed A. Mohamed, Rohama Ahmad, William Franks, Brian Battle, and Robert Abboud</i></p> <p>16.1 Introduction 367</p> <p>16.2 Beacon Power’s Kinetic Energy Storage System 367</p> <p>16.2.1 Key Features of Beacon Flywheels 368</p> <p>16.3 Train Simulation Study 370</p> <p>16.3.1 Synopsis 370</p> <p>16.3.2 Modeling Scope 370</p> <p>16.3.3 Modeling Scenarios 370</p> <p>16.3.4 Results and Discussion 371</p> <p>16.3.4.1 Transient Response 371</p> <p>16.3.4.2 24-hour Steady State Response 377</p> <p>16.3.4.3 Effect of Changing Chopper Activation Voltage 379</p> <p>16.3.4.4 Engaging the flywheel all the time 388</p> <p>16.3.4.5 State of Charge Control 388</p> <p>16.4 1MW Kinetic Energy Storage System Financial Results 392</p> <p>16.4.1 Train Simulation Study 392</p> <p>16.4.2 Cases Run 392</p> <p>16.4.3 Capital Costs 393</p> <p>16.4.4 Estimation of Annual Energy and Demand 393</p> <p>16.4.4.1 Results 394</p> <p>16.4.4.2 Emission Reduction 394</p> <p>References 397</p> <p><b>17 Distributed Energy Resource Integration with Electrical Railway Systems: NYC Case Study </b><b>399<br /></b><i>Rohama Ahmad, Jaskaran Singh, and Ahmed A. Mohamed</i></p> <p>17.1 Introduction 399</p> <p>17.2 DER Integration with Subway Systems 400</p> <p>17.2.1 Regenerative Braking Energy Recuperation 400</p> <p>17.2.2 AC vs DC Integration 400</p> <p>17.2.3 ESS Selection and Allocation 400</p> <p>17.3 Case Study 401</p> <p>17.3.1 NYC’s Subway System 401</p> <p>17.3.2 Model 404</p> <p>17.3.3 DER Integration 409</p> <p>17.3.4 Results of DER Integration 411</p> <p>17.4 Conclusion 415</p> <p>Reference 416</p> <p><b>18 Challenges and State of the Art in the Agricultural Machinery Electrification </b><b>417<br /></b><i>Luigi Alberti and Michele Mattetti</i></p> <p>18.1 Introduction 417</p> <p>18.2 Conventional Powertrain and Electrification Challenges 418</p> <p>18.3 Electrification of Auxiliaries 420</p> <p>References 421</p> <p><b>19 Electrification of Agricultural Machinery: Main Solutions and Components </b><b>425<br /></b><i>Luigi Alberti and Diego Troncon</i></p> <p>19.1 Powertrain Electrification 425</p> <p>19.1.1 Diesel-Electric and Hybrid-Electric Powertrains 425</p> <p>19.1.1.1 Series Architectures 426</p> <p>19.1.1.2 Parallel Architectures 428</p> <p>19.1.1.3 Series–Parallel Architectures 429</p> <p>19.1.2 Full-Electric Powertrains 430</p> <p>19.1.3 Battery Electric Tractors (BETs) 430</p> <p>19.1.4 Fuel Cell Electric Tractors (FCETs) 431</p> <p>19.2 Main Components for Tractors’ Electric Drivetrains 432</p> <p>19.2.1 Electric Energy Storage Systems 432</p> <p>19.2.2 Fuel Cells and Hydrogen Storage 433</p> <p>19.2.3 Electric Machines 433</p> <p>19.2.4 Power Converters 434</p> <p>References 434</p> <p><b>20 Feasibility Evaluation of Hybrid Electric Agricultural Tractors Based on Life Cycle Cost Analysis </b><b>437<br /></b><i>Luigi Alberti, Elia Scolaro, and Matteo Beligoj</i></p> <p>20.1 Introduction 437</p> <p>20.2 Case Studies and Operating Cycles 438</p> <p>20.2.1 Orchard Tractor 438</p> <p>20.2.2 Row Crop Tractor’s Medium-Duty Use 438</p> <p>20.2.3 Row Crop Tractor’s Heavy-Duty Use 439</p> <p>20.3 System Modeling 440</p> <p>20.3.1 Internal Combustion Engine 440</p> <p>20.3.2 Converter and Electric Machine 440</p> <p>20.3.3 Battery 440</p> <p>20.3.4 Power Management 441</p> <p>20.3.5 CO2 Emission Estimation 442</p> <p>20.4 Design Specifications and Power Management Tuning 442</p> <p>20.4.1 Battery Capacity Sizing and Power Management Tuning 442</p> <p>20.4.2 Electric Machine and Power Electronics Design Specs 443</p> <p>20.4.3 ICE Downsizing 443</p> <p>20.5 Life Cycle Cost Analysis 444</p> <p>20.5.1 Tractor Components and Energy Pricing 444</p> <p>20.6 Results 445</p> <p>20.6.1 Saving Each Cycle 445</p> <p>20.6.2 Varying Component and Energy Pricing – Convenience of the Hybrid Tractors 447</p> <p>20.6.3 Specs and Savings Summary 449</p> <p>20.7 Conclusion 449</p> <p>References 450</p> <p><b>21 Advances in Data-Driven Modeling and Control of Naval Power Systems </b><b>453<br /></b><i>Javad Khazaei and Ali Hosseinipour</i></p> <p>21.1 Introduction to DC Watercraft Systems 453</p> <p>21.2 Architectures for DC Shipboard Power Systems 456</p> <p>21.2.1 Radial Topology 456</p> <p>21.2.2 Multi-Zone Topology 456</p> <p>21.3 Application of Hybrid Energy Storage in DC Watercrafts 458</p> <p>21.3.1 Inner Control Loops 458</p> <p>21.3.2 Generator Control 459</p> <p>21.3.3 Resistive-Capacitive Droop Control 460</p> <p>21.3.4 Proposed Complex Droop Control 461</p> <p>21.4 Sparse Identification of Nonlinear Dynamics of DC/DC Converters in Watercrafts 463</p> <p>21.4.1 Smoothing Data for Derivative Estimation 465</p> <p>21.4.2 Estimating the Time Derivative Matrix X 465</p> <p>21.4.3 Identification by Sparse Regression 465</p> <p>21.4.4 Dynamic Model of the DC/DC Converters 466</p> <p>21.4.5 Case Studies 467</p> <p>21.4.6 Time-Domain Verification 467</p> <p>21.5 Conclusion and Future Work 468</p> <p>References 469</p> <p><b>22 Shipboard DC Hybrid Power Systems: Pathway to Electrification and Decarbonization </b><b>475<br /></b><i>Mehdi Zadeh and Pramod Ghimire</i></p> <p>22.1 Introduction 475</p> <p>22.2 Shipboard Power System Architectures 476</p> <p>22.2.1 AC Switchboards 476</p> <p>22.2.2 DC Power System 477</p> <p>22.2.3 Hybrid AC–DC Power System 478</p> <p>22.3 Shipboard DC Power System Topologies 478</p> <p>22.4 Energy Storage and Alternative Energy Sources in Shipboard Power System 481</p> <p>22.4.1 Energy Storages 482</p> <p>22.4.2 Fuel Cell 483</p> <p>22.5 High-Level Control of Energy Storage Systems 484</p> <p>22.5.1 Peak Shaving 484</p> <p>22.5.2 Load Leveling 484</p> <p>22.5.3 Zero Emission 485</p> <p>22.5.4 Battery Charging 486</p> <p>22.5.5 Strategic Loading 486</p> <p>22.5.6 Enhanced Dynamic Performance 487</p> <p>22.5.7 Spinning Reserve 487</p> <p>22.6 Load Sharing in DC Power System 488</p> <p>22.7 Efficiency Improvement and Emission Reduction Potentials 488</p> <p>22.8 Case Studies 489</p> <p>22.8.1 Case Study 1 – Cruise Vessel 492</p> <p>22.8.2 Case Study 2 – Offshore Vessel 494</p> <p>References 495</p> <p>Index 499</p>
<p><b>Ahmed A. Mohamed, PhD,</b> is an Associate Professor in the Department of Electrical Engineering, Grove School of Engineering, City University of New York at City College. He is also Director of the Smart Grid Interdependencies Laboratory and Associate Editor of <i>IEEE Transactions on Transportation Electrification, IEEE Access</i>, and <i>MDPI Energies</i>. <p><b>Ahmad Arshan Khan, PhD,</b> is Director of Power Electronics and Electric Machines at CNH Industrial. <p><b>Ahmed T. Elsayed, PhD,</b> is a Senior Electrical Design and Analysis Engineer and Technical Lead with Boeing Defense, Space and Security (BDS). <p><b>Mohamed A. Elshaer,</b> is a Power Electronics Technical Expert in the Electrified Systems Engineering department of Ford Motor Company.
<p><b>Dive deep into the latest breakthroughs in electrified modes of transport</b> <p>In <i>Transportation Electrification</i>, an accomplished team of researchers and industry experts delivers a unique synthesis of detailed analyses of recent breakthroughs in several modes of electric transportation and a holistic overview of how those advances can or cannot be applied to other modes of transportation. The editors include resources that examine electric aircraft, rolling stock, watercraft, and vehicle transportation types and comparatively determine their stages of development, distinctive and common barriers to advancement, challenges, gaps in technology, and possible solutions to developmental problems. <p>This book offers readers a breadth of foundational knowledge combined with a deep understanding of the issues afflicting each mode of transportation. It acts as a roadmap and policy framework for transportation companies to guide the electrification of transportation vessels. <p>Readers will benefit from an overview of key standards and regulations in the electrified transportation industry, as well as: <ul><li> A thorough introduction to the various modes of electric transportation, including recent advances in each mode, and the technological and policy challenges posed by them</li> <li> An exploration of different vehicle systems, including recent advanced in hybrid and EV powertrain architectures and advanced energy management strategies</li> <li> Discussions of electrified aircraft, including advanced technologies and architecture optimizations for cargo air vehicle, passenger air vehicles, and heavy lift vertical take-off and landing craft</li> <li> In-depth examinations of rolling stock and watercraft-type vehicles, and special vehicles, including various system architectures and energy storage systems relevant to each</li></ul> <p>Perfect for practicing professionals in the electric transport industry, <i>Transportation Electrification</i> is also a must-read resource for standardization body members, regulators, officials, policy makers, and undergraduate students in electrical and electronics engineering.

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €