Details

Transition Metal-Catalyzed Heterocycle Synthesis via C-H Activation


Transition Metal-Catalyzed Heterocycle Synthesis via C-H Activation


1. Aufl.

von: Xiao-Feng Wu

160,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 22.12.2015
ISBN/EAN: 9783527691937
Sprache: englisch
Anzahl Seiten: 600

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Reflecting the tremendous growth of this hot topic in recent years, this book covers C-H activation with a focus on heterocycle synthesis. <p>As such, the text provides general mechanistic aspects and gives a comprehensive overview of catalytic reactions in the presence of palladium, rhodium, ruthenium, copper, iron, cobalt, and iridium. The chapters are organized according to the transition metal used and sub-divided by type of heterocycle formed to enable quick access to the synthetic route needed. Chapters on carbonylative synthesis of heterocycles and the application of C-H activation methodology to the synthesis of natural products are also included.</p> <p>Written by an outstanding team of authors, this is a valuable reference for researchers in academia and industry working in the field of organic synthesis, catalysis, natural product synthesis, pharmaceutical chemistry, and crop protection.</p>
<p>List of Contributors XXI</p> <p>Foreword 1 XXVII</p> <p>Foreword 2 XXIX</p> <p>Preface XXXI</p> <p><b>1 Computational Studies of Heteroatom-Assisted C–H Activation at Ru, Rh, Ir, and Pd as a Basis for Heterocycle Synthesis and Derivatization 1</b><br /><i>Kevin J. T. Carr, Stuart A. Macgregor, and Claire L. McMullin</i></p> <p>1.1 Introduction 1</p> <p>1.2 Palladium 2</p> <p>1.2.1 Intramolecular Heteroatom-Assisted C–H Activation 2</p> <p>1.2.1.1 Early Computational Studies 2</p> <p>1.2.1.2 The Role of the Base, Solvent, and Additives on Pd-Mediated Intramolecular C–H Activation 5</p> <p>1.2.1.3 Intramolecular C–H Activation of Heterocyclic Substrates 9</p> <p>1.2.2 Intermolecular C–H Activation 11</p> <p>1.2.2.1 Early Computational Studies 11</p> <p>1.2.2.2 Direct Functionalization via C–H Activation of Heterocyclic Substrates 15</p> <p>1.3 Ruthenium, Rhodium, and Iridium 22</p> <p>1.3.1 Intramolecular Heteroatom-Assisted C–H Activation 22</p> <p>1.3.2 Intermolecular C–H Activation 25</p> <p>1.3.3 C–H Activation and Functionalization 27</p> <p>1.3.3.1 Heterocycle Formation with Internal Oxidants 28</p> <p>1.3.3.2 Heterocycle Formation without Internal Oxidants 34</p> <p>1.3.4 Alkenylation and Amination 38</p> <p>1.4 Conclusions 40</p> <p>Acknowledgments 41</p> <p>References 41</p> <p><b>2 Pd-Catalyzed Synthesis of Nitrogen-Containing Heterocycles 45</b><br /><i>Lixin Li, Xiaolei Ji, and Hanming Huang</i></p> <p>2.1 Introduction 45</p> <p>2.2 General Consideration on Palladium Chemistry 45</p> <p>2.3 Heterocycle Synthesis via C(sp3)–H Activation 46</p> <p>2.3.1 Heterocycle Synthesis via Activated C(sp3)–H Bonds 47</p> <p>2.3.2 Heterocycle Synthesis via Unactivated C(sp3)–H Bonds 49</p> <p>2.4 Heterocycles via C(sp2)–H Activation 55</p> <p>2.5 Conclusions 61</p> <p>References 62</p> <p><b>3 Pd-Catalyzed Synthesis of Oxygen-Containing Heterocycles 65</b><br /><i>Yudong Yang and Jingsong You</i></p> <p>3.1 Introduction 65</p> <p>3.2 Palladium-Catalyzed C–H Activation/C–C Formation to Construct Oxacycles 66</p> <p>3.2.1 Palladium-Catalyzed C–H Bond Arylation 67</p> <p>3.2.2 Palladium-Catalyzed C–H Olefination 69</p> <p>3.2.3 Palladium-Catalyzed C–H Alkylation 75</p> <p>3.2.4 Palladium-Catalyzed C–H Carbonylation and Carboxylation 76</p> <p>3.3 Palladium-Catalyzed C–H Activation/C–O Formation to Construct Oxacycles 80</p> <p>3.3.1 Palladium-Catalyzed C–O Bond Formation via C(sp2)–H Activation 81</p> <p>3.3.2 Palladium-Catalyzed C–O Bond Formation via Allylic C–H Activation 84</p> <p>3.4 Conclusions 86</p> <p>References 87</p> <p><b>4 Pd-Catalyzed Synthesis of Other Heteroatom-Containing Heterocycles 91</b><br /><i>Zhanxiang Liu and Yuhong Zhang</i></p> <p>4.1 Introduction 91</p> <p>4.2 Sulfur-Containing Heterocycles 91</p> <p>4.2.1 Benzo[b]thiophenes 92</p> <p>4.2.2 Benzothiazoles 95</p> <p>4.2.3 Sultones 98</p> <p>4.2.4 Sultams 100</p> <p>4.3 Phosphorus-Containing Heterocycles 102</p> <p>4.3.1 P–C Heterocycles (Dibenzophosphole Oxides) 102</p> <p>4.3.2 O–P=OHeterocycles 106</p> <p>4.3.3 P–N Heterocycles 107</p> <p>4.4 Silicon-Containing Heterocycles 108</p> <p>4.4.1 Benzosiloles 108</p> <p>4.4.2 Oxasiline and Azasiline 110</p> <p>4.5 Summary and Conclusions 112</p> <p>References 113</p> <p><b>5 Rh-Catalyzed Synthesis of Nitrogen-Containing Heterocycles 117</b><br /><i>Krishnamoorthy Muralirajan and Chien-Hong Cheng</i></p> <p>5.1 Introduction 117</p> <p>5.2 Synthesis of Five-Membered Nitrogen Heterocycles 118</p> <p>5.2.1 Synthesis of Indoles 118</p> <p>5.2.2 Synthesis of Isoindolines 122</p> <p>5.2.3 Synthesis of Unprotected Indoles 123</p> <p>5.2.4 Synthesis of Indolines 124</p> <p>5.2.5 Synthesis of Indazoles 124</p> <p>5.2.6 Synthesis of Isoxazoles 125</p> <p>5.2.7 Synthesis of Pyrroles 126</p> <p>5.2.8 Synthesis of Isoindolin-1-ones 128</p> <p>5.2.9 Synthesis of 3-Hydroxyisoindolin-1-ones 129</p> <p>5.2.10 Synthesis of 3-(Imino)isoindolinones 129</p> <p>5.2.11 Synthesis of Dihydrocarbazoles 131</p> <p>5.2.12 Synthesis of Sultams 131</p> <p>5.2.13 Synthesis of Phthalimides 132</p> <p>5.3 Synthesis of Six-Membered Nitrogen Heterocycles 133</p> <p>5.3.1 Synthesis of Isoquinolines by Rh(I) Catalysis 133</p> <p>5.3.2 Synthesis of Isoquinolines by Rh(III) Catalysis 134</p> <p>5.3.3 Synthesis of 1-Aminoisoquinolines 136</p> <p>5.3.4 Synthesis of Isoquinolones and Related Derivatives 137</p> <p>5.3.5 Synthesis of Phenanthridinones 142</p> <p>5.3.6 Synthesis of Quinolines 143</p> <p>5.3.7 Synthesis of Naphthyridines 144</p> <p>5.3.8 Synthesis of Phthalazines 145</p> <p>5.3.9 Synthesis of Acridines and Phenazines 145</p> <p>5.3.10 Synthesis of Cinnolines 146</p> <p>5.3.11 Synthesis of Isoquinolinones and Cinnolinones 147</p> <p>5.3.12 Synthesis of Dihydropyridines 147</p> <p>5.3.13 Synthesis of Pyridines 148</p> <p>5.3.14 Synthesis of Pyridones 150</p> <p>5.3.15 Synthesis of Pyrimidinones 150</p> <p>5.4 Synthesis of Quaternary Ammonium Salts 151</p> <p>5.4.1 Synthesis of Isoquinolinium Salts 151</p> <p>5.4.2 Synthesis of Quinolizinium and Pyridinium Salts 153</p> <p>5.4.3 Synthesis of Cinnolinium Salts 153</p> <p>5.4.4 Synthesis of Isoquinoline N-Oxides and Pyridine N-Oxides 154</p> <p>5.5 Synthesis of Seven-Membered Nitrogen Heterocycles 155</p> <p>5.5.1 Synthesis of Azepinones 155</p> <p>5.5.2 Synthesis of 1,2-Oxazepines 155</p> <p>5.6 Summary and Conclusions 156</p> <p>References 156</p> <p><b>6 Rh-Catalyzed Synthesis of Oxygen-Containing Heterocycles 161</b><br /><i>Bin Liu, Fang Hu, and Bing-Feng Shi</i></p> <p>6.1 Introduction 161</p> <p>6.2 Synthesis of Five-Membered Oxygen-Containing Heterocycles 161</p> <p>6.2.1 Intermolecular Annulation 161</p> <p>6.2.1.1 Phthalides 161</p> <p>6.2.1.2 Furans 163</p> <p>6.2.1.3 Other Five-Membered Oxygen-Containing Heterocycles 165</p> <p>6.2.2 Intramolecular Cyclization 167</p> <p>6.2.2.1 Dihydrobenzofurans 167</p> <p>6.2.2.2 Dibenzofuran 168</p> <p>6.3 Synthesis of Six-Membered Oxygen-Containing Heterocycles 168</p> <p>6.3.1 Intermolecular Annulation 168</p> <p>6.3.1.1 Chromenes 168</p> <p>6.3.1.2 Chromones 174</p> <p>6.3.1.3 Coumarin 175</p> <p>6.3.1.4 Other Six-Membered Oxygen-Containing Heterocycles 178</p> <p>6.3.2 Intramolecular Cyclization 178</p> <p>6.4 Synthesis of Seven-, Eight-, and Nine-Membered Oxygen-Containing Heterocycles 179</p> <p>6.4.1 Intermolecular Annulation 179</p> <p>6.4.2 Intramolecular Cyclization 180</p> <p>6.5 Summary and Conclusions 181</p> <p>References 182</p> <p><b>7 Ruthenium-Catalyzed Synthesis of Heterocycles via C–H Bond Activation 187</b><br /><i>Bin Li and Baiquan Wang</i></p> <p>7.1 Introduction 187</p> <p>7.2 Ruthenium-Catalyzed Heterocycle Synthesis via Intramolecular C–C Bond Formation Based on C–H Bond Activation 188</p> <p>7.3 Ruthenium-Catalyzed Heterocycle Synthesis via Intramolecular C–N Bond Formation Based on C–H Bond Activation 192</p> <p>7.4 Ruthenium-Catalyzed Heterocycle Synthesis via Intermolecular C–C/C–O Bond Formation Based on C–H Bond Activation 194</p> <p>7.4.1 Cyclization with Alkynes 194</p> <p>7.4.2 Cyclization with Alkenes 198</p> <p>7.4.3 Cyclization with Carbon Monoxide 201</p> <p>7.4.4 Cyclization with 1,2-Diol 202</p> <p>7.5 Ruthenium-Catalyzed Heterocycle Synthesis via Intermolecular C–C/C–N Bond Formation Based on C–H Bond Activation 203</p> <p>7.5.1 Cyclization with Alkynes 203</p> <p>7.5.2 Cyclization with Alkenes 220</p> <p>7.5.3 Cyclization with Carbon Monoxide 225</p> <p>7.5.4 Cyclization with Isocyanate 228</p> <p>7.6 Summary and Conclusions 228</p> <p>References 229</p> <p><b>8 Cu-Catalyzed Heterocycle Synthesis 233</b><br /><i>Feng Chen and Ning Jiao</i></p> <p>8.1 Introduction 233</p> <p>8.2 Four-Membered-Ring Formation 233</p> <p>8.3 Five-Membered-Ring Formation 234</p> <p>8.3.1 Copper-Catalyzed Synthesis of Pyrroles 234</p> <p>8.3.2 Copper-Catalyzed Synthesis of Pyrrolidines 237</p> <p>8.3.3 Copper-Catalyzed Synthesis of Indoles 240</p> <p>8.3.4 Copper-Catalyzed Synthesis of Indolines 242</p> <p>8.3.5 Copper-Catalyzed Synthesis of Oxindoles 245</p> <p>8.3.6 Copper-Catalyzed Synthesis of Indole-2,3-dione (Isatins) 248</p> <p>8.3.7 Copper-Catalyzed Synthesis of Indolizines 250</p> <p>8.3.8 Copper-Catalyzed Synthesis of Carbazoles 250</p> <p>8.3.9 Copper-Catalyzed Synthesis of Imidazoles 251</p> <p>8.3.10 Copper-Catalyzed Synthesis of Benzimidazoles 254</p> <p>8.3.11 Copper-Catalyzed Synthesis of Imidazopyridines 256</p> <p>8.3.12 Copper-Catalyzed Synthesis of Pyrazoles and Indazoles 260</p> <p>8.3.13 Copper-Catalyzed Synthesis of Oxazoles 261</p> <p>8.3.14 Copper-Catalyzed Synthesis of Benzoxazoles 262</p> <p>8.3.15 Copper-Catalyzed Synthesis of 1,2,3-Triazoles 263</p> <p>8.3.16 Copper-Catalyzed Synthesis of 1,2,3-Tetrazoles 264</p> <p>8.3.17 Copper-Catalyzed Synthesis of Furans 264</p> <p>8.4 Six-Membered-Ring Formation 266</p> <p>8.4.1 Copper-Catalyzed Synthesis of Pyridines 266</p> <p>8.4.2 Copper-Catalyzed Synthesis of Quinolines 267</p> <p>8.4.3 Copper-Catalyzed Synthesis of Isoquinolines 271</p> <p>8.4.4 Copper-Catalyzed Synthesis of Quinolinones 272</p> <p>8.4.5 Copper-Catalyzed Synthesis of Acridones 273</p> <p>8.4.6 Copper-Catalyzed Synthesis of Phenanthridine 275</p> <p>8.4.7 Copper-Catalyzed Synthesis of Quinazoline and Quinazolinones 276</p> <p>8.4.8 Copper-Catalyzed Synthesis of Cinnolines 277</p> <p>8.4.9 Copper-Catalyzed Synthesis of Pyrimidinone 278</p> <p>8.4.10 Copper-Catalyzed Synthesis of 1,4-Dihydropyrazine Derivatives 278</p> <p>8.4.11 Copper-Catalyzed Synthesis of 1,3-Oxazines 279</p> <p>8.4.12 Copper-Catalyzed Synthesis of Oxazinone Derivatives 280</p> <p>8.4.13 Copper-Catalyzed Synthesis of Chroman Derivatives 280</p> <p>8.4.14 Copper-Catalyzed Synthesis of Benzolactone Derivatives 281</p> <p>8.4.15 Copper-Catalyzed Synthesis of Coumarin Derivatives 282</p> <p>8.4.16 Copper-Catalyzed Synthesis of Xanthone Derivatives 283</p> <p>8.4.17 Copper-Catalyzed Synthesis of N,S-Heterocycles 284</p> <p>8.5 Summary 285</p> <p>References 285</p> <p><b>9 Fe- and Ag-Catalyzed Synthesis of Heterocycles 291</b><br /><i>Jin-Heng Li and Ren-Jie Song</i></p> <p>9.1 Introduction 291</p> <p>9.2 Iron-Catalyzed Synthesis of Heterocycles 291</p> <p>9.2.1 Iron-Catalyzed Synthesis of Nitrogen-Containing Heterocycles 292</p> <p>9.2.2 Iron-Catalyzed Synthesis of Oxygen-Containing Heterocycles 304</p> <p>9.3 Silver-Catalyzed Synthesis of Heterocycles 307</p> <p>9.3.1 Silver-Catalyzed Synthesis of Nitrogen-Containing Heterocycles 308</p> <p>9.3.2 Silver-Catalyzed Synthesis of Oxygen- or Phosphorus-Containing Heterocycles 311</p> <p>9.4 Conclusion and Outlook 312</p> <p>References 314</p> <p><b>10 Heterocycles Synthesis via Co-Catalyzed C–H Bond Functionalization 317</b><br /><i>Naohiko Yoshikai</i></p> <p>10.1 Introduction 317</p> <p>10.2 Heterocycle Synthesis via Low-Valent Cobalt-Catalyzed C–H Activation 319</p> <p>10.3 Heterocycle Synthesis via High-Valent Cobalt-Catalyzed C–H Activation 325</p> <p>10.4 Heterocycle Synthesis via C–H Functionalization under Co(II)-Based Metalloradical Catalysis 331</p> <p>10.5 Summary and Conclusions 335</p> <p>References 335</p> <p><b>11 Ir-Catalyzed Heterocycles Synthesis 339</b><br /><i>Yasushi Obora</i></p> <p>11.1 Introduction 339</p> <p>11.2 Ir-Catalyzed Heterocyclization by ortho-Aryl C–H Activation 340</p> <p>11.2.1 Ir-Catalyzed [3+2] Cyclization of Ketimines with 1,3-Dienes/Alkynes 340</p> <p>11.2.2 Ir-Catalyzed Cyclization of Benzoic Acid to Give 2-Hydroxy-6H-benzo[c]chromen-6-ones 342</p> <p>11.2.3 Ir-Catalyzed Cyclization of N-Arylcarbamoyl Chlorides with Alkynes 342</p> <p>11.3 Ir-Catalyzed Heterocyclization by Benzylic C–H Activation 343</p> <p>11.3.1 Ir-Catalyzed N-Cyclization of Aryl Azides 343</p> <p>11.3.2 Ir-Catalyzed Silylation of Benzylic Amines and 2,N-Dialkylanilines via Aryl C–H Bond Activation 343</p> <p>11.4 Ir-Catalyzed Heterocyclization by sp3 C–H Activation 344</p> <p>11.4.1 Ir-Catalyzed N-Cyclization of Aryl Azides 344</p> <p>11.5 Heterocyclization by Ir Catalyst as Lewis Acid 345</p> <p>11.6 Ir-Catalyzed Heterocyclization by C–H Bond Activation through Transfer Hydrogenation 345</p> <p>11.6.1 Ir-Catalyzed N-Heterocyclization of Naphthylamines with Diols 345</p> <p>11.6.2 Ir-Catalyzed Reaction of Anilines with Diols to Give 2,3-Disubstituted Indoles 346</p> <p>11.6.3 Ir-Catalyzed Synthesis of Indole from 2-Aminoaryl Ethyl Alcohol 347</p> <p>11.6.4 Ir Catalysts with Pyrazoyl and Pyrazoyl-1,2,3-bidentate (N–N) Ligands for the Synthesis of Tricyclic Indoles 347</p> <p>11.7 Miscellaneous Reactions 349</p> <p>11.7.1 Ir-Catalyzed Arylative Cyclization of Alkynones with Arylboronic Acid 349</p> <p>11.7.2 N-Heterocyclization of Aminoalcohol by Ir Catalyst with a Triazolyl-diylidene Ligand 349</p> <p>11.7.3 Synthesis of Indoles from Aminoalcohol and Alkynyl Alcohols by Ir–Pt Catalyst 350</p> <p>11.7.4 Synthesis of Pyrrolo[1,2-a]quinoxalines by Iridium Complex-Catalyzed Annulation of 2-Alkylquinoxalkines 351</p> <p>11.7.5 Ir-MOF-Catalyzed Hydrosilylation/Ortho-Silylation to Benzoxasiloles 352</p> <p>11.7.6 Synthesis of Furanes and Pyrroles Involving Alkylation of 1,3-Dicarbonyl Compounds by Iridium–Tin Bimetallic Catalyst 353</p> <p>11.8 Summary and Conclusions 353</p> <p>References 354</p> <p><b>12 Au- and Pt-Catalyzed C–H Activation/Functionalizations for the Synthesis of Heterocycles 359</b><br /><i>Yuanjing Xiao and Junliang Zhang</i></p> <p>12.1 Introduction 359</p> <p>12.2 Synthesis of O-Heterocycles 360</p> <p>12.2.1 Synthesis of Five-Membered O-Heterocycles 360</p> <p>12.2.1.1 Via Au-Catalyzed C(sp)–H Functionalization 360</p> <p>12.2.1.2 Via Au-Catalyzed Aryl C(sp2)–H Functionalization 360</p> <p>12.2.1.3 Via Au-Catalyzed C(sp3)–H Functionalization 362</p> <p>12.2.1.4 Via Pt-Catalyzed C(sp3)–H Functionalization 362</p> <p>12.2.1.5 Via Au-Catalyzed C(sp)–H and C(sp3)-H Functionalization 362</p> <p>12.2.2 Synthesis of Six-Membered O-Heterocycles 363</p> <p>12.2.2.1 Via Au-Catalyzed C(sp)–H Functionalization 363</p> <p>12.2.2.2 Via Au-Catalyzed Formyl C(sp2)–H Functionalization 364</p> <p>12.2.2.3 Via Au-Catalyzed Aryl C(sp2)–H Functionalization 365</p> <p>12.2.2.4 Via Au-Catalyzed C(sp3)–H Functionalization 367</p> <p>12.3 Synthesis of N-Heterocycles 369</p> <p>12.3.1 Synthesis of Five-Membered N-Heterocycles 369</p> <p>12.3.1.1 Via Au-Catalyzed C(sp)–H Functionalization 369</p> <p>12.3.1.2 Via Au-Catalyzed C(sp)–H and Alkenyl C(sp2)–H Functionalization 369</p> <p>12.3.1.3 Via Au-Catalyzed C(sp)–H, C(sp3)–H, or Aryl C(sp2)–H Functionalization 369</p> <p>12.3.1.4 Via Au-Catalyzed Aryl C(sp2)–H Functionalization 370</p> <p>12.3.1.5 Via Au-Catalyzed C(sp3)–H Functionalization 374</p> <p>12.3.1.6 Via Au-Catalyzed Miscellaneous Reactions 374</p> <p>12.3.2 Synthesis of Six-Membered N-Heterocycles 376</p> <p>12.3.2.1 Via Au-Catalyzed C(sp)–H and Aryl C(sp2)–H Functionalization 376</p> <p>12.3.2.2 Via Au-Catalyzed Formyl C(sp2)–H Functionalization 376</p> <p>12.3.2.3 Via Au-Catalyzed C(sp)–H and C(sp3)–H Functionalization 377</p> <p>12.3.2.4 Via Au-Catalyzed Aryl C(sp2)–H Functionalization 377</p> <p>12.3.2.5 Via Pt-Catalyzed Aryl C(sp2)–H Functionalization 379</p> <p>12.3.2.6 Via Au-Catalyzed C(sp3)–H Functionalization 380</p> <p>12.3.3 Synthesis of Seven-Membered N-Heterocycles 382</p> <p>12.3.3.1 Via Au-Catalyzed C(sp2)–H Functionalization 382</p> <p>12.3.3.2 Via Au-Catalyzed C(sp3)–H Functionalization 382</p> <p>12.4 Synthesis of S-Heterocycles 383</p> <p>12.4.1 Synthesis of Seven-Membered S-Heterocycles via Au-Catalyzed Aryl C(sp2)–H Functionalization 383</p> <p>12.5 Synthesis of O-Heterocycles and N-Heterocycles 383</p> <p>12.5.1 Synthesis of Five-Membered O-Heterocycles and N-Heterocycles 383</p> <p>12.5.1.1 Via Au-Catalyzed C(sp)–H Functionalization 383</p> <p>12.5.1.2 Via Au-Catalyzed Aryl C(sp2)–H Functionalization 385</p> <p>12.5.2 Synthesis of Six-Membered O-Heterocycles and N-Heterocycles 386</p> <p>12.5.2.1 Via Pt or Au-Catalyzed Aryl C(sp2)–H Functionalization 386</p> <p>12.6 Synthesis of Fused Polycyclic Polyheterocycles 389</p> <p>12.6.1 Via Au-Catalyzed Aryl C(sp2)–H Functionalization 389</p> <p>12.6.2 Via Au- or Pt-Catalyzed Aryl C(sp2)–H Functionalization 393</p> <p>12.6.3 Via Pt-Catalyzed Aryl C(sp2)–H Functionalization 394</p> <p>12.6.4 Via Au-Catalyzed C(sp3)–H Functionalization 395</p> <p>12.6.5 Via Pt-Catalyzed C(sp3)–H Functionalization 396</p> <p>12.7 Conclusions 397</p> <p>References 398</p> <p><b>13 Heterocycle Synthesis Based on Visible-Light-Induced Photocatalytic C–H Functionalization 403</b><br /><i>Wei Ding, Wei Guo, Ting-Ting Zeng, Liang-Qiu Lu and Wen-Jing Xiao</i></p> <p>13.1 Introduction 403</p> <p>13.2 de novo Synthesis of Heterocycles 404</p> <p>13.2.1 Photocatalytic sp3 C–H Functionalization for Heterocycle Synthesis 404</p> <p>13.2.2 Photocatalytic sp2 C–H Functionalization for Heterocycle Synthesis 415</p> <p>13.3 Direct C–H Functionalization of Heteroarenes 427</p> <p>13.3.1 The Photocatalytic Alkylation of Heteroarenes 427</p> <p>13.3.2 The Photocatalytic Arylation of Heteroarenes 437</p> <p>13.3.3 The Photocatalytic Amination and Sulfuration of Heteroarenes 439</p> <p>13.4 Summary and Outlook 443</p> <p>References 444</p> <p><b>14 Heterogeneous C–H Activation for the Heterocycle Synthesis 449</b><br /><i>Lin He and Matthias Beller</i></p> <p>14.1 Introduction 449</p> <p>14.2 Heterogeneous Pd-Catalyzed Heterocycle Synthesis via C–H Activation 450</p> <p>14.3 Heterogeneous Photocatalysis for the Heterocycle Synthesis via C–H Activation 460</p> <p>14.4 Summary 464</p> <p>References 464</p> <p><b>15 Transition Metal-Catalyzed Carbonylative Synthesis of Heterocycles via C–H Activation 467</b><br /><i>Jianbin Chen and Xiao-Feng Wu</i></p> <p>15.1 Introduction 467</p> <p>15.2 Cobalt-Catalyzed Heterocyclic Synthesis via Carbonylative C–H Activation 468</p> <p>15.2.1 Five-Membered Ring Synthesis 468</p> <p>15.3 Rhodium-Catalyzed Heterocyclic Synthesis via Carbonylative C–H Activation 471</p> <p>15.3.1 Five-Membered Ring Synthesis 471</p> <p>15.4 Ruthenium-Catalyzed Heterocyclic Synthesis via Carbonylative C–H Activation 472</p> <p>15.4.1 Five-Membered Ring Synthesis 472</p> <p>15.4.2 Six-Membered Ring Synthesis 476</p> <p>15.5 Palladium-Catalyzed Heterocyclic Synthesis via Carbonylative C–H Activation 477</p> <p>15.5.1 Four-Membered Ring Synthesis 477</p> <p>15.5.2 Five-Membered Ring Synthesis 479</p> <p>15.5.3 Six-Membered Ring Synthesis 485</p> <p>15.6 Summary and Outlook 500</p> <p>References 501</p> <p><b>16 Synthesis of Natural Products and Pharmaceuticals via Catalytic C–H Functionalization 505</b><br /><i>Junichiro Yamaguchi, Kazuma Amaike, and Kenichiro Itami</i></p> <p>16.1 Introduction 505</p> <p>16.2 Natural Products Containing Heteroaromatics 505</p> <p>16.2.1 Indoles and Related Compounds 505</p> <p>16.2.1.1 Dragmacidin D (C–H Arylation of Indoles at the C3 Position) 507</p> <p>16.2.1.2 Clavicipitic Acid (C–H Alkenylation of Indoles at the C3 Position) 507</p> <p>16.2.1.3 Paraherquamide B (Intramolecular C–H Alkylation of Indoles at the C2 Position) 507</p> <p>16.2.1.4 PKC Inhibitor (Intramolecular C–H Alkylation of Indoles at the C2 Position) 509</p> <p>16.2.1.5 Clavicipitic Acid (C–H Alkenylation of Indoles at the C4 Position) 511</p> <p>16.2.1.6 Hippadine (C–H Borylation of Indoles at the C7 Position) 511</p> <p>16.2.1.7 Dictyodendrin B (C–H Arylation of Pyrroles at the C3 Position, C–H Borylation of Indoles at the C7 Position, and Nitrene C–H Insertion of Indoles at the C4 Position) 512</p> <p>16.2.1.8 Paullone (Oxidative Larock Indole Synthesis) 514</p> <p>16.2.1.9 Horsfiline (Indole Synthesis by Intermolecular C–H Coupling) 514</p> <p>16.2.1.10 Dimebolin (Indole Synthesis by Nitrenoid C–H Insertion Reaction) 515</p> <p>16.2.2 Pyrroles and Related Compounds 516</p> <p>16.2.2.1 Rhazinilam (Intramolecular and Intermolecular C–H Arylation of Pyrroles at the C4 Position) 516</p> <p>16.2.2.2 Rhazinilam and Aspidospermidine (C–H Borylation and C–H Alkylation of Pyrroles at the C4 and C5 Positions) 518</p> <p>16.2.2.3 Lamellarins C and I (Inter- and Intramolecular C–H Arylation of Pyrroles at the C2, C3, and C4 Positions) 518</p> <p>16.2.2.4 Dictyodendrins A and F (C–H Arylation and C–H Insertion of Pyrroles on C2, C3, and C5 Position) 521</p> <p>16.2.3 Carbazoles and Related Compounds 522</p> <p>16.2.3.1 Clausine P and Glycozolidine (Synthesis of Carbazoles by Intramolecular Ar–H/Ar–X Arylation) 522</p> <p>16.2.3.2 Clausenine (Synthesis of Carbazoles by Intramolecular C–H/C–H Arylation) 523</p> <p>16.2.3.3 Clausine C and Glycozoline (Synthesis of Carbazoles by Intramolecular C–H Amination) 524</p> <p>16.2.4 Benzofuran and Related Compounds 524</p> <p>16.2.4.1 Frondosin B (C–H Alkenylation of Benzofuran) 524</p> <p>16.2.4.2 Diptoindonesin G (C–H Arylation of Benzofuran) 525</p> <p>16.2.4.3 Lithospermic Acid (Formation of Dihydrobenzofuran Using C–H Alkylation) 526</p> <p>16.2.4.4 Lithospermic Acid (Formation of Dihydrobenzofuran Using C–H Insertion and C–H Alkenylation at the C4 Position of Dihydrobenzofuran) 526</p> <p>16.2.4.5 Morphine (Intramolecular C–H Insertion to Dihydrobenzofuran) 527</p> <p>16.2.5 Imidazoles, Oxazoles,Thiazoles, and Related Compounds 528</p> <p>16.2.5.1 JNK3 Inhibitors (C–H Alkylation of Imidazoles) 528</p> <p>16.2.5.2 Tyrosine Kinase Inhibitor (C–H Arylation of Imidazoles) 529</p> <p>16.2.5.3 Texaline, Febuxostat, and Muscoride A (C–H Arylation of Oxazoles or Thiazoles) 531</p> <p>16.2.5.4 Annuloline and Siphonazole B (C–H Alkenylation of Oxazoles at the C2 Position) 534</p> <p>16.2.6 Quinazolines and Related Compounds 535</p> <p>16.2.6.1 Luotonin B (Intramolecular C–H Arylation of Quinazoline) 535</p> <p>16.2.6.2 Vasicoline (C–H Alkylation of Quinazoline) 535</p> <p>16.2.7 Quinolines, Isoquinolines, Phenanthridines, and Related Compounds 536</p> <p>16.2.7.1 Norchelerythrine (Intramolecular C–H Arylation) 536</p> <p>16.2.7.2 Nitidine and NK 109 (Catellani-Type C–H Arylation/N-Arylation) 536</p> <p>16.2.7.3 LTB4 Antagonist and MCH-1R Receptor Modulator (sp3 C–H Arylation/Intramolecular C–H Amination) 537</p> <p>16.2.7.4 Tipifarnib (C–H Alkenylation and Cyclization) 537</p> <p>16.2.7.5 Oxychelerythrine (C–H Alkenylation and Annulation) 538</p> <p>16.2.8 Pyridines and Related Compounds 539</p> <p>16.2.8.1 Sodium Channel Inhibitor and Antimalarial Agent (C–H Arylation of Pyridines at the C2 Position) 539</p> <p>16.2.8.2 Complanadine A and B (C–H Borylation of Pyridine at C3 Position or C–H Arylation of Pyridines at C2 Position) 539</p> <p>16.2.8.3 Anabashine (C–H Arylation of Iminopyridium Ylides) 540</p> <p>16.2.8.4 Preclamol (C–H Arylation of Pyridine at the C3 Position) 542</p> <p>16.2.9 Other Heterocycles 542</p> <p>16.2.9.1 Celecoxib (C–H Arylation of Pyrazoles) 542</p> <p>16.2.9.2 GABA 2/3 Agonist (C–H Arylation of Imidazopyrimidines) 543</p> <p>16.2.9.3 Nigellidine Hydrobromide, YD-3, and YC-1 (C–H Arylation of Indazoles) 543</p> <p>16.2.9.4 Pseudoheliotridane (Formation of Pyrrolidines Using sp3 C–H Insertion) 544</p> <p>16.2.9.5 Aeruginosin (sp3 C–H Alkenylation and Arylation) 545</p> <p>16.3 Summary 546</p> <p>References 547</p> <p>Index 551</p>
Xiao-Feng Wu is Professor at Zhejiang Sci-Tech University (ZSTU) in China and also leads a research group at the Leibniz-Institute for Catalysis in Rostock (Germany). He studied chemistry at ZSTU, where he obtained his bachelor's degree in science in 2007. In the same year, he went to Universite de Rennes 1 (France) to work with Prof. C. Darcel. He obtained his master's degree there in 2009 and then joined the group of Prof. M. Beller at the Leibniz-Institute for Catalysis in Rostock. He completed his PhD thesis in January 2012 and was promoted to Full Professor at ZSTU in 2013. His research interests include carbonylation reactions, heterocycles synthesis, and the catalytic application of cheap metals. He has already authored 5 books, 15 chapters and >120 publications in international journals. He also was a fellow of the Max-Buchner-Forschungsstiftung.
Reflecting the tremendous growth of this hot topic in recent years, this book covers C-H activation with a focus on heterocycle synthesis. <br> As such, the text provides general mechanistic aspects and gives a comprehensive overview of catalytic reactions in the presence of palladium, rhodium, ruthenium, copper, iron, cobalt, and iridium. The chapters are organized according to the transition metal used and sub-divided by type of heterocycle formed to enable quick access to the synthetic route needed. Chapters on carbonylative synthesis of heterocycles and the application of C-H activation methodology to the synthesis of natural products are also included. <br> Written by an outstanding team of authors, this is a valuable reference for researchers in academia and industry working in the field of organic synthesis, catalysis, natural product synthesis, pharmaceutical chemistry, and crop protection.<br>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €