Details

Transition-Metal-Catalyzed C-H Functionalization of Heterocycles, 2 Volumes


Transition-Metal-Catalyzed C-H Functionalization of Heterocycles, 2 Volumes


1. Aufl.

von: Tharmalingam Punniyamurthy, Anil Kumar

173,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 27.03.2023
ISBN/EAN: 9781119774143
Sprache: englisch
Anzahl Seiten: 960

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Transition-Metal-Catalyzed C-H Functionalization of Heterocycles</b> <p><b>A comprehensive guide to recent advances in this field </b> <p>Constituting the majority of all known compounds, heterocycles are structures that incorporate one or more heteroatoms within their core, thus exhibiting properties that are quite different from their all-carbon analogs. They are fundamental to all fields of chemistry and, therefore, their synthesis and modification has attracted a great deal of attention in the recent years. In this vein, transition-metal-catalyzed C-H bond functionalization forms a crucial tool for generating and analyzing heterocyclic compounds. <p><i>Transition-Metal-Catalyzed C-H Functionalization of Heterocycles, Two-Volume Set</i>, showcases diverse C-H functionalization methodologies and their incorporation into the latest research. The chapters serve as an essential tool depicting detailed site-selective functionalization of heterocyclic cores, along with a comprehensive discussion on their mechanistic approaches. <p>Readers of <i>Transition-Metal-Catalyzed C-H Functionalization of Heterocycles, Two-Volume-Set</i> will also find: <ul><li> A detailed introduction to C-H activation along with the mechanistic aspects of transition-metal-catalyzed C-H bond activation reactions</li> <li> Easy-to-use structures with each chapter dedicated to a type of heterocycle and its specific functionalization methodologies</li> <li>A leading team of international authors in C-H bond functionalization</li></ul> <p><i>Transition-Metal-Catalyzed C-H Functionalization of Heterocycles, Two-Volume-Set</i> is a valuable guide for students and researchers in organic synthesis and process development, in both academic and industrial contexts.
<p>Contents</p> <p>List of Contributors xiii</p> <p>8 Functionalization of Pyridines, Quinolines, and Isoquinolines 357</p> <p>Jun Zhou and Bing-Feng Shi</p> <p>8.1 Introduction 357</p> <p>8.2 C2-Selective Functionalization 358</p> <p>8.2.1 Alkylation 358</p> <p>8.2.2 Arylation 361</p> <p>8.2.2.1 Pyridine Derivatives as Substrates 361</p> <p>8.2.2.2 Pyridine N-oxides as Substrates 363</p> <p>8.2.2.3 N-iminopyridinium Ylides as Substrates 365</p> <p>8.2.3 Alkenylation 365</p> <p>8.2.4 Acylation, Amination, and Aminomethylation 367</p> <p>8.3 C3-Selective Functionalization 370</p> <p>8.3.1 Alkylation 370</p> <p>8.3.2 Arylation 371</p> <p>8.3.3 Alkenylation 374</p> <p>8.3.4 Borylation 377</p> <p>8.4 C4-Selective Functionalization 378</p> <p>8.4.1 Alkylation 378</p> <p>8.4.2 Arylation 380</p> <p>8.4.3 Alkenylation 381</p> <p>8.4.4 Borylation 382</p> <p>8.5 C8-Selective Functionalization 382</p> <p>8.6 Summary and Conclusions 387</p> <p>9 Transition Metal-Catalyzed C-H Bond Functionalization of Diazines and Their Benzo Derivatives 393</p> <p>Christian Bruneau and Rafael Gramage-Doria</p> <p>9.1 Introduction 393</p> <p>9.2 Carbon-carbon Bond Formation 394</p> <p>9.2.1 C-H Bond (Hetero)arylations 394</p> <p>9.2.2 C–H Bond Olefinations 406</p> <p>9.2.3 C–H Bond Alkylations 415</p> <p>9.2.4 C–H Bond Alkynylations 418</p> <p>9.2.5 C–H Bond Carboxylations 419</p> <p>9.3 Carbon-nitrogen Bond Formation 420</p> <p>9.4 Carbon-oxygen Bond Formation 424</p> <p>9.5 Carbon-sulfur Bond Formation 424</p> <p>9.6 Carbon-boron Bond Formation 425</p> <p>9.7 Carbon-silicon Bond Formation 425</p> <p>9.8 Carbon-halogen Bond Formation 427</p> <p>9.9 Conclusions 428</p> <p>Acknowledgments 429</p> <p>10 Functionalization of Chromenes and Their Derivatives 435</p> <p>Laura Cunningham, Sundaravel Vivek Kumar, and Patrick J. Guiry</p> <p>10.1 Introduction 435</p> <p>10.2 2 <i>H</i>-Chromenes 435</p> <p>10.3 2 <i>H</i>-Chromene-ones (Coumarins) 437</p> <p>10.3.1 C3-Selective Functionalization 437</p> <p>10.3.1.1 Alkenylation 437</p> <p>10.3.1.2 Arylation 438</p> <p>10.3.1.3 Other 441</p> <p>10.3.1.4 Annulation/Cyclization 442</p> <p>10.3.2 C4–H Selective Functionalization 449</p> <p>10.3.3 C5-Selective Functionalization 456</p> <p>10.4 4 <i>H</i>-Chromene 459</p> <p>10.5 4 <i>H</i>-Chromenones (Chromones) 462</p> <p>10.5.1 C2-Selective C–H Activation 462</p> <p>10.5.2 C3-Selective C–H Activation 463</p> <p>10.5.3 C5-Selective C–H Activation 468</p> <p>10.5.3.1 Alkenylation 468</p> <p>10.5.3.2 Alkylation 471</p> <p>10.5.3.3 (Hetero)arylation 473</p> <p>10.5.3.4 Amination/Amidation 474</p> <p>10.5.3.5 Others 477</p> <p>10.5.4 C6-Selective C–H Activation 478</p> <p>10.5.5 Conclusions 478</p> <p>11 Transition Metal-Catalyzed C–H Functionalization of Imidazo-fused Heterocycles 485</p> <p>Rajeev Sakhuja and Anil Kumar</p> <p>11.1 Introduction 485</p> <p>11.2 C–C Bond Formation 486</p> <p>11.2.1 Alkylation 486</p> <p>11.2.1.1 Fluoro Alkylation 486</p> <p>11.2.1.2 Alkoxycarbonyl Alkylation 488</p> <p>11.2.1.3 Aryl/heteroaryl Alkylation 489</p> <p>11.2.1.4 Amino Alkylation 493</p> <p>11.2.1.5 Sulfonyl/Carbonyl/Cyano Alkylation 496</p> <p>11.2.2 Alkenylation/Alkynylation/Allenylation 498</p> <p>11.2.3 Cyanation/Carbonylation 503</p> <p>11.2.4 Arylation/Heteroarylation 509</p> <p>11.3 C–S/Se Bond Formation 525</p> <p>11.4 C–N Bond Formation 532</p> <p>11.5 C–P Bond Formation 533</p> <p>11.6 C–Si Bond Formation 535</p> <p>11.7 Conclusions 535</p> <p>Acknowledgments 536</p> <p>12 Dehydrogenative Annulation of Heterocycles: Synthesis of Fused Heterocycles 543</p> <p>Neha Jha and Manmohan Kapur</p> <p>12.1 Dehydrogenative Coupling: An Overview 543</p> <p>12.2 Importance of Heterocycles and Their Fused Congeners 545</p> <p>12.3 Metal-Catalyzed Dehydrogenative-coupling Reactions: Formation of C–Z Bonds 546</p> <p>12.3.1 C–C Bond Formation 546</p> <p>12.3.1.1 Synthesis of Large-sized Molecules: COTs 549</p> <p>12.3.2 Formation of C–N Bonds 550</p> <p>12.3.3 Formation of C–B Bonds 557</p> <p>12.4 Conclusions 562</p> <p>13 C–H Functionalization of Saturated Heterocycles Beyond the C2 Position 567</p> <p>Amalia-Sofia Piticari, Natalia Larionova, and James A. Bull</p> <p>13.1 Introduction 567</p> <p>13.2 Heterocycle Functionalization with a C2 Directing Group 567</p> <p>13.2.1 Carboxylic Acid-Linked C2 Directing Groups 567</p> <p>13.2.2 Applications of N-Heterocycle Functionalization with C2 Directing Groups 580</p> <p>13.3 Heterocycle Functionalization with C3 Directing Groups 586</p> <p>13.3.1 Carboxylic Acid-Linked C3 Directing Groups 586</p> <p>13.3.2 Amine-Linked C3 Directing Groups 590</p> <p>13.3.3 Alcohol-Linked C3 Directing Groups 592</p> <p>13.4 Heterocycle Functionalization with a C4 Directing Group 594</p> <p>13.5 Transannular Heterocycle Functionalization with N-linked Directing Groups 598</p> <p>13.6 Conclusions 603</p> <p>14 Asymmetric Functionalization of C–H Bonds in Heterocycles 609</p> <p>Olena Kuleshova and Laurean Ilies</p> <p>14.1 Introduction 609</p> <p>14.2 Enantioselective C–H Activation 609</p> <p>14.2.1 Activation of C(<i>sp</i><sup>2</sup>)–H Bonds 609</p> <p>14.2.2 Activation of C(<i>sp</i><sup>3</sup>)–H Bonds 611</p> <p>14.3 C–H Activation Followed by Enantioselective Functionalization 615</p> <p>14.3.1 Intramolecular Coupling 615</p> <p>14.3.1.1 Indoles and Pyrroles as Coupling Partners 615</p> <p>14.3.1.2 Imidazoles and Benzoimidazoles as Coupling Partners 618</p> <p>14.3.1.3 Pyridines and Pyridones as Coupling Partners 618</p> <p>14.3.2 Intermolecular Coupling 619</p> <p>14.3.2.1 Directing-Group-Free C–H Functionalization 619</p> <p>14.3.2.2 Functionalization Assisted by a Directing Group at the C3 Site 621</p> <p>14.3.2.3 Functionalization Assisted by a Directing Group at the N-1 Site 623</p> <p>14.3.3 Atropo-enantioselective Synthesis of Heterobiaryls 624</p> <p>14.4 Conclusions and Perspectives 627</p> <p>15 Transition Metal-Catalyzed C–H Functionalization of Nucleoside Bases 631</p> <p>Yong Liang and Stanislaw F. Wnuk</p> <p>15.1 Introduction 631</p> <p>15.2 Direct Functionalization of the C5-H Bond in Uracil Nucleosides 632</p> <p>15.2.1 Cross-Dehydrogenative Alkenylation at the C5 Position 632</p> <p>15.2.2 Direct C–H Arylation at the C5 Position 634</p> <p>15.2.3 Direct C–H Alkylation at the C5 Position 635</p> <p>15.2.4 Miscellaneous Direct C–H Functionalizations 636</p> <p>15.3 Direct Functionalization of C6-H Bond in Uracil 637</p> <p>15.3.1 Stepwise C6-H Functionalization of Pyrimidine Nucleoside via Lithiation and Alkylation 637</p> <p>15.3.2 Direct C6-H Functionalization of the Uracil Base 637</p> <p>15.3.2.1 Functionalization with Aryl Halides 637</p> <p>15.3.2.2 Cross-Dehydrogenative Functionalization with Arenes 638</p> <p>15.3.2.3 Functionalization with Aryl Boronic Acid 639</p> <p>15.3.2.4 Intramolecular C6-H Functionalization of Uracil Derivatives 639</p> <p>15.4 Inverted C–H Functionalization of Uracil Nucleosides 640</p> <p>15.4.1 Inverted C5-H Functionalization of Uracil Nucleosides 640</p> <p>15.4.2 Inverted C6-H Functionalization of Uracil 641</p> <p>15.5 Direct C2-H Functionalization of Adenosine 641</p> <p>15.6 Direct C6-H Functionalization of Purine Nucleoside 642</p> <p>15.6.1 Direct C6-H Alkylation 642</p> <p>15.6.1.1 With Cycloalkanes 642</p> <p>15.6.1.2 With Boronic Acid 643</p> <p>15.6.1.3 With Alkyltrifluoroborate 643</p> <p>15.6.1.4 With Alkyl Carboxylic Acid 643</p> <p>15.6.1.5 With <i>tert</i>-Alkyl Oxalate Salts 644</p> <p>15.6.2 Direct C6-H Arylation 644</p> <p>15.6.3 Other Direct C6-H Functionalization 645</p> <p>15.7 Direct Activation of C8-H Bond in Purine and Purine Nucleosides 645</p> <p>15.7.1 Cross-Coupling of Adenine Nucleosides with Aryl Halides 645</p> <p>15.7.2 Cross-Coupling of Inosine and Guanine Nucleosides with Aryl Halides 647</p> <p>15.7.3 Cross-Coupling of Adenine Nucleosides with Alkanes 648</p> <p>15.7.4 Miscellaneous Functionalization of Adenosine-related Substrates 649</p> <p>15.8 Conclusions 650</p> <p>16 C–H Activation for the Synthesis of C1-(hetero)aryl Glycosides 657</p> <p>Morgane de Robichon, Juba Ghouilem, Angélique Ferry, and Samir Messaoudi</p> <p>16.1 General Introduction 657</p> <p>16.2 Classical Methods to Prepare C-aryl Glycosides 657</p> <p>16.3 Directed C-H Activation Approach 658</p> <p>16.3.a Directed C<i>sp</i><sup>2</sup>-C<i>sp</i><sup>2</sup> Bond Formation 659</p> <p>16.3.a.1 Directing Group Attached to the Aryl Partner 659</p> <p>16.3.a.2 Directing Group Attached to the Sugar Nucleus 661</p> <p>16.3.b Directed C<i>sp</i><sup>2</sup>-C<i>sp</i><sup>3</sup> Bond Formation 662</p> <p>16.3.b.1 The Directing Group (DG) Attached to the Coupling Partner 662</p> <p>16.3.b.2 The Directing Group Attached to the Sugar Nucleus 675</p> <p>16.4 Conclusions and Perspectives 679</p> <p>17 Late-stage C–H Functionalization: Synthesis of Natural Products and Pharmaceuticals 683</p> <p>Harshita Shet and Anant R. Kapdi</p> <p>17.1 Introduction 683</p> <p>17.2 Synthesis of (±)-Ibogamine 684</p> <p>17.3 Synthesis of YD-3 and YC-1 (C–H Arylation of Indazoles) 685</p> <p>17.4 Synthesis of Complanadine A 685</p> <p>17.5 Synthesis of Diptoindonesin G (C–H Arylation of Benzofuran) 686</p> <p>17.6 Synthesis of Dragmacidin D (C–H Arylation of Indoles at the C3 Position) 687</p> <p>17.7 Synthesis of Celecoxib (C–H Arylation of Pyrazoles) 688</p> <p>17.8 Synthesis of Aspidospermidine 689</p> <p>17.9 Synthesis of Pipercyclobutanamide A 690</p> <p>17.10 Synthesis of Nigellidine Hydrobromide 691</p> <p>17.11 Synthesis of (+)-Linoxepin 691</p> <p>17.12 Synthesis of (±)-Rhazinal 692</p> <p>17.13 Synthesis of Podophyllotoxin (C–H Arylation) 693</p> <p>17.14 Synthesis of (±)-Rhazinilam 694</p> <p>17.15 Synthesis of Aeruginosins (sp<i>3</i> C–H Alkenylation and Arylation) 694</p> <p>17.16 Synthesis of Gamendazole 696</p> <p>17.17 Synthesis of Beclabuvir (BMS-791325) 697</p> <p>17.18 Conclusions 698</p> <p>18 Late-stage Functionalization of Pharmaceuticals, Agrochemicals, and Natural Products 703</p> <p>François Richard, Elias Selmi-Higashi, and Stellios Arseniyadis</p> <p>18.1 C–H Methylation and Alkylation 704</p> <p>18.2 C–H Arylation and Olefination 705</p> <p>18.3 Formation of Other C−C Bonds 711</p> <p>18.4 C–H Hydroxylation 714</p> <p>18.5 C–H Amination 715</p> <p>18.6 C–H Trifluoromethylation 716</p> <p>18.7 C–H Difluoromethylation 716</p> <p>18.8 C–H Fluorination 718</p> <p>18.9 C–H Silylation 718</p> <p>18.10 C–H Phosphorylation 719</p> <p>18.11 C–H Deuteration and Tritiation 720</p> <p>18.12 Conclusions 723</p> <p>Index 727</p> <p>Brief Contents</p> <p><b>Volume 1:</b></p> <p>List of Contributors xiii</p> <p>Preface xvii</p> <p>1 Historical Perspective and Mechanistic Aspects of C–H Bond Functionalization 1</p> <p>Tariq M. Bhatti, Eileen Yasmin, Akshai Kumar, and Alan S. Goldman</p> <p>2 Recent Advances in C–H Functionalization of Five–Membered Heterocycles with Single Heteroatoms 61</p> <p>B. Prabagar and Zhuangzhi Shi</p> <p>3 Functionalization of Five-membered Heterocycles with Two Heteroatoms 109</p> <p>Jung Min Joo</p> <p>4 Transition Metal-Catalyzed C–H Functionalization of Indole Benzenoid Ring 155</p> <p>Vikash Kumar, Rajaram Maayuri, Lusina Mantry, and Parthasarathy Gandeepan</p> <p>5 Transition Metal-Catalyzed C2 and C3 Functionalization of Indoles 193</p> <p>Pinki Sihag, Meledath Sudhakaran Keerthana, and Masilamani Jeganmohan</p> <p>6 C(sp2)–H Functionalization of Indolines at the C7-Position 251</p> <p>Neeraj Kumar Mishra and In Su Kim</p> <p>7 Transition Metal-Catalyzed C–H Functionalization of Benzofused Azoles with Two or More Heteroatoms 319</p> <p>Tanumay Sarkar, Subhradeep Kar, Prabhat Kumar Maharana, Tariq. A. Shah, and Tharmalingam Punniyamurthy</p> <p>Volume 2:</p> <p>List of Contributors xiii</p> <p>8 Functionalization of Pyridines, Quinolines, and Isoquinolines 357</p> <p>Jun Zhou and Bing-Feng Shi</p> <p>9 Transition Metal-Catalyzed C-H Bond Functionalization of Diazines and Their Benzo Derivatives 393</p> <p>Christian Bruneau and Rafael Gramage-Doria</p> <p>10 Functionalization of Chromenes and Their Derivatives 435</p> <p>Laura Cunningham, Sundaravel Vivek Kumar, and Patrick J. Guiry</p> <p>11 Transition Metal-Catalyzed C–H Functionalization of Imidazo-fused Heterocycles 485</p> <p>Rajeev Sakhuja and Anil Kumar</p> <p>12 Dehydrogenative Annulation of Heterocycles: Synthesis of Fused Heterocycles 543</p> <p>Neha Jha and Manmohan Kapur</p> <p>13 C–H Functionalization of Saturated Heterocycles Beyond the C2 Position 567</p> <p>Amalia-Sofia Piticari, Natalia Larionova, and James A. Bull</p> <p>14 Asymmetric Functionalization of C–H Bonds in Heterocycles 609</p> <p>Olena Kuleshova and Laurean Ilies</p> <p>15 Transition Metal-Catalyzed C–H Functionalization of Nucleoside Bases 631</p> <p>Yong Liang and Stanislaw F. Wnuk</p> <p>16 C–H Activation for the Synthesis of C1-(hetero)aryl Glycosides 657</p> <p>Morgane de Robichon, Juba Ghouilem, Angélique Ferry, and Samir Messaoudi</p> <p>17 Late-stage C–H Functionalization: Synthesis of Natural Products and Pharmaceuticals 683</p> <p>Harshita Shet and Anant R. Kapdi</p> <p>18 Late-stage Functionalization of Pharmaceuticals, Agrochemicals, and Natural Products 703</p> <p>François Richard, Elias Selmi-Higashi, and Stellios Arseniyadis</p> <p>Index 727</p> <p> </p>
<p><b>Tharmalingam Punniyamurthy, PhD</b> is Professor of Chemistry and Dean of Faculty Affairs at the Indian Institute of Technology Guwahati, India. <p><b>Anil Kumar, PhD</b> is Professor in the Department of Chemistry at the Birla Institute of Technology and Science, Pilani, India.
<p><b>A comprehensive guide to recent advances in this field </b> <p>Constituting the majority of all known compounds, heterocycles are structures that incorporate one or more heteroatoms within their core, thus exhibiting properties that are quite different from their all-carbon analogs. They are fundamental to all fields of chemistry and, therefore, their synthesis and modification has attracted a great deal of attention in the recent years. In this vein, transition-metal-catalyzed C-H bond functionalization forms a crucial tool for generating and analyzing heterocyclic compounds. <p><i>Transition-Metal-Catalyzed C-H Functionalization of Heterocycles, Two-Volume Set</i>, showcases diverse C-H functionalization methodologies and their incorporation into the latest research. The chapters serve as an essential tool depicting detailed site-selective functionalization of heterocyclic cores, along with a comprehensive discussion on their mechanistic approaches. <p>Readers of <i>Transition-Metal-Catalyzed C-H Functionalization of Heterocycles, Two-Volume-Set</i> will also find: <ul><li> A detailed introduction to C-H activation along with the mechanistic aspects of transition-metal-catalyzed C-H bond activation reactions</li> <li> Easy-to-use structures with each chapter dedicated to a type of heterocycle and its specific functionalization methodologies</li> <li>A leading team of international authors in C-H bond functionalization</li></ul> <p><i>Transition-Metal-Catalyzed C-H Functionalization of Heterocycles, Two-Volume-Set</i> is a valuable guide for students and researchers in organic synthesis and process development, in both academic and industrial contexts.

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €