Details

Thermoelectric Energy Conversion


Thermoelectric Energy Conversion

Basic Concepts and Device Applications
Advanced Micro and Nanosystems 1. Aufl.

von: Diana Davila Pineda, Alireza Rezaniakolaei, Oliver Brand, Gary K. Fedder, Christofer Hierold, Jan G. Korvink, Osamu Tabata

151,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 22.08.2017
ISBN/EAN: 9783527698134
Sprache: englisch
Anzahl Seiten: 336

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

The latest volume in the well-established AMN series, this ready reference provides an up-to-date, self-contained summary of recent developments in the technologies and systems for thermoelectricity.<br> Following an initial chapter that introduces the fundamentals and principles of thermoelectricity, subsequent chapters discuss the synthesis and integration of various bulk thermoelectric as well as nanostructured materials. The book then goes on to discuss characterization techniques, including various light and mechanic microscopy techniques, while also summarizing applications for thermoelectric materials, such as micro- and nano-thermoelectric generators, wearable electronics and energy conversion devices.<br> The result is a bridge between industry and scientific researchers seeking to develop thermoelectric generators.
<p>About the Editors xv</p> <p>Series Editor’s Preface xvii</p> <p>List of Contributors xix</p> <p><b>1 Utilizing Phase Separation Reactions for Enhancement of the Thermoelectric Efficiency in IV–VI Alloys 1<br /></b><i>Yaniv Gelbstein</i></p> <p>1.1 Introduction 1</p> <p>1.2 IV–VI Alloys for Waste Heat Thermoelectric Applications 2</p> <p>1.3 Thermodynamically Driven Phase Separation Reactions 6</p> <p>1.4 Selected IV–VI Systems with Enhanced Thermoelectric Properties Following Phase Separation Reactions 9</p> <p>1.5 Concluding Remarks 11</p> <p>References 11</p> <p><b>2 Nanostructured Materials: Enhancing the Thermoelectric Performance 15<br /></b><i>Ngo Van Nong and Le Thanh Hung</i></p> <p>2.1 Introduction 15</p> <p>2.2 Approaches for Improving ZT 16</p> <p>2.3 Recent Progress in Developing Bulk Thermoelectric Materials 18</p> <p>2.4 Bulk Nanostructured Thermoelectric Materials 20</p> <p>2.4.1 Bi2Te3-Based Nanocomposites 20</p> <p>2.4.2 PbTe-Based Nanostructured Materials 21</p> <p>2.4.3 Half-Heusler Alloys 22</p> <p>2.4.4 Nanostructured Skutterudite Materials 24</p> <p>2.4.5 Nanostructured Oxide Materials 26</p> <p>2.5 Outlook and Challenges 28</p> <p>References 29</p> <p><b>3 Organic Thermoelectric Materials 37<br /></b><i>Simone Fabiano, Ioannis Petsagkourakis, Guillaume Fleury, Georges Hadziioannou and Xavier Crispin</i></p> <p>3.1 Introduction 37</p> <p>3.2 Seebeck Coefficient and Electronic Structure 41</p> <p>3.3 Seebeck Coefficient and Charge Carrier Mobility 44</p> <p>3.4 Optimization of the Figure of Merit 45</p> <p>3.5 N-Doping of Conjugated Polymers 46</p> <p>3.6 Elastic Thermoelectric Polymers 49</p> <p>3.7 Conclusions 49</p> <p>Acknowledgments 50</p> <p>References 50</p> <p><b>4 Silicon for Thermoelectric Energy Harvesting Applications 53<br /></b><i>Dario Narducci, Luca Belsito and Alex Morata</i></p> <p>4.1 Introduction 53</p> <p>4.1.1 Silicon as a Thermoelectric Material 53</p> <p>4.1.2 Current Uses of Silicon in TEGs 54</p> <p>4.2 Bulk and Thin-Film Silicon 55</p> <p>4.2.1 Single-Crystalline and Polycrystalline Silicon 55</p> <p>4.2.2 Degenerate and Phase-Segregated Silicon 58</p> <p>4.3 Nanostructured Silicon: Physics of Nanowires and Nanolayers 61</p> <p>4.3.1 Introduction 61</p> <p>4.3.2 Electrical Transport in Nanostructured Thermoelectric Materials 61</p> <p>4.3.3 Phonon Transport in Nanostructured Thermoelectric Materials 64</p> <p>4.4 Bottom-Up Nanowires 64</p> <p>4.4.1 Preparation Strategies 64</p> <p>4.4.2 Chemical Vapor Deposition (CVD) 65</p> <p>4.4.3 Molecular Beam Epitaxy (MBE) 66</p> <p>4.4.4 Laser Ablation 66</p> <p>4.4.5 Solution-Based Techniques 67</p> <p>4.4.6 Catalyst Materials 67</p> <p>4.4.7 Catalyst Deposition Methods 68</p> <p>4.5 Material Properties and Thermoelectric Efficiency 69</p> <p>4.6 Top-Down Nanowires 69</p> <p>4.6.1 Preparation Strategies 69</p> <p>4.6.2 Material Properties and Thermoelectric Efficiency 73</p> <p>4.7 Applications of Bulk and Thin-Film Silicon and SiGe Alloys to Energy Harvesting 75</p> <p>4.8 Applications of Nanostructured Silicon to Energy Harvesting 77</p> <p>4.8.1 Bottom-Up Nanowires 77</p> <p>4.8.2 Top-Down Nanowires 78</p> <p>4.9 Summary and Outlook 81</p> <p>Acknowledgments 82</p> <p>References 82</p> <p><b>5 Techniques for Characterizing Thermoelectric Materials: Methods and the Challenge of Consistency 93<br /></b><i>Hans-Fridtjof Pernau</i></p> <p>5.1 Introduction – Hitting the Target 93</p> <p>5.2 Thermal Transport in Gases and Solid-State Materials 94</p> <p>5.3 The Combined Parameter ZT-Value 97</p> <p>5.3.1 Electrical Conductivity 98</p> <p>5.3.2 Seebeck Coefficient 101</p> <p>5.3.3 Thermal Conductivity 103</p> <p>5.4 Summary 107</p> <p>Acknowledgments 107</p> <p>References 107</p> <p><b>6 Preparation and Characterization of TE Interfaces/Junctions 111<br /></b><i>Gao Min and Matthew Philips</i></p> <p>6.1 Introduction 111</p> <p>6.2 Effects of Electrical and Thermal Contact Resistances 111</p> <p>6.3 Preparation of Thermoelectric Interfaces 114</p> <p>6.4 Characterization of Contact Resistance Using Scanning Probe 117</p> <p>6.5 Characterization of Thermal Contact Using Infrared Microscope 121</p> <p>6.6 Summary 123</p> <p>Acknowledgments 124</p> <p>References 124</p> <p><b>7 Thermoelectric Modules: Power Output, Efficiency, and Characterization 127<br /></b><i>Jorge García-Canadas</i></p> <p>7.1 Introduction 127</p> <p>7.1.1 Moving from Materials to a Device 127</p> <p>7.1.2 Differences in Characterization 128</p> <p>7.1.3 Chapter Summary 130</p> <p>7.2 The Governing Equations 130</p> <p>7.2.1 Particle Fluxes and the Continuity Equation 130</p> <p>7.2.2 Energy Fluxes and the Heat Equation 132</p> <p>7.3 Power Output and Efficiency 136</p> <p>7.3.1 Power Output 137</p> <p>7.3.2 Efficiency 139</p> <p>7.4 Characterization of Devices 142</p> <p>7.4.1 Thermal Contacts 142</p> <p>7.4.2 Additional Considerations 143</p> <p>7.4.3 Constant Heat Input and Constant ΔT 144</p> <p>References 145</p> <p><b>8 Integration of Heat Exchangers with Thermoelectric Modules 147<br /></b><i>Alireza Rezaniakolaei</i></p> <p>8.1 Introduction 147</p> <p>8.2 Heat Exchanger Design – Consideration in TEG Systems 148</p> <p>8.3 Cold Side Heat Exchanger for TEG Maximum Performance 150</p> <p>8.4 Cooling Technologies and Design Challenges 154</p> <p>8.5 Microchannel Heat Exchanger 156</p> <p>8.6 Coupled and Comprehensive Simulation of TEG System 157</p> <p>8.6.1 Governing Equations 157</p> <p>8.6.2 Effect of Heat Exchanger Inlet/Outlet Plenums on TEG Temperature Distribution 158</p> <p>8.6.3 Modified Channel Configuration 162</p> <p>8.6.4 Flat-Plate Heat Exchanger versus Cross-Cut Heat Exchanger 164</p> <p>8.6.5 Effect of Channel Hydraulic Diameter 167</p> <p>8.7 Power–Efficiency Map 168</p> <p>8.8 Section Design Optimization in TEG System 169</p> <p>8.9 Conclusion 170</p> <p>Acknowledgment 170</p> <p>Nomenclature 170</p> <p>References 172</p> <p><b>9 Power Electronic Converters and Their Control in Thermoelectric Applications 177<br /></b><i>Erik Schaltz and Elena A. Man</i></p> <p>9.1 Introduction 177</p> <p>9.2 Building Blocks of Power Electronics 177</p> <p>9.3 Power Electronic Topologies 179</p> <p>9.3.1 Buck Converter 180</p> <p>9.3.2 Boost Converter 182</p> <p>9.3.3 Non-Inverting Buck Boost Converter 183</p> <p>9.3.4 Flyback Converter 184</p> <p>9.4 Electrical Equivalent Circuit Models for Thermoelectric Modules 185</p> <p>9.5 Maximum Power Point Operation and Tracking 186</p> <p>9.5.1 MPPT-Methods 187</p> <p>9.6 Case Study 191</p> <p>9.6.1 Specifications 192</p> <p>9.6.2 Requirements 193</p> <p>9.6.3 Design of Passive Components 193</p> <p>9.6.4 Transfer Functions 194</p> <p>9.6.5 Design of Current Controller 196</p> <p>9.6.6 MPPT Implementation 196</p> <p>9.6.7 Design of Voltage Controller 198</p> <p>9.7 Conclusion 201</p> <p>References 201</p> <p><b>10 Thermoelectric Energy Harvesting for Powering Wearable Electronics 205<br /></b><i>Luca Francioso and Chiara De Pascali</i></p> <p>10.1 Introduction 205</p> <p>10.2 Human Body as Heat Source for Wearable TEGs 205</p> <p>10.3 TEG Design for Wearable Applications: Thermal and Electrical Considerations 208</p> <p>10.4 Flexible TEGs: Deposition Methods and Thermal Flow Design Approach 212</p> <p>10.4.1 Deposition Methods 212</p> <p>10.4.2 Heat Flow Direction Design Approach in Wearable TEG 217</p> <p>10.5 TEG Integration in Wearable Devices 218</p> <p>10.6 Strategies for Performance Enhancements and Organic Materials 221</p> <p>10.6.1 Organic Thermoelectric Materials 223</p> <p>References 225</p> <p><b>11 Thermoelectric Modules as Efficient Heat Flux Sensors 233<br /></b><i>Gennadi Gromov</i></p> <p>11.1 Introduction 233</p> <p>11.1.1 Applications of Heat Flux Sensors 233</p> <p>11.1.2 Units of Heat Flux and Characteristics of Sensors 234</p> <p>11.1.3 Modern Heat Flux Sensors 235</p> <p>11.1.4 Thermoelectric Heat Flux Sensors 236</p> <p>11.2 Applications of Thermoelectric Modules 238</p> <p>11.3 Parameters of Thermoelectric Heat Flux Sensors 240</p> <p>11.3.1 Integral Sensitivity Sa 240</p> <p>11.3.2 Sensitivity Se 241</p> <p>11.3.3 Thermal Resistance RT 241</p> <p>11.3.4 Noise Level 241</p> <p>11.3.5 Sensitivity Threshold 241</p> <p>11.3.6 Noise-Equivalent Power NEP 242</p> <p>11.3.7 Detectivity D* 242</p> <p>11.3.8 Time Constant ;;</;;;;> 243</p> <p>11.4 Self-Calibration Method of Thermoelectric Heat Flux Sensors 243</p> <p>11.4.1 Sensitivity 243</p> <p>11.4.2 Values of NEP and D* 247</p> <p>11.5 Sensor Performance and Thermoelectric Module Design 247</p> <p>11.5.1 Dependence on Physical Properties 248</p> <p>11.5.2 Design Parameters 248</p> <p>11.6 Features of Thermoelectric Heat Flux Sensor Design 249</p> <p>11.7 Optimization of Sensors Design 250</p> <p>11.7.1 Properties of Thermoelectric Material 251</p> <p>11.7.2 Parameters of Thermoelectric Module 251</p> <p>11.7.3 Features of Real Design 255</p> <p>11.8 Experimental Family of Heat Flux Sensors 257</p> <p>11.8.1 HTX – Heat Flux and Temperature Sensors (HT – Heat Flux and Temperature) 257</p> <p>11.8.2 HFX – Heat Flux Sensors without Temperature (HF – Heat Flux) 257</p> <p>11.8.3 HRX-IR Radiation Heat Flux Sensors (HR – Heat Flux Radiation) 257</p> <p>11.9 Investigation of Sensors Performance 259</p> <p>11.9.1 General Provisions 259</p> <p>11.9.2 Calibration of Sensor Sensitivity 259</p> <p>11.9.3 Sensitivity Temperature Dependence 261</p> <p>11.9.4 Thermal Resistance 263</p> <p>11.9.5 Typical Temperature Dependence of the Seebeck Coefficient 264</p> <p>11.9.6 Conclusions 264</p> <p>11.10 Heat Flux Sensors at the Market 265</p> <p>11.11 Examples of Applications 268</p> <p>11.11.1 Microcalorimetry: Evaporation of Water Drop 268</p> <p>11.11.2 Measurement of Heat Fluxes in Soil 269</p> <p>11.11.3 Thermoelectric Ice Sensor 269</p> <p>11.11.4 Laser Power Meters 274</p> <p>References 278</p> <p><b>12 Photovoltaic–Thermoelectric Hybrid Energy Conversion 283<br /></b><i>Ning Wang</i></p> <p>12.1 Background and Theory 283</p> <p>12.1.1 Introduction 283</p> <p>12.1.2 PV Efficiency 285</p> <p>12.1.3 TEG Efficiency 285</p> <p>12.1.4 PVTE Module Generated Power and Efficiency 285</p> <p>12.1.5 Energy Loss 285</p> <p>12.1.6 Cost 286</p> <p>12.1.7 Overall Feasibility 289</p> <p>12.2 Different Forms of PVTE Hybrid Systems: The State of the Art 292</p> <p>12.2.1 PVTE Hybrid Systems Based on Dye-Sensitized Solar Cell (DSSC) 292</p> <p>12.2.2 Dye-Sensitized Solar Cell with Built-in Nanoscale Bi2Te3 TEG 294</p> <p>12.2.3 PVTE Using Solar Concentrator 294</p> <p>12.2.4 Solar–Thermoelectric Device Based on Bi2Te3 and Carbon Nanotube Composites 296</p> <p>12.3 Optimizations of PVTE Hybrid Systems 297</p> <p>12.3.1 Geometry Optimization of Thermoelectric Devices in a Hybrid PVTE System 297</p> <p>12.3.2 Enhancing the Overall Heat Conduction and Light Absorption 298</p> <p>12.3.3 Fishnet Meta-Structure for IR Band Trapping for Enhancement of PVTE Hybrid Systems 299</p> <p>12.3.4 Full-Spectrum Photon Management of Solar Cell Structures for PVTE Hybrid Systems 300</p> <p>12.3.5 An Automotive PVTE Hybrid Energy System Using Maximum Power Point Tracking 301</p> <p>12.4 Application of PVTE Hybrid Systems 302</p> <p>12.4.1 Novel Hybrid Solar System for Photovoltaic, Thermoelectric, and Heat Utilization 303</p> <p>12.4.2 Development of an Energy-Saving Module via Combination of PV Cells and TE Coolers for Green Building Applications 303</p> <p>12.4.3 Performance of Solar Cells Using TE Module in Hot Sites 303</p> <p>12.5 Summary 306</p> <p>References 307</p> <p>Index 311</p>
Diana Davila is currently an Advanced Senior Engineer at the IBM Research - Zurich Lab. She received her B.Sc. in Electronic Engineering, from the Tecnologico de Monterrey, Mexico (2004) and her M.S. in Micro and Nanoelectronic Engineering (2008) and Ph.D. in Electronic Engineering (2011) from the Universitat Autonoma de Barcelona, Spain. She has conducted research on fuel cells, nanomaterials, thermoelectricity, spintronics and MEMS devices in multidisciplinary environments such as the Microelectronics Institute of Barcelona (IMB-CNM, CSIC), the Catalonia Institute for Energy Research (IREC), the International Iberian Nanotechnology Laboratory (INL) and ETH Zurich. Her current research interests focus on the development and integration of nanostructured thermoelectric materials for powering micro/nanodevices.<br> <br> Alireza Rezaniakolaei studied Mechanical Engineering at University of Mazandaran, Iran and, got his PhD in Energy Engineering from Aalborg University in 2012. He is an Assistant Professor in Department of Energy Technology at Aalborg University, Denmark, where he holds the position of Thermoelectric Research Programme Chair. His current research interests include fluid mechanics, thermal engineering with focus on micro heat transfer surfaces applied to thermoelectric modules, and integration of thermoelctric technology with renewable systems and sensor applications.

Diese Produkte könnten Sie auch interessieren:

Strategies to the Prediction, Mitigation and Management of Product Obsolescence
Strategies to the Prediction, Mitigation and Management of Product Obsolescence
von: Bjoern Bartels, Ulrich Ermel, Peter Sandborn, Michael G. Pecht
PDF ebook
116,99 €