Details

Thermal Safety of Chemical Processes


Thermal Safety of Chemical Processes

Risk Assessment and Process Design
2. Aufl.

von: Francis Stoessel

138,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 16.03.2020
ISBN/EAN: 9783527696925
Sprache: englisch
Anzahl Seiten: 574

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Completely revised and updated to reflect the current IUPAC standards, this second edition is enlarged by five new chapters dealing with the assessment of energy potential, physical unit operations, emergency pressure relief, the reliability of risk reducing measures, and process safety and process development.</p> <p>Clearly structured in four parts, the first provides a general introduction and presents the theoretical, methodological and experimental aspects of thermal risk assessment. Part II is devoted to desired reactions and techniques allowing reactions to be mastered on an industrial scale, while the third part deals with secondary reactions, their characterization, and techniques to avoid triggering them. Due to the inclusion of new content and restructuring measures, the technical aspects of risk reduction are highlighted in the new section that constitutes the final part.</p> <p>Each chapter begins with a case history illustrating the topic in question, presenting lessons learned from the incident. Numerous examples taken from industrial practice are analyzed, and each chapter concludes with a series of exercises or case studies, allowing readers to check their understanding of the subject matter. Finally, additional control questions have been added and solutions to the exercises and problems can now be found.</p>
<p>Preface xxi</p> <p>Acknowledgments xxv</p> <p><b>Part I General Aspects of Thermal Process Safety </b><b>1</b></p> <p><b>1 Introduction to Risk Analysis of Fine Chemical Processes </b><b>3</b></p> <p>1.1 Chemical Industry and Safety 4</p> <p>1.1.1 Chemical Industry and Society 4</p> <p>1.1.2 Responsibility 6</p> <p>1.1.3 Definitions and Concepts 7</p> <p>1.2 Steps of Risk Analysis 8</p> <p>1.2.1 Scope of Analysis 9</p> <p>1.2.2 Safety Data Collection 10</p> <p>1.2.3 Safe Conditions and Critical Limits 10</p> <p>1.2.4 Identification of Deviations 10</p> <p>1.2.5 Risk Assessment 11</p> <p>1.2.6 Risk Matrixes 14</p> <p>1.2.7 Risk-Reducing Measures 15</p> <p>1.2.8 Residual Risk 17</p> <p>1.3 Safety Data 17</p> <p>1.3.1 Physical Properties 18</p> <p>1.3.2 Chemical Properties 18</p> <p>1.3.3 Toxicity 18</p> <p>1.3.4 Ecotoxicity 20</p> <p>1.3.5 Fire and Explosion Data 20</p> <p>1.3.6 Interactions 21</p> <p>1.4 Systematic Identification of Hazards 21</p> <p>1.4.1 Checklist Method 22</p> <p>1.4.2 Failure Mode and Effect Analysis 24</p> <p>1.4.3 Hazard and Operability Study 24</p> <p>1.4.4 Decision Table 26</p> <p>1.4.5 Event Tree Analysis 26</p> <p>1.4.6 Fault Tree Analysis 27</p> <p>1.4.7 Brainstorming 29</p> <p>1.5 The Practice of Risk Analysis 29</p> <p>1.5.1 Preparing the Risk Analysis 29</p> <p>1.5.2 The Risk Analysis Team 30</p> <p>1.5.3 The Team Leader 30</p> <p>1.5.4 Finalizing the Risk Analysis 31</p> <p>1.6 Exercises 31</p> <p>References 32</p> <p><b>2 Fundamentals of Thermal Process Safety </b><b>35</b></p> <p>2.1 Energy Potential 37</p> <p>2.1.1 Thermal Energy 37</p> <p>2.1.2 Pressure Effects 41</p> <p>2.2 Effect of Temperature on Reaction Rate 41</p> <p>2.2.1 Single Reaction 41</p> <p>2.2.2 Multiple Reactions 42</p> <p>2.3 Heat Balance 43</p> <p>2.3.1 Terms of the Heat Balance 43</p> <p>2.3.2 Simplified Expression of the Heat Balance 48</p> <p>2.3.3 Reaction Rate Under Adiabatic Conditions 49</p> <p>2.4 Runaway Reactions 50</p> <p>2.4.1 Thermal Explosions 50</p> <p>2.4.2 Semenov Diagram 51</p> <p>2.4.3 Parametric Sensitivity 52</p> <p>2.4.4 Critical Temperature 53</p> <p>2.4.5 Sensitivity Toward Variation of the Coolant Temperature 55</p> <p>2.4.6 Time Frame of a Thermal Explosion, the <i>tmr<sub>ad</sub> </i>Concept 56</p> <p>2.5 Exercises 57</p> <p>References 59</p> <p><b>3 Assessment of Thermal Risks </b><b>61</b></p> <p>3.1 Thermal Process Safety 62</p> <p>3.1.1 Thermal Risks 62</p> <p>3.1.2 Processes Concerned by Thermal Risks 62</p> <p>3.2 Thermal Risk Assessment Criteria 63</p> <p>3.2.1 Cooling Failure Scenario 63</p> <p>3.2.2 Severity 66</p> <p>3.2.3 Probability 68</p> <p>3.2.4 Runaway Risk Assessment 70</p> <p>3.3 Criticality of Chemical Processes 70</p> <p>3.3.1 Assessment of the Criticality 70</p> <p>3.3.2 Criticality Classes 72</p> <p>3.3.3 Special Cases of Criticality Assessment 76</p> <p>3.3.4 Remarks on Criticality Class 5 76</p> <p>3.3.5 Using <i>MTT </i>as a Safety Barrier 77</p> <p>3.4 Assessment Procedures 81</p> <p>3.4.1 General Rules for Thermal Safety Assessment 81</p> <p>3.4.2 Practical Procedure for the Assessment of Thermal Risks 81</p> <p>3.5 Exercises 85</p> <p>References 87</p> <p><b>4 Experimental Techniques </b><b>89</b></p> <p>4.1 Calorimetric Measurement Principles 90</p> <p>4.1.1 Classification of Calorimeters 90</p> <p>4.1.2 Temperature Control Modes of Calorimeters 90</p> <p>4.1.3 Heat Balance in Calorimeters 92</p> <p>4.2 Instruments Used in Safety Laboratories 94</p> <p>4.2.1 Characteristics of Instruments Used for Safety Studies 94</p> <p>4.2.2 Example of Instruments Used for Safety Studies 97</p> <p>4.3 Microcalorimeters 97</p> <p>4.3.1 Differential Scanning Calorimetry (DSC) 97</p> <p>4.3.2 Calvet Calorimeters 104</p> <p>4.3.3 Thermal Activity Monitor 106</p> <p>4.4 Reaction Calorimeters 107</p> <p>4.4.1 Purpose of Reaction Calorimeters 107</p> <p>4.4.2 Principles of Reaction Calorimeters 108</p> <p>4.4.3 Examples of Reaction Calorimeters 110</p> <p>4.4.4 Applications 113</p> <p>4.5 Adiabatic Calorimeters 114</p> <p>4.5.1 Principle of Adiabatic Calorimetry 114</p> <p>4.5.2 On the Thermal Inertia 115</p> <p>4.5.3 Dewar Calorimeters 116</p> <p>4.5.4 Accelerating Rate Calorimeter (ARC) 119</p> <p>4.5.5 Vent Sizing Package (VSP) 121</p> <p>4.6 Exercises 122</p> <p>References 126</p> <p><b>5 Assessment of the Energy Potential </b><b>131</b></p> <p>5.1 Thermal Energy 132</p> <p>5.1.1 Thermal Energy of Synthesis Reactions 132</p> <p>5.1.2 Energy Potential of Secondary Reactions 133</p> <p>5.1.3 Adiabatic Temperature Rise 136</p> <p>5.2 Pressure Effects 137</p> <p>5.2.1 Gas Release 137</p> <p>5.2.2 Vapor Pressure 138</p> <p>5.2.3 Amount of Solvent Evaporated 139</p> <p>5.3 Experimental Determination of Energy Potentials 140</p> <p>5.3.1 Experimental Techniques 140</p> <p>5.3.2 Choosing the Sample to be Analyzed 141</p> <p>5.3.3 Assessment of Process Deviations 144</p> <p>5.4 Exercises 147</p> <p>References 149</p> <p><b>Part II Mastering Exothermal Reactions </b><b>153</b></p> <p><b>6 General Aspects of Reactor Safety </b><b>155</b></p> <p>6.1 Dynamic Stability of Reactors 157</p> <p>6.1.1 Parametric Sensitivity 157</p> <p>6.1.2 Sensitivity Toward Temperature: Reaction Number <i>B </i>157</p> <p>6.1.3 Heat Balance 158</p> <p>6.2 Reactor Safety After a Cooling Failure 163</p> <p>6.2.1 Potential of the Reaction, the Adiabatic Temperature Rise 163</p> <p>6.2.2 Temperature in Case of Cooling Failure: The Concept of <i>MTSR </i>164</p> <p>6.3 Example Reaction System 165</p> <p>References 168</p> <p><b>7 Batch Reactors </b><b>171</b></p> <p>7.1 Chemical Reaction Engineering Aspects of Batch Reactors 172</p> <p>7.1.1 Principles of Batch Reaction 172</p> <p>7.1.2 Mass Balance 173</p> <p>7.1.3 Heat Balance 174</p> <p>7.1.4 Strategies of Temperature Control 174</p> <p>7.2 Isothermal Reactions 175</p> <p>7.2.1 Principles 175</p> <p>7.2.2 Design of Safe Isothermal Reactors 175</p> <p>7.2.3 Safety Assessment 178</p> <p>7.3 Adiabatic Reaction 178</p> <p>7.3.1 Principles 178</p> <p>7.3.2 Design of a Safe Adiabatic Batch Reactor 178</p> <p>7.3.3 Safety Assessment 179</p> <p>7.4 Polytropic Reaction 179</p> <p>7.4.1 Principles 179</p> <p>7.4.2 Design of Polytropic Operation: Temperature Control 180</p> <p>7.4.3 Safety Assessment 184</p> <p>7.5 Isoperibolic Reaction 184</p> <p>7.5.1 Principles 184</p> <p>7.5.2 Design of Isoperibolic Operation: Temperature Control 184</p> <p>7.5.3 Safety Assessment 184</p> <p>7.6 Temperature-Controlled Reaction 185</p> <p>7.6.1 Principles 185</p> <p>7.6.2 Design of Temperature-Controlled Reaction 186</p> <p>7.6.3 Safety Assessment 187</p> <p>7.7 Key Factors for the Safe Design of Batch Reactors 188</p> <p>7.7.1 Determination of Safety Relevant Data 188</p> <p>7.7.2 Rules for Safe Operation of Batch Reactors 190</p> <p>7.8 Exercises 193</p> <p>References 195</p> <p><b>8 Semi-batch Reactors </b><b>197</b></p> <p>8.1 Principles of Semi-batch Reaction 198</p> <p>8.1.1 Definition of Semi-batch Operation 198</p> <p>8.1.2 Material Balance 199</p> <p>8.1.3 Heat Balance of Semi-batch Reactors 200</p> <p>8.2 Reactant Accumulation in Semi-batch Reactors 202</p> <p>8.2.1 Fast Reactions 203</p> <p>8.2.2 Slow Reactions 205</p> <p>8.2.3 Design of Safe Semi-batch Reactors 207</p> <p>8.3 Isothermal Reaction 208</p> <p>8.3.1 Principles of Isothermal Semi-batch Operation 208</p> <p>8.3.2 Design of Isothermal Semi-batch Reactors 208</p> <p>8.3.3 Accumulation with Complex Reactions 212</p> <p>8.4 Isoperibolic, Constant Cooling Medium Temperature 212</p> <p>8.5 Non-isothermal Reaction 214</p> <p>8.6 Strategies of Feed Control 215</p> <p>8.6.1 Addition by Portions 215</p> <p>8.6.2 Constant Feed Rate 215</p> <p>8.6.3 Interlock of Feed with Temperature 217</p> <p>8.6.4 Why Reducing the Accumulation 219</p> <p>8.7 Choice of Temperature and Feed Rate 219</p> <p>8.7.1 General Principle 219</p> <p>8.7.2 Scale-Up from Laboratory to Industrial Scale 220</p> <p>8.7.3 Online Detection of Unwanted Accumulation 221</p> <p>8.8 Advanced Feed Control 222</p> <p>8.8.1 Feed Control by the Accumulation 222</p> <p>8.8.2 Feed Control by the Thermal Stability 224</p> <p>8.9 Exercises 226</p> <p>References 228</p> <p><b>9 Continuous Reactors </b><b>231</b></p> <p>9.1 Continuous Stirred Tank Reactors 232</p> <p>9.1.1 Mass Balance 233</p> <p>9.1.2 Heat Balance 233</p> <p>9.1.3 Cooled CSTR 234</p> <p>9.1.4 Adiabatic CSTR 234</p> <p>9.1.5 The Autothermal CSTR 236</p> <p>9.1.6 Safety Aspects 237</p> <p>9.2 Tubular Reactors 240</p> <p>9.2.1 Mass Balance 240</p> <p>9.2.2 Heat Balance 241</p> <p>9.2.3 Safety Aspects 242</p> <p>9.2.4 Performance and Safety Characteristics of Ideal Reactors 246</p> <p>9.3 Other Continuous Reactor Types 247</p> <p>9.3.1 Cascade of CSTRs 248</p> <p>9.3.2 Recycling Reactor 248</p> <p>9.3.3 Microreactors 249</p> <p>9.3.4 Process Intensification 251</p> <p>9.4 Exercises 252</p> <p>References 253</p> <p><b>Part III Avoiding Secondary Reactions </b><b>255</b></p> <p><b>10 Thermal Stability </b><b>257</b></p> <p>10.1 Thermal Stability and Secondary Decomposition Reactions 258</p> <p>10.2 Triggering Conditions 260</p> <p>10.2.1 Onset: A Concept Without Scientific Base 260</p> <p>10.2.2 Decomposition Kinetics, the <i>tmr<sub>ad</sub> </i>Concept 261</p> <p>10.2.3 Safe Temperature 262</p> <p>10.2.4 Assessment Procedure 262</p> <p>10.3 Estimation of Thermal Stability 264</p> <p>10.3.1 Estimation of <i>T<sub>D</sub></i><sub>24</sub> from One Dynamic DSC Experiment 264</p> <p>10.3.2 Conservative Extrapolation 264</p> <p>10.3.3 Empirical Rules for the Determination of a “Safe” Temperature 267</p> <p>10.3.4 Prediction of Thermal Stability 268</p> <p>10.4 Quantitative Determination of the <i>T<sub>D</sub></i><sub>24</sub> 269</p> <p>10.4.1 Principle of Quantitative Determination Methods for the Heat Release Rate 269</p> <p>10.4.2 Determination of <i>q</i>′ = <i>f </i>(<i>T</i>) from Isothermal Experiments 269</p> <p>10.4.3 Determination of <i>q</i>′ = <i>f </i>(<i>T</i>) from Dynamic Experiments 273</p> <p>10.4.4 Determination of <i>T<sub>D</sub></i><sub>24 </sub>275</p> <p>10.5 Practice of Thermal Stability Assessment 276</p> <p>10.5.1 Complex Reactions 276</p> <p>10.5.2 Remarks on the Quality of Experiments and Evaluation 278</p> <p>10.6 Exercises 278</p> <p>References 281</p> <p><b>11 Autocatalytic Reactions </b><b>283</b></p> <p>11.1 Autocatalytic Decompositions 284</p> <p>11.1.1 Definitions 284</p> <p>11.1.2 Behavior of Autocatalytic Reactions 285</p> <p>11.1.3 Rate Equations of Autocatalytic Reactions 286</p> <p>11.1.4 Phenomenological Aspects of Autocatalytic Reactions 289</p> <p>11.2 Identification of Autocatalytic Reactions 291</p> <p>11.2.1 Chemical Information 291</p> <p>11.2.2 Qualitative Peak Shape in a Dynamic DSC Thermogram 292</p> <p>11.2.3 Quantitative Peak Shape Characterization 293</p> <p>11.2.4 Double Scan Test 294</p> <p>11.2.5 Identification by Isothermal DSC 296</p> <p>11.3 Determination of <i>tmr<sub>ad</sub> </i>of Autocatalytic Reactions 296</p> <p>11.3.1 One-Point Estimation 296</p> <p>11.3.2 Characterization Using Zero-Order Kinetics 297</p> <p>11.3.3 Characterization Using a Mechanistic Approach 299</p> <p>11.3.4 Characterization by Isoconversional Methods 301</p> <p>11.3.5 Characterization by Adiabatic Calorimetry 302</p> <p>11.4 Practical Safety Aspects for Autocatalytic Reactions 306</p> <p>11.4.1 Specific Safety Aspects of Autocatalytic Reactions 306</p> <p>11.4.2 Autocatalytic Decompositions in the Industrial Practice 307</p> <p>11.4.3 Volatile Products as Catalysts 307</p> <p>11.5 Exercises 308</p> <p>References 309</p> <p><b>12 Heat Accumulation </b><b>311</b></p> <p>12.1 Heat Accumulation Situations 312</p> <p>12.2 Heat Balance 313</p> <p>12.2.1 Heat Balance Using Time Scale 314</p> <p>12.2.2 Forced Convection, the Semenov Model 314</p> <p>12.2.3 Natural Convection 315</p> <p>12.2.4 High Viscosity Liquids, Pastes, and Solids 316</p> <p>12.3 Heat Balance with Reactive Material 318</p> <p>12.3.1 Conduction in a Reactive Solid with a Heat Source, the Frank-Kamenetskii Model 318</p> <p>12.3.2 Conduction in a Reactive Solid with Temperature Gradient at the Wall, the Thomas Model 323</p> <p>12.3.3 Conduction in a Reactive Solid with Formal Kinetics, the Finite Elements Model 324</p> <p>12.4 Assessing Heat Accumulation Conditions 325</p> <p>12.4.1 Thermal Explosion Models 325</p> <p>12.4.2 Assessment Procedure 326</p> <p>12.5 Exercises 332</p> <p>References 333</p> <p><b>13 Physical Unit Operations </b><b>335</b></p> <p>13.1 Thermal Hazards in Physical Unit Operations 336</p> <p>13.1.1 Introduction to Physical Unit Operations 336</p> <p>13.1.2 Hazards in Physical Unit Operations 337</p> <p>13.1.3 Assessment Procedure for Unwanted Exothermal Reactions 337</p> <p>13.1.4 Specificities of Physical Unit Operations 338</p> <p>13.1.5 Standardization of the Risk Assessment 338</p> <p>13.2 Specific Testing Procedures 338</p> <p>13.2.1 Shock Sensitivity: The Falling Hammer Test 339</p> <p>13.2.2 Friction Sensitivity 339</p> <p>13.2.3 DSC Dynamic 339</p> <p>13.2.4 Decomposition Gases 340</p> <p>13.2.5 Dynamic Decomposition Test (RADEX) 340</p> <p>13.2.6 Mini Autoclave 341</p> <p>13.2.7 Spontaneous Decomposition 341</p> <p>13.2.8 Grewer Oven and Decomposition in Airstream 342</p> <p>13.2.9 RADEX Isoperibolic Test 342</p> <p>13.2.10 Self-Ignition Test in a 400 ml Basket 342</p> <p>13.2.11 Warm Storage Test in a Dewar 343</p> <p>13.3 Hazards Associated to Solid Processing 343</p> <p>13.3.1 Pneumatic and Mechanical Conveying Operations 343</p> <p>13.3.2 Blending 343</p> <p>13.3.3 Storage 344</p> <p>13.3.4 Drying 344</p> <p>13.3.5 Milling and Grinding 345</p> <p>13.3.6 Hot Discharge 346</p> <p>13.4 Hazards During Liquid Processing 346</p> <p>13.4.1 Transport Operations 346</p> <p>13.4.2 Operations with Heat Exchange 347</p> <p>13.4.3 Evaporation and Distillation 348</p> <p>13.4.4 Failure Modes of Heat Exchangers and Evaporators 350</p> <p>13.4.5 Risk Reducing Measures 352</p> <p>13.5 Transport of Dangerous Goods and SADT 353</p> <p>13.6 Exercises 354</p> <p>References 356</p> <p><b>Part IV Technical Aspects of Thermal Process Safety </b><b>357</b></p> <p><b>14 Heating and Cooling Industrial Reactors </b><b>359</b></p> <p>14.1 Temperature Control of Industrial Reactors 361</p> <p>14.1.1 Technical Heat Carriers 361</p> <p>14.1.2 Heating and Cooling Techniques 364</p> <p>14.1.3 Temperature Control Strategies 368</p> <p>14.1.4 Dynamic Aspects of Heat Exchange Systems 371</p> <p>14.2 Heat Exchange Across theWall 375</p> <p>14.2.1 Two Film Theory 375</p> <p>14.2.2 The Internal Film Coefficient of a Stirred Tank 376</p> <p>14.2.3 Determination of the Internal Film Coefficient 376</p> <p>14.2.4 The Resistance of the Equipment to Heat Transfer 378</p> <p>14.2.5 Practical Determination of Heat Transfer Coefficients 379</p> <p>14.3 Evaporative Cooling 382</p> <p>14.3.1 Amount of Solvent Evaporated 383</p> <p>14.3.2 Vapor Flow Rate 383</p> <p>14.3.3 Flooding of the Vapor Tube 384</p> <p>14.3.4 Swelling of the Reaction Mass 385</p> <p>14.3.5 Practical Procedure for the Assessment of Reactor Safety at the Boiling Point 386</p> <p>14.4 Dynamics of the Temperature Control System and Process Design 388</p> <p>14.4.1 Background 388</p> <p>14.4.2 Modeling the Dynamic Behavior of Industrial Reactors 389</p> <p>14.4.3 Experimental Simulation of Industrial Reactors 390</p> <p>14.5 Exercises 391</p> <p>References 395</p> <p><b>15 Risk Reducing Measures </b><b>397</b></p> <p>15.1 Strategies of Choice 399</p> <p>15.2 Eliminating Measures 400</p> <p>15.3 Technical Preventive Measures 401</p> <p>15.3.1 Control of Feed 401</p> <p>15.3.2 Emergency Cooling 402</p> <p>15.3.3 Quenching and Flooding 403</p> <p>15.3.4 Dumping 404</p> <p>15.3.5 Controlled Depressurization 405</p> <p>15.3.6 Alarm Systems 406</p> <p>15.3.7 Time Factor 407</p> <p>15.4 Emergency Measures 408</p> <p>15.4.1 Emergency Pressure Relief Systems 408</p> <p>15.4.2 Containment 408</p> <p>15.5 Design of Technical Measures 409</p> <p>15.5.1 Consequences of Runaway 409</p> <p>15.5.2 Controllability 412</p> <p>15.5.3 Assessment of Severity and Probability for the Different Criticality Classes 415</p> <p>15.6 Exercises 423</p> <p>References 425</p> <p><b>16 Emergency Pressure Relief </b><b>427</b></p> <p>16.1 General Remarks on Emergency Relief Systems 429</p> <p>16.1.1 Position of Emergency Relief Systems in a Protection Strategy 429</p> <p>16.1.2 Regulatory Aspects 429</p> <p>16.1.3 Protection Devices 430</p> <p>16.1.4 Sizing Methods 432</p> <p>16.2 Preliminary Steps of the Sizing Procedure: The Scenario 432</p> <p>16.2.1 Step 1: Definition of the Design Case 432</p> <p>16.2.2 Step 1: Quantifying the Relief Scenario 434</p> <p>16.2.3 Step 2: Determination of the Flow Behavior 437</p> <p>16.3 Sizing Steps: Fluid Dynamics 439</p> <p>16.3.1 Step 3: Mass Flow Rate to Be Discharged 439</p> <p>16.3.2 Step 4: Dischargeable Mass Flux Through an Ideal Nozzle 441</p> <p>16.3.3 Step 5 for Bursting Disk: Correction for Friction Losses 442</p> <p>16.3.4 Step 6 for Bursting Disk: Calculation of the Required Relief Area 444</p> <p>16.3.5 Step 5 for Safety Valve: Calculation of the Required Relief Area 444</p> <p>16.3.6 Step 6 for SV: Checking Function Stability 445</p> <p>16.4 Sizing ERS for Multipurpose Reactors 446</p> <p>16.4.1 Principle of Sizing Procedure 446</p> <p>16.4.2 Choice of the Sizing Scenario 447</p> <p>16.4.3 Sensitivity Analysis of the Design Data 447</p> <p>16.4.4 Checking the Relief Capacity 449</p> <p>16.5 Effluent Treatment 450</p> <p>16.5.1 Initial Design Step 451</p> <p>16.5.2 Total Containment 451</p> <p>16.5.3 Passive Condenser 451</p> <p>16.5.4 Catch Tank, Gravity Separator 452</p> <p>16.5.5 Cyclone 452</p> <p>16.5.6 Quench Tank 452</p> <p>16.6 Exercises 452</p> <p>References 458</p> <p><b>17 Reliability of Risk Reducing Measures </b><b>461</b></p> <p>17.1 Basics of Reliability Engineering 463</p> <p>17.1.1 Definitions 463</p> <p>17.1.2 Failure Frequency 465</p> <p>17.1.3 Failures on the Time Scale 467</p> <p>17.2 Reliability of Process Control Systems 468</p> <p>17.2.1 Safety Integrity Level 468</p> <p>17.2.2 Control Loops 468</p> <p>17.2.3 Increasing the Reliability of an SIS 469</p> <p>17.3 Practice of Reliability Assessment 469</p> <p>17.3.1 Scenario Structure 469</p> <p>17.3.2 Risk Matrix 470</p> <p>17.3.3 Risk Reduction 471</p> <p>17.3.4 Other Methods for Reliability Analysis 473</p> <p>17.4 Exercises 475</p> <p>References 476</p> <p><b>18 Development of Safe Processes </b><b>479</b></p> <p>18.1 Inherently Safer Processes 480</p> <p>18.1.1 Principles of Inherent Safety 480</p> <p>18.1.2 Safety Along Life Cycle of a Process 482</p> <p>18.1.3 Developing a Safe Process 483</p> <p>18.2 Methodological Approach 484</p> <p>18.2.1 Specificity of the Fine Chemicals Industry 484</p> <p>18.2.2 Integrated Process Development 484</p> <p>18.3 Practice of Integrated Process Development 485</p> <p>18.3.1 Objectives and Data 485</p> <p>18.3.2 Chemists and Engineers 487</p> <p>18.3.3 Communication and Problem Solving 488</p> <p>18.4 Concluding Remark 488</p> <p>References 489</p> <p>Solutions of Exercises 491</p> <p>Symbols 529</p> <p>Index 537</p>
<p><b>Professor Francis Stoessel</b> is Head of Chemical Process Safety Consulting in the Swissi Process Safety GmbH. After graduating in Chemical Engineering from the Universite de Haute Alsace, he spent most of his career working for Ciba-Geigy in their Chemical Engineering Department. He was Head of the Thermal Safety Department at Ciba, later of Process Safety Consulting at Novartis. He then took up a professorship at the Swiss Federal Institute of Technology at Lausanne. Prof. Stoessel has received awards from the Swiss Expert Commission for Safety in the Chemical Industry and the Swiss Society for Thermal Analysis and Calorimetry.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €