Details

Terraforming Mars


Terraforming Mars


Astrobiology Perspectives on Life in the Universe 1. Aufl.

von: Martin Beech, Joseph Seckbach, Richard Gordon

190,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 18.11.2021
ISBN/EAN: 9781119761860
Sprache: englisch
Anzahl Seiten: 592

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>TERRAFORMING MARS</b> <p><b>This book provides a thorough scientific review of how Mars might eventually be colonized, industrialized, and transformed into a world better suited to human habitation.</b> <p>The idea of terraforming Mars has, in recent times, become a topic of intense scientific interest and great public debate. Stimulated in part by the contemporary imperative to begin geoengineering Earth, as a means to combat global climate change, the terraforming of Mars will work to make its presently hostile environment more suitable to life—especially human life. Geoengineering and terraforming, at their core, have the same goal—that is to enhance (or revive) the ability of a specific environment to support human life, society, and industry. The chapters in this text, written by experts in their respective fields, are accordingly in resonance with the important, and ongoing discussions concerning the human stewardship of global climate systems. In this sense, the text is both timely and relevant and will cover issues relating to topics that will only grow in their relevance in future decades. The notion of terraforming Mars is not a new one, as such, and it has long played as the background narrative in many science fiction novels. This book, however, deals exclusively with what is physically possible, and what might conceivably be put into actual practice within the next several human generations. <p><b>Audience</B> <p>Researchers in planetary science, astronomy, astrobiology, space engineering, architecture, ethics, as well as members of the space industry.
<p>Preface xv</p> <p><b>Part 1: Introduction 1</b></p> <p><b>1 Terraforming and Colonizing Mars 3</b></p> <p><i>Giancarlo Genta</i></p> <p>1.1 Introduction 3</p> <p>1.2 Earth: A Terraformed Planet 4</p> <p>1.3 Planetary Environments 6</p> <p>1.4 Terraforming Mars 10</p> <p>1.5 The Role of Solar Wind 15</p> <p>1.6 Ethical Aspects 16</p> <p>1.7 Venus, Moon, Titan… 19</p> <p>References 21</p> <p><b>Part 2: Engineering Mars 23</b></p> <p><b>2 Terraforming Worlds: Humans Playing Games of Gods 25</b></p> <p><i>Nilo Serpa and Richard Cathcart</i></p> <p>Early Mars 26</p> <p>Oceans Here and There 28</p> <p>The Mars We are Creating Here 30</p> <p>Mars: An Arena of Delusions? 34</p> <p>References 35</p> <p><b>3 Mars, A Stepping-Stone World, Macro-Engineered 37</b></p> <p><i>Richard B. Cathcart</i></p> <p>3.1 Introduction 37</p> <p>3.2 Mars-Crust as Kinetic Architecture 38</p> <p>3.3 A Crust-Infrastructure Mixture 39</p> <p>3.4 Infrastructure and Life-Styles 40</p> <p>3.5 Atmosphere Enhancements for Mars 44</p> <p>3.6 Between Then and Now 46</p> <p>Acknowledgments 48</p> <p>References 48</p> <p><b>4 Efficient Martian Settlement with the Mars Terraformer Transfer (MATT) and the Omaha Trail 51</b></p> <p><i>Gary Stewart</i></p> <p>4.1 Introduction 51</p> <p>4.2 Construction Efficiencies of MATT’s Small-Scale Terraformation 52</p> <p>4.2.1 Impact Terraformation for Settlement 52</p> <p>4.2.2 Impactor Redirection with DE-STARLITE 55</p> <p>4.2.3 Subaqueous Hab Network at Omaha Crater 57</p> <p>4.3 Provisioning Efficiencies of the Omaha Trail 61</p> <p>4.3.1 Deimos Dock 63</p> <p>4.3.2 Mars Lift 64</p> <p>4.3.3 Arestation 66</p> <p>4.3.4 Deimos Rail Launcher (DRL) 66</p> <p>4.4 Cosmic Ray Protection: From Omaha Trail to Omaha Shield 67</p> <p>4.5 Conclusion 68</p> <p>References 69</p> <p><b>5 Mars Colonization: Beyond Getting There </b><b>73</b></p> <p><i>Igor Levchenko, Shuyan Xu, St</i>é<i>phane Mazouffre, Michael Keidar and Kateryna Bazaka</i></p> <p>5.1 Mars Colonization – Do We Need it? 73</p> <p>5.2 Legal Considerations 78</p> <p>5.2.1 Do Earth Laws Apply To Mars Colonists? 78</p> <p>5.2.2 Sovereignty 79</p> <p>5.2.3 Human Rights 80</p> <p>5.2.4 Abortion 82</p> <p>5.3 Ethical Considerations 83</p> <p>5.3.1 General 83</p> <p>5.3.2 Human Reproduction – Ethical Considerations 84</p> <p>5.3.3 Social Isolation and No Privacy – Rolled into One 85</p> <p>5.3.4 Advocacy for Mars – is it Ethical at All to Colonize it? 86</p> <p>5.4 Consideration of Resources 88</p> <p>5.5 Quo Vadis, the Only Civilization We Know? 89</p> <p>5.6 Afterword. Where are We Three Years Later? 89</p> <p>5.6.1 Current Programs and Their Status – in Brief 89</p> <p>5.6.2 Any News About Mars? 90</p> <p>5.6.3 Tasks and Challenges 90</p> <p>Acknowledgements 92</p> <p>References 92</p> <p><b>Part 3: Ethical Exploration 99</b></p> <p><b>6 The Ethics of Terraforming: A Critical Survey of Six Arguments 101</b></p> <p><i>Ian Stoner</i></p> <p>6.1 Introduction 101</p> <p>6.2 Audience and Method 102</p> <p>6.3 Preservationist Arguments 103</p> <p>6.3.1 We Should Preserve Mars’s Value as a Unique Object of Scientific Interest 103</p> <p>6.3.2 We Should Preserve the Integrity of the Martian Wilderness 104</p> <p>6.3.3 We Should Avoid Expressing Colonialist Vices 106</p> <p>6.4 Interventionist Arguments 108</p> <p>6.4.1 We Should Fulfill our Inborn Nature as Pioneers 108</p> <p>6.4.2 We Should Increase Our Species’ Chance of Long-Term Survival 109</p> <p>6.4.3 We Should Rehabilitate Mars for Martians 112</p> <p>6.5 Conclusion 113</p> <p>Acknowledgments 114</p> <p>References 114</p> <p><b>7 <i>Homo Reductio </i>Eco-Nihilism and Human Colonization of Other Worlds 117</b></p> <p><i>Kelly Smith</i></p> <p>7.1 Introduction 117</p> <p>7.2 Implicit Assumptions 119</p> <p>7.3 Conclusion 121</p> <p>Acknowledgements 122</p> <p>References 122</p> <p><b>8 Ethical, Political and Legal Challenges Relating to Colonizing and Terraforming Mars 123</b></p> <p><i>Konrad Szocik</i></p> <p>8.1 Introduction 123</p> <p>8.2 Ethical Issues in Colonizing and Terraforming Mars 124</p> <p>8.3 Ethics of Human Enhancement for Space 125</p> <p>8.4 Environmental Ethics in Space 125</p> <p>8.5 Political Issues in Colonizing and Terraforming Mars 127</p> <p>8.6 Legal Issues in Colonizing and Terraforming Mars 128</p> <p>8.7 Sexual and Reproductive Laws in a Mars Colony 129</p> <p>8.8 Migration Law in Space 130</p> <p>8.9 Why Terraforming Mars May Be Necessary from Ethical, Political and Legal Perspectives 132</p> <p>8.10 Conclusions 133</p> <p>References 133</p> <p><b>Part 4: Indigenous Life on Mars 135</b></p> <p><b>9 Life on Mars: Past, Present, and Future 137</b></p> <p><i>Martin Beech and Mark Comte</i></p> <p>9.1 A Very Brief Historical Introduction 137</p> <p>9.2 Indigenous Life: Past and Present 141</p> <p>9.2.1 Beginnings 145</p> <p>9.2.2 The Viking Experiments 148</p> <p>9.2.3 Martian Meteorites 149</p> <p>9.2.4 In Plain Sight 151</p> <p>9.3 Seeded Life: The Future 154</p> <p>9.4 Per Aspera ad Astra 156</p> <p>References 157</p> <p><b>10 Terraforming on Early Mars? 161</b></p> <p><i>M. Polgári, I. Gyollai and Sz. Bérczi</i></p> <p>10.1 Introduction 162</p> <p>10.1.1 Aspects of Biogenicity 163</p> <p>10.1.2 Methodology 163</p> <p>10.1.3 Multihierarchical System Analyses 164</p> <p>10.2 Outline of Section 10.2 167</p> <p>10.2.1 Review of Research on Martian Life 167</p> <p>10.2.2 Biosignatures in Martian Meteorites Based on Mineralogical and Textural Investigation 169</p> <p>10.2.3 Biosignatures in Chondritic Meteorites 169</p> <p>10.2.3.1 Interpretations 175</p> <p>10.2.3.2 Clay Formation 182</p> <p>10.2.3.3 Interpretation No. 1 183</p> <p>10.2.3.4 Interpretation No. 2 (Preferred) 183</p> <p>10.2.4 Terrestrial Analogues of Biosignatures 186</p> <p>10.2.5 Implications to Terraforming of Ancient Life on Mars on the Basis of Terrestrial and Meteoritic Analogues 199</p> <p>10.3 Novel Interpretation of the Formation Process Based on Mineral Assemblages 265</p> <p>10.3.1 Martian Meteorites 265</p> <p>10.3.2 Interpretation of Mineral Assemblages on Mars 265</p> <p>10.3.3 Novel Interpretation of Mineral Dataset of Exploration of Curiosity in Gale Crater 267</p> <p>10.4 Conclusion 268</p> <p>Acknowledgment 270</p> <p>References 270</p> <p><b>Part 5: Living on Mars 281</b></p> <p><b>11 Omaha Field – A Magnetostatic Cosmic Radiation Shield for a Crewed Mars Facility 283</b></p> <p><i>Gary Stewart</i></p> <p>11.1 Introduction 283</p> <p>11.2 Methods 284</p> <p>11.2.1 Software 284</p> <p>11.2.2 Testing 284</p> <p>11.3 Design 284</p> <p>11.3.1 Crater 284</p> <p>11.3.2 Current 285</p> <p>11.3.3 Circuits 287</p> <p>11.4 Results 288</p> <p>11.4.1 Shielding Against 500 MeV Protons 288</p> <p>11.4.2 Shielding Against 1 GeV Protons 289</p> <p>11.4.3 Shielding Effectiveness in the Mars Environment 290</p> <p>11.5 Discussion 291</p> <p>11.5.1 Electrostatics 291</p> <p>11.5.2 Refrigeration 291</p> <p>11.5.3 Self-Shielding Solenoids 292</p> <p>11.5.4 Alternate Self-Shielding and Source-Shielding 293</p> <p>11.5.5 Safety in Transit Across Crater Rim 294</p> <p>11.5.6 Safety in Spacecraft Launch and Landing 295</p> <p>References 295</p> <p><b>12 Mars Future Settlements: Active Radiation Shielding and Design Criteria About Habitats and Infrastructures 297</b></p> <p><i>Marco Peroni</i></p> <p>12.1 Introduction 297</p> <p>12.2 The Problem of Cosmic Radiations 298</p> <p>12.3 The Protection System with Artificial Magnetic Fields 299</p> <p>12.4 Details of Our Proposal 302</p> <p>12.5 Further Developments 309</p> <p>12.6 Modular Settlement on Mars 309</p> <p>Acknowledgments 312</p> <p>References 312</p> <p><b>13 Crop Growth and Viability of Seeds on Mars and Moon Soil Simulants 313</b></p> <p><i>G.W.W. Wamelink, J.Y. Frissel, W.H.J. Krijnen and M.R. Verwoert</i></p> <p>13.1 Introduction 313</p> <p>13.2 Materials and Methods 314</p> <p>13.2.1 Regoliths 314</p> <p>13.2.2 Species Selection 315</p> <p>13.2.3 Organic Matter and Bacteria 316</p> <p>13.2.4 Experimental Design 317</p> <p>13.2.5 Harvest and Measurements 317</p> <p>13.3 Results 318</p> <p>13.3.1 Fruit Setting and Biomass 318</p> <p>13.3.2 Seed Weight and Germination 318</p> <p>13.4 Discussion 319</p> <p>13.5 Outlook Issues for the Future 320</p> <p>Acknowledgements 322</p> <p>References 322</p> <p>Appendix 324</p> <p><b>14 The First Settlement of Mars 331</b></p> <p><i>Chris Hajduk</i></p> <p>14.1 Introduction 331</p> <p>14.2 Colony Location 332</p> <p>14.3 Colony Timeline 333</p> <p>14.3.1 Setup Phase 333</p> <p>14.3.2 Investment Phase 334</p> <p>14.3.3 Self-Sufficiency 335</p> <p>14.4 Colony Design 335</p> <p>14.5 The Basics – Power, Air, Water, Food 336</p> <p>14.5.1 Food 336</p> <p>14.5.2 Water 339</p> <p>14.5.3 Air 341</p> <p>14.5.4 Power 342</p> <p>14.6 The Material World 343</p> <p>14.6.1 Metals 344</p> <p>14.6.2 Plastics 344</p> <p>14.6.3 Ceramics and Composites 344</p> <p>14.6.4 Mining 344</p> <p>14.7 Exports, Economics, Investment and Cash Flow 346</p> <p>14.7.1 Interplanetary Real Estate 346</p> <p>14.7.2 Intellectual Property Export 347</p> <p>14.7.3 Research Tourism 347</p> <p>14.7.4 Investment and Cash Flow 347</p> <p>14.8 Politics – A Socialist’s World 349</p> <p>14.9 Conclusion and Further Thoughts 349</p> <p>References 349</p> <p><b>Part 6: <i>In Situ </i>Resources 353</b></p> <p><b>15 Vulcanism on Mars 355</b></p> <p><i>Ian M. Coulson</i></p> <p>15.1 Introduction 355</p> <p>15.2 Martian Geology 356</p> <p>15.2.1 Mars: Creation and Thermal Evolution 357</p> <p>15.2.2 The Martian Crust 358</p> <p>15.3 Vulcanism 358</p> <p>15.3.1 Types of Volcanoes 359</p> <p>15.3.1.1 Earth 359</p> <p>15.3.1.2 Mars 361</p> <p>15.3.2 Recognition of Other Styles of Vulcanism 363</p> <p>15.3.3 Martian Meteorites 364</p> <p>15.3.4 Is Mars Still Volcanically Active? 366</p> <p>References 367</p> <p><b>16 Potential Impact-Related Mineral Resources on Mars 371</b></p> <p><i>Jake R. Crandall, Justin Filiberto and Sally L. Potter-McIntyre</i></p> <p>Introduction 371</p> <p>Terrestrial Ore Deposit Types Associated with Impact Craters 374</p> <p>Progenetic Deposits 374</p> <p>Syngenetic Deposits 376</p> <p>Epigenetic Deposits 377</p> <p>Martian Target Craters 377</p> <p>Ritchey Crater 377</p> <p>Contents xi</p> <p>Gale Crater 378</p> <p>Gusev Crater 380</p> <p>Conclusions 381</p> <p>References 382</p> <p><b>17 Red Gold – Practical Methods for Precious-Metal Survey, Open-Pit Mining, and Open-Air Refining on Mars 389</b></p> <p><i>Gary Stewart</i></p> <p>17.1 Introduction 389</p> <p>17.2 Martian Precious-Metal Ore from Asteroids 390</p> <p>17.3 Martian Precious-Metal Survey and Physical Assay 392</p> <p>17.4 “Mars Base Alpha” – A Red Gold Mining Camp 394</p> <p>17.5 Semi-Autonomous Open-Pit Mining 396</p> <p>17.6 Comminution and Separation of Meteorite Ore 396</p> <p>17.7 Extracting Metals with Induction/Microwave Smelter 397</p> <p>17.8 Refining with Hydrometallurgical Recovery and the Miller Process 398</p> <p>17.9 Separating Precious Metals with Saltwater Electrolysis 400</p> <p>17.10 Kovar Foundry 400</p> <p>17.11 Maximizing ISRU, Minimizing Mass and Complexity 402</p> <p>17.12 Scale-Up and Scale-Out 405</p> <p>17.13 Conclusion, with Observations and Recommendations 407</p> <p>References 409</p> <p><b>Part 7: Terraforming Mars 415</b></p> <p><b>18 Terraforming Mars: A Cabinet of Curiosities 417</b></p> <p><i>Martin Beech</i></p> <p>18.1 Introduction and Overview 417</p> <p>18.2 Planet Mars: A Brief Observational History and Overview 425</p> <p>18.3 The Beginnings of Change 428</p> <p>18.4 The Foundations 431</p> <p>18.5 First Blush 438</p> <p>18.6 Digging In 441</p> <p>18.7 (re)Building the Martian Atmosphere 446</p> <p>18.8 Magnetic Shielding 454</p> <p>18.9 Heating the Ground 457</p> <p>18.10 A Question of Time 458</p> <p>18.11 Conclusions 460</p> <p>References 461</p> <p><b>19 Terraforming Mars Rapidly Using Today’s Level of Technology 467</b></p> <p><i>Mark Culaj</i></p> <p>19.1 Introduction 467</p> <p>19.2 Solar Wind 468</p> <p>19.2.1 Solar Wind Abundances 469</p> <p>19.2.2 Magnetic Lens 469</p> <p>19.3 Conclusions 475</p> <p>Acknowledgments 477</p> <p>References 477</p> <p><b>20 System Engineering Analysis of Terraforming Mars with an Emphasis on Resource Importation Technology 479</b></p> <p><i>Brandon Wong</i></p> <p>20.1 Summary 479</p> <p>20.2 Introduction 480</p> <p>20.3 Key Problem 482</p> <p>20.4 Key Stakeholders 482</p> <p>20.5 Goals 483</p> <p>20.6 Macro Level Alternatives 483</p> <p>20.6.1 Terraforming 483</p> <p>20.6.2 Paraterraforming 484</p> <p>20.6.3 Bioforming 485</p> <p>20.7 Macro-Level Trade Study 486</p> <p>20.8 Macro-Level Conclusions 487</p> <p>20.8.1 Concept of Operations 487</p> <p>20.8.2 High-Level Requirements 487</p> <p>20.8.3 Requirements Decomposition 487</p> <p>20.8.4 Macro High-Level Design 488</p> <p>20.9 Terraforming Efforts System - Detailed Requirements 489</p> <p>20.10 Space Transportation System 492</p> <p>20.11 Importing Resources Subsystem 492</p> <p>20.11.1 Resources Needed 492</p> <p>20.11.2 Resource Locations 493</p> <p>20.11.3 Subsystem Needs 494</p> <p>20.11.3.1 Subsystem Goals for Importing Resources Subsystem 494</p> <p>20.11.3.2 Detailed Requirements for Importing Resources Subsystem 494</p> <p>20.11.3.3 Alternatives for the Importing Resources Subsystem 495</p> <p>20.11.3.4 Importing Resources Trade Study 504</p> <p>20.11.3.5 Findings 506</p> <p>20.11.3.6 Importing Resources Subsystem Design 506</p> <p>20.12 Risks 507</p> <p>20.12.1 Macro-Level Risks 507</p> <p>20.12.2 Importing Resources Subsystem Risks 509</p> <p>20.13 Lean Strategies 511</p> <p>20.14 Ethical Considerations 512</p> <p>20.15 Overall Conclusions 513</p> <p>20.15.1 Proposed Implementation Plan 513</p> <p>20.16 Acknowledgements 514</p> <p>20.17 Appendix 514</p> <p>20.17.1 Requirements Flowdown to System Implementation 514</p> <p>References 530</p> <p><b>21 The Potential of Pioneer Lichens in Terraforming Mars 533</b></p> <p><i>Richard A. Armstrong</i></p> <p>21.1 Introduction 533</p> <p>21.2 Potential Role of Lichens in Terraformation 534</p> <p>21.3 Exploiting Indigenous Lichens 536</p> <p>21.4 Exploiting Lichen Symbionts on Mars 538</p> <p>21.5 Inoculating Lichen Symbionts from Earth Cultures 540</p> <p>21.6 Transplanting Terrestrial Lichens to Mars 541</p> <p>21.7 Conclusions 546</p> <p>References 547</p> <p>Index 555</p>
<p><b>Martin Beech, PhD</b> is Professor Emeritus at the University of Regina, and Campion College, Saskatchewan, Canada. He has conducted and published research in the many areas of astronomy, planetary science, and the history of science. His main astronomy research interests are in the area of small solar system bodies (asteroids, comets, meteoroids, and meteorites).</p> <p><b>Professor J. Seckbach, PhD </b>is a retired senior academician at The Hebrew University of Jerusalem, Israel. He earned his PhD from the University of Chicago and did a post-doctorate in the Division of Biology at Caltech, in Pasadena, CA. He served at Louisiana State University (LSU), Baton Rouge, LA, USA, as the first selected Chair for the Louisiana Sea Grant and Technology transfer. Professor Joseph Seckbach has edited over 40 scientific books and authored about 140 scientific articles. <p><b>Richard Gordon, PhD</b> is a theoretical biologist and retired from the Department of Radiology, University of Manitoba in 2011. Presently at Gulf Specimen Marine Lab & Aquarium, Panacea, Florida and Adjunct Professor, C.S. Mott Center for Human Growth & Development, Department of Obstetrics & Gynecology, Wayne State University, Detroit Michigan. Interest in exobiology (now astrobiology) dates from 1960s undergraduate work on organic matter in the Orgueil meteorite with Edward Anders. Has published critical reviews of panspermia and the history of discoveries of life in meteorites.
<p><b>This book provides a thorough scientific review of how Mars might eventually be colonized, industrialized, and transformed into a world better suited to human habitation.</b></p> <p>The idea of terraforming Mars has, in recent times, become a topic of intense scientific interest and great public debate. Stimulated in part by the contemporary imperative to begin geoengineering Earth, as a means to combat global climate change, the terraforming of Mars will work to make its presently hostile environment more suitable to life—especially human life. Geoengineering and terraforming, at their core, have the same goal—that is to enhance (or revive) the ability of a specific environment to support human life, society, and industry. The chapters in this text, written by experts in their respective fields, are accordingly in resonance with the important, and ongoing discussions concerning the human stewardship of global climate systems. In this sense, the text is both timely and relevant and will cover issues relating to topics that will only grow in their relevance in future decades. The notion of terraforming Mars is not a new one, as such, and it has long played as the background narrative in many science fiction novels. This book, however, deals exclusively with what is physically possible, and what might conceivably be put into actual practice within the next several human generations. <p><b>Audience</B> <p>Researchers in planetary science, astronomy, astrobiology, space engineering, architecture, ethics, as well as members of the space industry.

Diese Produkte könnten Sie auch interessieren:

Astrochemistry
Astrochemistry
von: Andrew M. Shaw
PDF ebook
47,99 €
Evolution of Stars and Stellar Populations
Evolution of Stars and Stellar Populations
von: Maurizio Salaris, Santi Cassisi
PDF ebook
60,99 €
Astrophysics
Astrophysics
von: Judith Ann Irwin
PDF ebook
56,99 €