Details

Temperature-Responsive Polymers


Temperature-Responsive Polymers

Chemistry, Properties, and Applications
1. Aufl.

von: Vitaliy V. Khutoryanskiy, Theoni K. Georgiou

151,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 31.05.2018
ISBN/EAN: 9781119157793
Sprache: englisch
Anzahl Seiten: 408

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>An authoritative resource that offers an understanding of the chemistry, properties and applications of temperature-responsive polymers</b></p> <p>With contributions from a distinguished panel of experts, <i>Temperature-Responsive Polymers </i>puts the focus on hydrophilic polymers capable of changing their physicochemical properties in response to changes in environmental temperature. The contributors review the chemistry of these systems, and discuss a variety of synthetic approaches for preparation of temperature-responsive polymers, physicochemical methods of their characterisation and potential applications in biomedical areas.</p> <p>The text reviews a wide-variety of topics including: The characterisation of temperature-responsive polymers; Infrared and Raman spectroscopy; Applications of temperature-responsive polymers grafted onto solid core nanoparticles; and much more. The contributors also explore how temperature-responsive polymers can be used in the biomedical field for applications such as tissue engineering. This important resource:</p> <ul> <li>Offers an important synthesis of the current research on temperature-responsive polymers</li> <li>Covers the chemistry, the synthetic approaches for presentation and the physiochemical method of temperature-responsive polymers</li> <li>Includes a review of the fundamental characteristics of temperature-responsive polymers</li> </ul> <ul> <li>Explores many of the potential applications in biomedical science, including drug delivery and gene therapy</li> </ul> <p>Written for polymer scientists in both academia and industry as well as postgraduate students working in the area of stimuli-responsive materials, this vital text offers an exploration of the chemistry, properties and current applications of temperature-responsive polymers.</p>
<p>About the Editors xiii</p> <p>List of Contributors xv</p> <p>Preface xix</p> <p><b>Part I Chemistry 1</b></p> <p><b>1 Poly(N-isopropylacrylamide): Physicochemical Properties and Biomedical Applications 3<br /></b><i>Marzieh Najafi, Erik Hebels,WimE. Hennink, and Tina Vermonden</i></p> <p>1.1 Introduction 3</p> <p>1.2 PNIPAM as Thermosensitive Polymer 4</p> <p>1.3 Physical Properties of PNIPAM 5</p> <p>1.3.1 Phase Behavior of PNIPAM in Water/Alcohol Mixtures 5</p> <p>1.3.2 Effect of Concentration and Molecular Weight of PNIPAM on LCST 5</p> <p>1.3.3 Effect of Surfactants on LCST 7</p> <p>1.3.4 Effect of Salts on LCST 7</p> <p>1.4 Common Methods for Polymerization of NIPAM 8</p> <p>1.4.1 Free Radical Polymerization 8</p> <p>1.4.2 Living Radical Polymerization 9</p> <p>1.4.2.1 ATRP of NIPAM 10</p> <p>1.4.2.2 RAFT Polymerization of NIPAM 11</p> <p>1.5 Dual Sensitive Systems 12</p> <p>1.5.1 pH and Thermosensitive Systems 12</p> <p>1.5.2 Reduction-Sensitive and Thermosensitive Systems 13</p> <p>1.5.3 Hybrid-Thermosensitive Materials 13</p> <p>1.6 Bioconjugation of PNIPAM 15</p> <p>1.6.1 Protein–PNIPAM Conjugates 16</p> <p>1.6.2 Peptide–PNIPAM Conjugates 18</p> <p>1.6.3 Nucleic Acid–PNIPAM Conjugates 21</p> <p>1.7 Liposome Surface Modification with PNIPAM 21</p> <p>1.8 Applications of PNIPAM in Cell Culture 22</p> <p>1.9 Crosslinking Methods for Polymers 23</p> <p>1.9.1 Crosslinking in PNIPAM-Based Hydrogels 23</p> <p>1.9.2 Crosslinking of PNIPAM-Based Micelles 26</p> <p>1.9.2.1 Shell Crosslinked (SCL) 26</p> <p>1.9.2.2 Core Crosslinked (CCL) 27</p> <p>1.10 Conclusion and Outlook of Applications of PNIPAM 27</p> <p>Acknowledgments 28</p> <p>References 28</p> <p><b>2 Thermoresponsive Multiblock Copolymers: Chemistry, Properties and Applications 35<br /></b><i>Anna P. Constantinou and Theoni K. Georgiou</i></p> <p>2.1 Introduction 35</p> <p>2.2 Chemistry of Thermoresponsive Block-based Copolymers 35</p> <p>2.3 Architecture, Number of Blocks and Block Sequence 38</p> <p>2.3.1 Why the Block Structure? 38</p> <p>2.3.2 Triblock Copolymers 39</p> <p>2.3.2.1 Micelles 40</p> <p>2.3.2.2 Gels 45</p> <p>2.3.2.3 Films and Membranes 52</p> <p>2.3.3 Tetrablock Copolymers 53</p> <p>2.3.4 Pentablock Copolymers 54</p> <p>2.3.4.1 Pluronic®Based 54</p> <p>2.3.4.2 Non-pluronic Based 56</p> <p>2.3.5 Multiblock Copolymers 57</p> <p>2.4 Applications 59</p> <p>2.5 Conclusions 61</p> <p>Acknowledgments 61</p> <p>References 61</p> <p><b>3 Star-shaped Poly(2-alkyl-2-oxazolines): Synthesis and Properties 67<br /></b><i>Andrey V. Tenkovtsev, Alina I. Amirova, and Alexander P. Filippov</i></p> <p>3.1 Introduction 67</p> <p>3.2 Synthesis of Star-shaped Poly(2-alkyl-2-oxazolines) 68</p> <p>3.3 Properties of Star-shaped Poly(2-alkyl-2-oxazolines) 78</p> <p>3.4 Conclusions 87</p> <p>References 88</p> <p><b>4 Poly(N-vinylcaprolactam): FromPolymer Synthesis to Smart Self-assemblies 93<br /></b><i>Fei Liu, Veronika Kozlovskaya, and Eugenia Kharlampieva</i></p> <p>4.1 Introduction 93</p> <p>4.2 Synthesis of PVCL Homo- and Copolymers 93</p> <p>4.2.1 Synthesis of Statistical PVCL Copolymers 95</p> <p>4.2.2 Synthesis of PVCL Block Copolymers 97</p> <p>4.2.3 Other PVCL-based Copolymers 99</p> <p>4.3 Properties of PVCL in Aqueous Solutions 99</p> <p>4.3.1 Dependence of the LCST of PVCL on Molecular Weight and Polymer Concentration 99</p> <p>4.3.2 LCST Dependence on Chemical Composition 100</p> <p>4.3.3 The Effect of Salt on the PVCL Temperature Response 102</p> <p>4.3.4 The Effect of Solvent on PVCL Temperature Response 102</p> <p>4.4 Assembly of PVCL-based Polymers in Solution 102</p> <p>4.4.1 PVCL Interpolymer Complexes 102</p> <p>4.4.2 PVCL-based Micelles 103</p> <p>4.4.3 Self-assembly of PVCL-based Copolymers into Polymersomes 105</p> <p>4.5 Templated Assemblies of PVCL Polymers 107</p> <p>4.5.1 Hydrogen-bonded PVCL-based Multilayers 107</p> <p>4.5.1.1 pH-sensitive Hydrogen-bonded PVCL Multilayers 107</p> <p>4.5.1.2 Enzymatically Sensitive Hydrogen-bonded PVCL Multilayers 108</p> <p>4.5.2 Multilayer Hydrogels of PVCL 110</p> <p>4.6 Outlook and Perspectives 113</p> <p>Acknowledgment 113</p> <p>References 114</p> <p><b>5 Sodium Alginate Grafted with Poly(N-isopropylacrylamide) 121<br /></b><i>Catalina N. Cheaburu-Yilmaz, Cornelia Vasile, Oana-Nicoleta Ciocoiu, and Georgios Staikos</i></p> <p>5.1 Alginic Acid 121</p> <p>5.1.1 Monomeric and Polymeric Structure of Alginates 121</p> <p>5.2 Poly(N-Isopropylacrylamide) and Thermoresponsive Properties 122</p> <p>5.3 Synthesis and Characterization of Alginate-graft-PNIPAM Copolymers 123</p> <p>5.4 Solution Properties 124</p> <p>5.4.1 Turbidimetry 124</p> <p>5.4.2 Fluorescence 124</p> <p>5.4.3 Rheology 126</p> <p>5.4.4 Degradability 130</p> <p>5.4.5 Biocompatibility 131</p> <p>5.4.5.1 Cytotoxicity 132</p> <p>5.4.5.2 Pharmaceutical and Medical Applications 135</p> <p>5.5 Conclusions and Perspectives 137</p> <p>References 138</p> <p><b>6 Multi-stimuli-responsive Polymers Based on Calix[4]arenes and Dibenzo-18-crown-6-ethers 145<br /></b><i>SzymonWiktorowicz, Heikki Tenhu, and Vladimir Aseyev</i></p> <p>6.1 Introduction 145</p> <p>6.2 Single-stimuli-responsive Polymers 146</p> <p>6.2.1 Thermo-responsive Polymers in Polar Media 147</p> <p>6.2.2 pH-responsive Polymers 148</p> <p>6.2.3 Photoresponsive Polymers 148</p> <p>6.2.4 Other Single-stimuli-responsive Polymers 150</p> <p>6.3 Multi-stimuli-responsive Polymers 150</p> <p>6.4 Poly(azocalix[4]arene)s and Poly(azodibenzo-18-crown-6-ether)s 151</p> <p>6.4.1 Calixarenes 151</p> <p>6.4.2 Crown Ethers 152</p> <p>6.4.3 Structural Units of Poly(azocalix[4]arene)s 153</p> <p>6.4.4 Structural Units of Poly(azodibenzo-18-crown-6-ether)s 154</p> <p>6.5 Photoisomerization 154</p> <p>6.6 Host–guest Interactions 156</p> <p>6.7 Thermo-responsiveness 158</p> <p>6.7.1 LCST: Tegylated Poly(azocalix[4]arene)s inWater 158</p> <p>6.7.2 UCST: Tegylated Poly(azocalix[4]arene)s in Alcohols 159</p> <p>6.7.3 UCST and Photoisomerization of Tegylated Poly(azocalix[4]arene)s 160</p> <p>6.7.4 UCST and Poly(azodibenzo-18-crown-6-ether)s 161</p> <p>6.7.5 UCST and Photoisomerization of Poly(azodibenzo-18-crown-6-ether)s 162</p> <p>6.7.6 UCST in Water–alcohol Mixtures 162</p> <p>6.8 Solvatochromism and pH Sensitivity 163</p> <p>6.9 Summary and Outlook 164</p> <p>Acknowledgments 165</p> <p>References 165</p> <p><b>Part II Characterization of Temperature-responsive Polymers 175</b></p> <p><b>7 Small-Angle X-ray and Neutron Scattering of Temperature-Responsive Polymers in Solutions 177<br /></b><i>Sergey K. Filippov, Martin Hruby, and Petr Stepanek</i></p> <p>7.1 Introduction 177</p> <p>7.2 Temperature-responsive Homopolymers 179</p> <p>7.3 Hydrophobically Modified Polymers 182</p> <p>7.4 Cross-Linked Temperature-Sensitive Polymers and Gels 184</p> <p>7.5 Temperature-Responsive Block Copolymers 185</p> <p>7.6 Hybrid Nanoparticles 187</p> <p>7.7 Gradient Temperature-Responsive Polymers 188</p> <p>7.8 Multi-responsive Copolymers 189</p> <p>7.9 Concluding Remarks 191</p> <p>Acknowledgments 191</p> <p>References 191</p> <p><b>8 Infrared and Raman Spectroscopy of Temperature-Responsive Polymers 197<br /></b><i>Yasushi Maeda</i></p> <p>8.1 Introduction 197</p> <p>8.2 Experimental Methods to Measure IR and Raman Spectra of Aqueous Solutions 198</p> <p>8.3 Poly(N-substituted acrylamide)s 200</p> <p>8.3.1 Overall Spectral Change 200</p> <p>8.3.2 Amide Bands 202</p> <p>8.3.3 C–H Stretching Bands 204</p> <p>8.3.4 C–D Stretching Band 206</p> <p>8.4 Poly(vinyl ether)s 207</p> <p>8.5 Poly(meth)acrylates 208</p> <p>8.6 Effects of Additives on Phase Behavior 210</p> <p>8.7 Temperature-Responsive Copolymers and Gels 217</p> <p>References 222</p> <p><b>9 Application of NMR Spectroscopy to Study Thermoresponsive Polymers 225<br /></b><i>Jiří Spěváček</i></p> <p>9.1 Introduction 225</p> <p>9.2 Coil–Globule Phase Transition and Its Manifestation in NMR Spectra 225</p> <p>9.3 Temperature Dependences of High-Resolution NMR Spectra: Phase-Separated Fraction p 227</p> <p>9.4 Multicomponent Polymer Systems 230</p> <p>9.5 Effects of Low-Molecular-Weight Additives on Phase Transition 234</p> <p>9.6 Behavior of Water at the Phase Transition 236</p> <p>9.7 Conclusion 242</p> <p>Acknowledgment 242</p> <p>References 242</p> <p><b>10 Polarized Luminescence Studies of Nanosecond Dynamics of Thermosensitive Polymers in Aqueous Solutions 249<br /></b><i>Vladimir D. Pautov, Tatiana N. Nekrasova, Tatiana D. Anan’eva, and Ruslan Y. Smyslov</i></p> <p>10.1 Introduction 249</p> <p>10.2 Theoretical Part 250</p> <p>10.2.1 Polarization of Luminescence 250</p> <p>10.2.2 The Use of Polarized Luminescence in the Studies of Nanosecond Dynamics of Macromolecules 253</p> <p>10.3 Experimental Part 258</p> <p>10.3.1 Methods of Synthesis of Polymers Containing Luminescent Markers 258</p> <p>10.3.2 Technique for Measurement of Luminescence Polarization 260</p> <p>10.3.3 Thermosensitive Water-Soluble Polymers 263</p> <p>10.3.4 pH and Thermosensitive Water-Soluble Polymers 268</p> <p>10.3.5 Temperature-Induced Transitions in Polymers in Nonaqueous Solutions 271</p> <p>10.4 Conclusion 272</p> <p>References 273</p> <p><b>Part III Applications of Temperature-responsive Polymers 279</b></p> <p><b>11 Applications of Temperature-Responsive Polymers Grafted onto Solid Core Nanoparticles 281<br /></b><i>Edward D. H. Mansfield, Adrian C.Williams, and Vitaliy V. Khutoryanskiy</i></p> <p>11.1 Introduction 281</p> <p>11.2 Silica Nanoparticles 282</p> <p>11.2.1 pNIPAM-functionalised Silica Nanoparticles 282</p> <p>11.2.2 Poloxamer-functionalised Silica Nanoparticles 284</p> <p>11.2.3 Other Polymers 286</p> <p>11.3 Metallic Nanoparticles 286</p> <p>11.3.1 pNIPAM-functionalised Metallic Nanoparticles 287</p> <p>11.3.2 Poloxamer-functionalised Metallic Nanoparticles 288</p> <p>11.3.3 Elastin-functionalised Metallic Nanoparticles 288</p> <p>11.3.4 Other Polymer-functionalised Metallic Nanoparticles 289</p> <p>11.4 Magnetic Nanoparticles 290</p> <p>11.4.1 pNIPAM-functionalised Magnetic Nanoparticles 290</p> <p>11.4.2 Poloxamer-functionalised Magnetic Nanoparticles 291</p> <p>11.4.3 Other TRP-functionalised Magnetic Nanoparticles 293</p> <p>11.4.4 Summary 293</p> <p>11.5 Conclusions 294</p> <p>References 294</p> <p><b>12 Temperature-responsive Polymers for Tissue Engineering 301<br /></b><i>Kenichi Nagase, Masayuki Yamato, and Teruo Okano</i></p> <p>12.1 Introduction 301</p> <p>12.1.1 Thermo-responsive Cell Culture Dishes and Cell Sheets 301</p> <p>12.1.2 Thermo-responsive Cell Culture Dishes Prepared by Electron-beam-induced Polymerization 302</p> <p>12.1.3 Thermo-responsive Cell Culture Dishes for Enhancing Cell Adhesion and Proliferation by Immobilized Biological Ligands 303</p> <p>12.1.4 Thermo-responsive Cell Culture Dish Prepared by Living Radical Polymerization 304</p> <p>12.1.5 Patterned Thermo-responsive Cell Culture Substrates 306</p> <p>12.1.6 Thermo-responsive Surfaces for Cell Separation 309</p> <p>12.2 Conclusions 309</p> <p>Acknowledgments 309</p> <p>References 311</p> <p><b>13 Thermogel Polymers for Injectable Drug Delivery Systems 313<br /></b><i>VidhiM. Shah, Duc X. Nguyen, Deepa A. Rao, Raid G. Alany, and AdamW.G. Alani</i></p> <p>13.1 Introduction 313</p> <p>13.2 Pluronics<sup>®</sup> 314</p> <p>13.3 Polyester-based Polymers 315</p> <p>13.4 Chitosan and Derivatives 317</p> <p>13.5 Polypeptides 318</p> <p>13.6 Clinical Application of Thermogel Polymers 319</p> <p>13.6.1 <i>Ocular Delivery</i> 319</p> <p>13.6.2 <i>Nasal Delivery</i> 320</p> <p>13.6.3 <i>Antitumor Delivery/Drug Delivery Systems</i> 321</p> <p>13.7 Summary 323</p> <p>References 323</p> <p><b>14 Thermoresponsive Electrospun Polymer-based (Nano)fibers 329<br /></b><i>Mariliz Achilleos and Theodora Krasia-Christoforou</i></p> <p>14.1 Introduction 329</p> <p>14.2 Basic Principles of Electrospinning 330</p> <p>14.3 PNIPAM-based Electrospun (Nano)fibers 332</p> <p>14.3.1 Temperature-triggered Wettability 332</p> <p>14.3.2 Biomedicine 335</p> <p>14.3.2.1 Drug Delivery 336</p> <p>14.3.2.2 Tissue Engineering 339</p> <p>14.3.2.3 Biosensing 341</p> <p>14.3.2.4 Solid-phase Microextraction 341</p> <p>14.3.2.5 Molecular Recognition 342</p> <p>14.3.2.6 Organic–Inorganic PNIPAM-based Electrospun (Nano)fibers 342</p> <p>14.3.3 Sensing 343</p> <p>14.3.4 Other Applications 344</p> <p>14.4 Other Types of Thermoresponsive Electrospun (Nano)fibers 345</p> <p>14.5 Conclusions and Outlook 348</p> <p>References 348</p> <p><b>15 Catalysis by Thermoresponsive Polymers 357<br /></b><i>Natalya A. Dolya and Sarkyt E. Kudaibergenov</i></p> <p>15.1 Introduction 357</p> <p>15.2 Metal Complexes Immobilized Within Thermosensitive Polymers 358</p> <p>15.3 Thermoresponsive Polyampholytes 358</p> <p>15.4 Thermosensitive Hydrogels in Catalysis 361</p> <p>15.5 Thermoresponsive Catalytically Active Nano- and Microgels, Spheres, Capsules, and Micelles 364</p> <p>15.6 Thermosensitive Self-Assemblies 367</p> <p>15.7 Mono- and Bimetallic Nanoparticles Stabilized by Thermoresponsive Polymers 368</p> <p>15.8 Enzymes-Embedded Thermoresponsive Polymers 369</p> <p>15.9 Immobilization of Magnetic Nanoparticles into the Matrix of Thermoresponsive Polymers for Efficient Separation of Catalysts 369</p> <p>15.10 Summary 370</p> <p>Acknowledgments 371</p> <p>References 371</p> <p>Index 379</p>
<p><b>Edited by:</b> <p><b>Vitaliy V. Khutoryanskiy</b>, Ph.D., is Professor of Formulation Science, Reading School of Pharmacy, University of Reading, Whiteknights, Reading, UK. <p><b>Theoni K. Georgiou</b>, Ph.D., is a Senior Lecturer in Polymer Chemistry, Department of Materials, Imperial College London, UK.
<p><b>An authoritative resource that offers an understanding of the chemistry, properties, and applications of temperature-responsive polymers</b> <p>With contributions from a distinguished panel of experts, <i>Temperature-Responsive Polymers</i> puts the focus on hydrophilic polymers capable of changing their physicochemical properties in response to changes in environmental temperature. The contributors review the chemistry of these systems, and discuss a variety of synthetic approaches for preparation of temperature-responsive polymers, physicochemical methods of their characterisation and potential applications in biomedical areas. <p>The text reviews a wide-variety of topics including: The characterisation of temperature- responsive polymers; Infrared and Raman spectroscopy; Applications of temperature- responsive polymers grafted onto solid core nanoparticles; and much more. The contributors also explore how temperature-responsive polymers can be used in the biomedical field for applications such as tissue engineering. <p>This important resource: <ul> <li>Offers an important synthesis of the current research on temperature- responsive polymers</li> <li>Covers the chemistry, the synthetic approaches for presentation and the physiochemical method of temperature- responsive polymers</li> <li>Includes a review of the fundamental characteristics of temperature-responsive polymers</li> <li>Explores many of the potential applications in biomedical science, including drug delivery and gene therapy</li> </ul> <p>Written for polymer scientists in both academia and industry as well as postgraduate students working in the area of stimuli-responsive materials, this vital text offers an exploration of the chemistry, properties, and current applications of temperature-responsive polymers.

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €