Details

Synthesis of Inorganic Materials


Synthesis of Inorganic Materials


4. Aufl.

von: Ulrich S. Schubert, Nicola Hüsing

74,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 27.08.2019
ISBN/EAN: 9783527815142
Sprache: englisch
Anzahl Seiten: 424

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Introduces readers to the field of inorganic materials, while emphasizing synthesis and modification techniques <br> <br> Written from the chemist's point of view, this newly updated and completely revised fourth edition of Synthesis of Inorganic Materials provides a thorough and pedagogical introduction to the exciting and fast developing field of inorganic materials and features all of the latest developments. New to this edition is a chapter on self-assembly and self-organization, as well as all-new content on: demixing of glasses, non-classical crystallization, precursor chemistry, citrate-gel and Pechini liquid mix methods, ice-templating, and materials with hierarchical porosity. <br> <br> Synthesis of Inorganic Materials, 4th Edition features chapters covering: solid-state reactions; formation of solids from the gas phase; formation of solids from solutions and melts; preparation and modification of inorganic polymers; self-assembly and self-organization; templated materials; and nanostructured materials. There is also an extensive glossary to help bridge the gap between chemistry, solid state physics and materials science. In addition, a selection of books and review articles is provided at the end of each chapter as a starting point for more in-depth reading. <br> <br> -Gives the students a thorough overview of the fundamentals and the wide variety of different inorganic materials with applications in research as well as in industry <br> -Every chapter is updated with new content <br> -Includes a completely new chapter covering self-assembly and self-organization <br> -Written by well-known and experienced authors who follow an intuitive and pedagogical approach <br> <br> Synthesis of Inorganic Materials, 4th Edition is a valuable resource for advanced undergraduate students as well as masters and graduate students of inorganic chemistry and materials science. <br>
<p>Preface ix</p> <p>Acknowledgements xi</p> <p>Abbreviations xv</p> <p><b>1 Introduction </b><b>1</b></p> <p><b>2 Solid-State Reactions </b><b>5</b></p> <p>2.1 Reactions Between Solid Compounds 5</p> <p>2.1.1 Ceramic Method 5</p> <p>2.1.1.1 General Aspects of Solid-State Reactions 8</p> <p>2.1.1.2 Facilitating Solid-State Reactions 12</p> <p>2.1.2 Mechanochemical Synthesis 16</p> <p>2.1.3 Carbothermal Reduction 17</p> <p>2.1.4 Combustion Synthesis 22</p> <p>2.1.4.1 Solution Combustion Synthesis 29</p> <p>2.2 Solid–Gas Reactions 31</p> <p>2.3 Ceramics Processing 34</p> <p>2.3.1 Sintering 38</p> <p>2.4 Intercalation Reactions 41</p> <p>2.4.1 Mechanistic Aspects 47</p> <p>2.4.2 Preparative Methods 49</p> <p>2.4.3 Intercalation of Polymers in Layered Systems 51</p> <p>2.4.4 Pillaring of Layered Compounds 52</p> <p>Further Reading 55</p> <p><b>3 Formation of Solids from the Gas Phase </b><b>57</b></p> <p>3.1 Chemical Vapour Transport 57</p> <p>3.1.1 Halogen Lamps 59</p> <p>3.1.2 Transport Reactions 63</p> <p>3.2 Chemical Vapour Deposition 65</p> <p>3.2.1 General Aspects 65</p> <p>3.2.2 Techniques 73</p> <p>3.2.3 Metal CVD 78</p> <p>3.2.3.1 Silicon and Aluminium 79</p> <p>3.2.3.2 Tungsten 82</p> <p>3.2.3.3 Copper 83</p> <p>3.2.4 CVD of Carbon 86</p> <p>3.2.5 CVD of Binary and Multinary Compounds 89</p> <p>3.2.5.1 Metal Oxides 90</p> <p>3.2.5.2 Metal Nitrides 92</p> <p>3.2.5.3 Metal Chalcogenides and Pnictides 95</p> <p>3.2.6 Aerosol-Assisted CVD 97</p> <p>3.2.7 Chemical Vapour Infiltration 99</p> <p>3.3 Gas-Phase Powder Syntheses 101</p> <p>Further Reading 110</p> <p><b>4 Formation of Solids from Solutions and Melts </b><b>113</b></p> <p>4.1 Glass 113</p> <p>4.1.1 The Structural Theory of Glass Formation 115</p> <p>4.1.2 Crystallization Versus Glass Formation 118</p> <p>4.1.3 Glass Melting 123</p> <p>4.1.4 Phase Separation 127</p> <p>4.1.5 Metallic Glasses 128</p> <p>4.2 Crystallization from Solution 132</p> <p>4.2.1 Monodispersity 133</p> <p>4.2.2 Shape Control of Crystals 135</p> <p>4.2.3 Non-classical Crystallization 137</p> <p>4.2.4 Biomineralization 140</p> <p>4.2.4.1 Biogenic Materials 140</p> <p>4.2.4.2 Biomineralization 146</p> <p>4.2.4.3 Bioinspired Materials Chemistry 151</p> <p>4.3 Electrodeposition 156</p> <p>4.3.1 Colloids 156</p> <p>4.3.2 Electrodeposition of Ceramics 159</p> <p>4.4 Solvothermal Processes 161</p> <p>4.4.1 Fundamentals 161</p> <p>4.4.2 Growing Single Crystals 165</p> <p>4.4.3 Solvothermal Synthesis 168</p> <p>4.4.3.1 Metal Oxides 169</p> <p>4.4.3.2 Synthetic Calcium Phosphate Biomaterials 171</p> <p>4.4.3.3 Zeolites 172</p> <p>4.5 Sol–Gel Processes 177</p> <p>4.5.1 The Chemistry of Alkoxide Precursors 181</p> <p>4.5.2 Hydrolysis and Condensation 185</p> <p>4.5.2.1 Silica-Based Materials 186</p> <p>4.5.2.2 Metal Oxide-Based Materials 192</p> <p>4.5.3 The Sol–Gel Transition (Gelation) 195</p> <p>4.5.4 Aging and Drying 201</p> <p>4.5.5 Nonhydrolytic Sol–Gel Processes 203</p> <p>4.5.6 Inorganic–Organic Hybrid Materials 204</p> <p>4.5.7 Aerogels 208</p> <p>Further Reading 214</p> <p><b>5 Preparation and Modification of Inorganic Polymers </b><b>217</b></p> <p>5.1 General Aspects 218</p> <p>5.1.1 Synthesis and Crosslinking 219</p> <p>5.1.2 Copolymers 221</p> <p>5.2 Polysiloxanes (Silicones) 222</p> <p>5.2.1 Properties and Applications 222</p> <p>5.2.2 Structure 226</p> <p>5.2.3 Preparation 227</p> <p>5.2.4 Curing (‘Vulcanizing’) 231</p> <p>5.3 Polyphosphazenes 233</p> <p>5.3.1 Properties and Applications 233</p> <p>5.3.2 Preparation and Modification 236</p> <p>5.4 Polysilanes 239</p> <p>5.4.1 Properties and Applications 239</p> <p>5.4.2 Preparation 242</p> <p>5.5 Polycarbosilanes 245</p> <p>5.6 Polysilazanes and Related Polymers 249</p> <p>5.7 Polymers with B–N Backbones 252</p> <p>5.8 Other Inorganic Polymers 253</p> <p>5.8.1 Other Phosphorus-Containing Polymers 254</p> <p>5.8.2 Polymers with S–N Backbones 255</p> <p>5.8.3 Metallopolymers 255</p> <p>5.9 Polymer-to-Ceramic Transformation 258</p> <p>Further Reading 264</p> <p><b>6 Self-Assembly </b><b>267</b></p> <p>6.1 Self-Assembled Monolayers 268</p> <p>6.2 Metal–Organic Frameworks 271</p> <p>6.2.1 Modularity of the Structures 271</p> <p>6.2.2 Synthesis and Modification 276</p> <p>6.3 Supramolecular Arrangements of Surfactants and Block Copolymers 279</p> <p>6.4 Layer-by-Layer Assembly 282</p> <p>Further Reading 285</p> <p><b>7 Templating </b><b>287</b></p> <p>7.1 Introduction to Porosity and High Surface Area Materials 289</p> <p>7.2 Infiltration and Coating of Templates 292</p> <p>7.2.1 Replica Technique 293</p> <p>7.2.2 Sacrificial Templates 295</p> <p>7.2.2.1 Colloidal Crystals 296</p> <p>7.2.2.2 Hollow Particles 298</p> <p>7.2.3 Direct Foaming 300</p> <p>7.2.4 Nanocasting 302</p> <p>7.3<i> In Situ</i> Formation of Templates 305</p> <p>7.3.1 Breath Figures 305</p> <p>7.3.2 Freeze Casting 306</p> <p>7.3.3 Supramolecular Assemblies of Amphiphiles 307</p> <p>7.3.3.1 Synthesis of Periodic Mesoporous Silicas 310</p> <p>7.3.3.2 Evaporation-Induced Self-Assembly 314</p> <p>7.3.3.3 Incorporation of Organic Groups 315</p> <p>7.4 Reorganization and Transformation Processes 317</p> <p>7.4.1 Pseudomorphic Transformation 317</p> <p>7.4.2 Kirkendall Effect 319</p> <p>7.4.3 Galvanic Replacement 320</p> <p>7.4.4 Phase Separation and Leaching 321</p> <p>Further Reading 325</p> <p><b>8 Nanomaterials </b><b>327</b></p> <p>8.1 Properties of Nanomaterials 329</p> <p>8.1.1 Properties Due to Surface Effects 329</p> <p>8.1.2 Properties of Nanocrystalline Materials 331</p> <p>8.1.3 Catalytic Properties 332</p> <p>8.1.4 Optical Properties 333</p> <p>8.1.5 Electrical Properties 336</p> <p>8.1.6 Magnetic Properties 337</p> <p>8.2 Syntheses of Nanoparticles 339</p> <p>8.2.1 Severe Plastic Deformation 340</p> <p>8.2.2 Formation from Vapours 341</p> <p>8.2.3 Formation from Solution 343</p> <p>8.2.4 Surface Modification with Organic Groups 348</p> <p>8.3 One-Dimensional Nanostructures 352</p> <p>8.3.1 Nanowires and Nanorods 352</p> <p>8.3.2 Nanotubes 357</p> <p>8.3.2.1 Carbon Nanotubes 357</p> <p>8.3.2.2 Titania Nanotubes 362</p> <p>8.4 Two-Dimensional Nanomaterials 365</p> <p>8.4.1 Graphene 365</p> <p>8.4.2 Other 2D Nanomaterials 369</p> <p>8.5 Heterostructures and Composites 370</p> <p>8.5.1 Core–Shell Nanoparticles 370</p> <p>8.5.2 Vertical 2D Heterostructures 373</p> <p>8.5.3 Polymer–Matrix Nanocomposites 374</p> <p>8.5.4 Supported Metal Nanoparticles 376</p> <p>Further Reading 378</p> <p>Glossary 381</p> <p>Index 389</p>
Ulrich Schubert, PhD, has been Professor of Inorganic Chemistry at the Institute of Materials Chemistry, Vienna University of Technology, since 1994. His research interests are centered around application-oriented fundamental research on sol-gel processes and inorganic-organic hybrid materials. <br /> <br /> Nicola Husing, PhD, was appointed Professor of Materials Chemistry at the Paris-Lodron University of Salzburg, Austria in 2010. Her research interests focus on the liquid phase synthesis of porous materials, inorganic-organic hybrid materials and mesoscopically organized systems, especially with respect to synthesis-structure-property relations.

Diese Produkte könnten Sie auch interessieren:

Lanthanide and Actinide Chemistry
Lanthanide and Actinide Chemistry
von: Simon Cotton
PDF ebook
50,99 €
Mass Spectrometry of Inorganic and Organometallic Compounds
Mass Spectrometry of Inorganic and Organometallic Compounds
von: William Henderson, J. Scott McIndoe
PDF ebook
59,99 €
Neurodegenerative Diseases and Metal Ions, Volume 1
Neurodegenerative Diseases and Metal Ions, Volume 1
von: Astrid Sigel, Helmut Sigel, Roland K. O. Sigel
PDF ebook
228,99 €