Details

Sustainable Solutions for Environmental Pollution, Volume 1


Sustainable Solutions for Environmental Pollution, Volume 1

Waste Management and Value-Added Products
1. Aufl.

von: Nour Shafik El-Gendy

190,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 20.09.2021
ISBN/EAN: 9781119785415
Sprache: englisch
Anzahl Seiten: 512

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>SUSTAINABLE SOLUTIONS FOR ENVIRONMENTAL POLLUTION</b> <p><b>This first volume in a broad, comprehensive two-volume set, Sustainable Solutions for Environmental Pollution, concentrates on the role of waste management in solving pollution problems and the value-added products that can be created out of waste, turning a negative into an environmental and economic positive.</b> <p>Environmental pollution is one of the biggest problems facing our world today, in every country, region, and even down to local landfills. Not just solving these problems, but turning waste into products, even products that can make money, is a huge game-changer in the world of environmental engineering. Finding ways to make fuel and other products from solid waste, setting a course for the production of future biorefineries, and creating a clean process for generating fuel and other products are just a few of the topics covered in the groundbreaking new first volume in the two-volume set, <i>Sustainable Solutions for Environmental Pollution.</i> <p>The valorization of waste, including the creation of biofuels, turning waste cooking oil into green chemicals, providing sustainable solutions for landfills, and many other topics are also covered in this extensive treatment on the state of the art of this area in environmental engineering. <p>This groundbreaking new volume in this forward-thinking set is the most comprehensive coverage of all of these issues, laying out the latest advances and addressing the most serious current concerns in environmental pollution. Whether for the veteran engineer or the student, this is a must-have for any library. <p><b>AUDIENCE</b> <p>Petroleum, chemical, process, and environmental engineers, other scientists and engineers working in the area of environmental pollution, and students at the university and graduate level studying these areas
<p>Preface xv</p> <p><b>1 An Overview of Electro-Fermentation as a Platform for Future Biorefineries 1<br /></b><i>Tae Hyun Chung and Bipro Ranjan Dhar</i></p> <p>1.1 Introduction 2</p> <p>1.2 Fundamental Mechanisms 5</p> <p>1.3 Value-Added Products from Electro-Fermentation 7</p> <p>1.3.1 Carboxylates 11</p> <p>1.3.1.1 Short-Chain Carboxylates 11</p> <p>1.3.1.2 Medium-Chain Carboxylates 13</p> <p>1.3.2 Bioethanol 14</p> <p>1.3.3 Bio-Butanol 16</p> <p>1.3.4 Microalgae Derived Lipids 18</p> <p>1.3.5 Acetoin 21</p> <p>1.3.6 Biopolymer 23</p> <p>1.3.7 L-lysine 25</p> <p>1.3.8 1,3-propanediol 27</p> <p>1.4 Challenges and Future Outlook 29</p> <p>1.5 Acknowledgements 30</p> <p>References 30</p> <p><b>2 Biodiesel Sustainability: Challenges and Perspectives 41<br /></b><i>Hussein N. Nassar, Abdallah R. Ismail and Nour Sh. El-Gendy</i></p> <p>Abbreviations 42</p> <p>2.1 Introduction 44</p> <p>2.2 Biodiesel Production 48</p> <p>2.3 Factors Affecting Biodiesel Production Process 51</p> <p>2.3.1 The Type of Feedstock 51</p> <p>2.3.2 The Type of Alcohol 54</p> <p>2.3.3 Effect of Alcohol to Oil Molar Ratio 55</p> <p>2.3.4 Catalyst Concentration 55</p> <p>2.3.5 Catalysts Type 56</p> <p>2.3.5.1 Lipases 56</p> <p>2.3.5.2 Acid Catalysts 58</p> <p>2.3.5.3 Alkaline Catalysts 63</p> <p>2.3.6 Effect of Reaction Temperature 73</p> <p>2.3.7 Effect of Reaction Time 74</p> <p>2.3.8 Mixing Efficiency 75</p> <p>2.3.9 Effect of pH 76</p> <p>2.4 Transesterification Mechanisms 76</p> <p>2.4.1 Homogeneous Acid-Catalyzed Transesterification Reaction 76</p> <p>2.4.2 Lipase-Catalyzed Transesterification Reaction 77</p> <p>2.4.3 CaO-Catalyzed Transesterification Reaction 77</p> <p>2.4.4 Other Calcium Derived-Catalyzed Transesterification Reaction 80</p> <p>2.5 Production of Biodiesel Using Heterogeneous Catalyst Prepared from Natural Sources 81</p> <p>2.6 Challenges and Perspectives 94</p> <p>References 99</p> <p><b>3 Multidisciplinary Sides of Environmental Engineering and Sustainability 123<br /></b><i>Said S. E. H. Elnashaie</i></p> <p>3.1 Introduction 124</p> <p>3.2 System Theory and Integrated System Approach 126</p> <p>3.2.1 System Theory 126</p> <p>3.2.2 The State of the System and State Variables 128</p> <p>3.2.3 Input Variables (Parameters) 128</p> <p>3.2.4 Design Variables (Parameters) 128</p> <p>3.2.5 Physico-Chemical Variables (Parameters) 128</p> <p>3.2.6 Boundaries of System 129</p> <p>3.2.6.1 Isolated System 129</p> <p>3.2.6.2 Closed System 129</p> <p>3.2.6.3 Open System 129</p> <p>3.2.7 Steady, Unsteady States and Thermodynamic Equilibrium of Systems 130</p> <p>3.3 Sustainable Development, Sustainable Development Engineering and Environmental Engineering 130</p> <p>3.3.1 Bio-Fuels and Integrated Bio-Refineries 132</p> <p>3.3.2 Integrated System Approach 137</p> <p>3.4 Advanced Multi-Disciplinary Sustainable Engineering Education 139</p> <p>3.4.1 Bio-Fuels 143</p> <p>3.4.1.1 Bio-Hydrogen 143</p> <p>3.4.1.2 Bio-Diesel 143</p> <p>3.4.1.3 Bio-Ethanol 144</p> <p>3.4.2 Bio-Products 145</p> <p>3.4.3 Integrated Bio-Refineries 146</p> <p>3.4.4 Development of Novel Technologies 147</p> <p>3.4.5 Economics of Bio-Fuels and Bio-Products 147</p> <p>3.4.6 Nano-Technology (NT) 148</p> <p>3.4.7 Non-Linear Dynamics (NLDs), Bifurcation (B), Chaos (C) and Complexity (COMP) 148</p> <p>3.4.8 Sustainable Development (SD), Sustainable Development Engineering (SDE), System Theory (ST) and Integrated System Approach (ISA) 149</p> <p>3.4.9 Novel Education 149</p> <p>3.4.10 New Journal 150</p> <p>3.5 Novel Designs for Auto-Thermal Behavior Towards Sustainability 152</p> <p>3.5.1 Integrated System Approach Classification 153</p> <p>3.6 Conclusions 156</p> <p>References 156</p> <p><b>4 Biofuels 163<br /></b><i>Karuna K. Arjoon and James G. Speight</i></p> <p>4.1 Introduction 163</p> <p>4.2 Composition 165</p> <p>4.3 Classification of Biofuels 166</p> <p>4.3.1 First-Generation Biofuels 166</p> <p>4.3.1.1 Sugars and Starch 166</p> <p>4.3.1.2 Cellulose 168</p> <p>4.3.1.3 Lignin 168</p> <p>4.3.2 Second-Generation Biofuels 169</p> <p>4.3.3 Third-Generation Biofuels 169</p> <p>4.4 Examples of Biofuels 170</p> <p>4.4.1 Biodiesel 170</p> <p>4.4.2 Bio-Alcohols 174</p> <p>4.4.3 Bioethers 176</p> <p>4.4.4 Biogas 177</p> <p>4.4.5 Bio-Oil 179</p> <p>4.4.6 Synthesis Gas 180</p> <p>4.5 Property Variations with Source 181</p> <p>4.6 Properties Compared to Fuels from Crude Oil Tar Sand Bitumen, Coal and Oil Shale 185</p> <p>4.7 Fuel Specifications and Performance 189</p> <p>4.8 Conclusion 195</p> <p>References 197</p> <p><b>5 Sustainable Valorization of Waste Cooking Oil into Biofuels and Green Chemicals: Recent Trends, Opportunities and Challenges 199<br /></b><i>Omar Aboelazayem and Ranim Alayoubi</i></p> <p>5.1 Introduction 200</p> <p>5.2 Waste Cooking Oil (WCO) 201</p> <p>5.3 Biofuels from WCO 203</p> <p>5.3.1 Biodiesel 203</p> <p>5.3.2 Biojet Fuel 206</p> <p>5.3.2.1 Hydro-Treatment Process 208</p> <p>5.3.2.2 Cracking and Isomerisation Processes 209</p> <p>5.4 Green Chemicals from WCO 210</p> <p>5.4.1 Asphalt Rejuvenator 211</p> <p>5.4.2 Plasticizers 212</p> <p>5.4.3 Polyurethane Foam 214</p> <p>5.4.4 Bio-Lubricants 215</p> <p>5.4.5 Surfactants 215</p> <p>5.5 Challenges and Future Work 216</p> <p>5.6 Conclusion 217</p> <p>References 218</p> <p><b>6 Waste Valorization: Physical, Chemical, and Biological Routes 229<br /></b><i>Muhammad Faheem, Muhammad Azher Hassan, Tariq Mehmood, Sarfraz Hashim and Muhammad Aqeel Ashraf</i></p> <p>6.1 Background 230</p> <p>6.2 Land Biomass vs. Oceanic Biomass 233</p> <p>6.3 Waste Management 233</p> <p>6.4 Waste Valorization for Adsorbents Development 234</p> <p>6.5 Waste Valorization for Catalysts Preparations 237</p> <p>6.6 Bio-Based Waste Valorization for Bio-Fuel and Bio-Fertilizer Production 240</p> <p>6.6.1 Biomass Briquetting: (Bio-Fuel) 240</p> <p>6.6.2 Composting: (Bio-Fertilizer) 241</p> <p>6.6.3 Anaerobic Digestion: (Bio-Fuel) 243</p> <p>6.7 Biochemical Mechanism Involved in Anaerobic Digestion System 244</p> <p>6.7.1 Hydrolysis 244</p> <p>6.7.2 Acidogenesis 244</p> <p>6.7.3 Acetogenesis 245</p> <p>6.7.4 Methanogenesis 245</p> <p>6.8 Challenges and Recent Advances in Anaerobic Digestion 245</p> <p>6.9 Bio-Based Waste and Bioeconomy Perspective 246</p> <p>6.10 Conclusion 248</p> <p>References 248</p> <p><b>7 Electrocoagulation Process in the Treatment of Landfill Leachate 257<br /></b><i>Mohd Azhar Abd Hamid, Hamidi Abdul Aziz and Mohd Suffian Yusoff</i></p> <p>7.1 Introduction 258</p> <p>7.2 Decomposition of Solid Waste 259</p> <p>7.3 Landfill Leachate Properties 262</p> <p>7.3.1 Organic Matter 262</p> <p>7.3.2 Inorganic Substances 263</p> <p>7.3.3 Heavy Metals 263</p> <p>7.3.4 Xenobiotic Organics 264</p> <p>7.4 Characteristics of Landfill Leachate 264</p> <p>7.5 Electrocoagulation Process 267</p> <p>7.5.1 Fundamentals of Electrocoagulation Process 267</p> <p>7.5.2 Mechanism of Electrocoagulation Process 269</p> <p>7.5.3 Advantages and Disadvantages 272</p> <p>7.6 Key Parameters of Electrocoagulation Process 272</p> <p>7.6.1 Electrodes Material 272</p> <p>7.6.2 Electrodes Arrangement 274</p> <p>7.6.3 Electrode Spacing 275</p> <p>7.6.4 Current Density 276</p> <p>7.6.5 Electrolysis Time 277</p> <p>7.6.6 Initial pH 278</p> <p>7.6.7 Agitation Speed 279</p> <p>7.6.8 Electrolyte Conductivity 280</p> <p>7.7 Operating Mode 281</p> <p>7.8 Economic Analysis 283</p> <p>7.9 Case Study: Removal of the Organic Pollutant of Colour in Natural Saline Leachate from Pulau Burung Landfill Site 284</p> <p>7.9.1 Pulau Burung Landfill Site 285</p> <p>7.9.2 Experimental Design 286</p> <p>7.9.3 Results and Discussion 287</p> <p>7.10 Gaps in Current Knowledge 288</p> <p>7.11 Conclusion and Future Prospect 289</p> <p>References 290</p> <p><b>8 Sustainable Solutions for Environmental Pollutants from Solid Waste Landfills 305<br /></b><i>Salem S. Abu Amr, Mohammed J.K. Bashir, Sohaib K. M. Abujayyab and Waseem Ahmad</i></p> <p>8.1 Introduction 306</p> <p>8.2 Domestic Solid Waste and Its Critical Environmental Issues 306</p> <p>8.3 Landfill Leachate Characterization and Its Impact on the Environment 307</p> <p>8.4 Effect of Landfills on Air Quality 311</p> <p>8.5 Effect of Unsuitable Location of Landfill on Environment and Community 315</p> <p>8.6 Recent Sustainable Technologies for Leachate Treatment 318</p> <p>8.6.1 Effects of AOPs on Leachate Biodegradability 320</p> <p>8.6.2 Case Study and Proposed Data for Leachate Treatment Plant Using AOPs 322</p> <p>8.7 Sustainable Solutions for Gas Emission 324</p> <p>8.8 Consideration for Selection of Sustainable Locations for Landfills 328</p> <p>8.9 Conclusion 331</p> <p>References 332</p> <p><b>9 Progress on Ionic Liquid Pre-Treatment for Lignocellulosic Biomass Valorization into Biofuels and Bio-Products 343<br /></b><i>Ranim Alayoubi and Omar Aboelazayem</i></p> <p>9.1 Introduction 344</p> <p>9.2 Lignocellulosic Biomass for Biofuels and Bio-Products 345</p> <p>9.2.1 Cellulose 346</p> <p>9.2.2 Hemicellulose 347</p> <p>9.2.3 Lignin 348</p> <p>9.3 Pre-Treatment Technologies for Lignocellulosic Biomass 349</p> <p>9.4 Ionic Liquids for Lignocellulosic Biomass Pre-Treatment: Characteristics and Properties 354</p> <p>9.5 Insights into Pre-Treatment Performance of Ionic Liquids 357</p> <p>9.5.1 Interactions of Ionic Liquids with Lignocellulose 357</p> <p>9.5.2 Effect of the Ionic Liquid Pre-Treatment on the Recovered Biomass 359</p> <p>9.5.3 Impact of Ionic Liquids on the Biological Tools 361</p> <p>9.6 Concluding Remarks: Challenges Facing the Development of Ionic Liquids Use at Large Scale and Future Directions 364</p> <p>References 365</p> <p><b>10 Septage Characterization and Sustainable Fecal Sludge Management in Rural Nablus – Palestine 375<br /></b><i>A. Rasem Hasan,Mohammed A. Hussein, Hanan A. Jafar and Amjad I.A. Hussein</i></p> <p>List of Abbreviations 376</p> <p>10.1 Introduction 377</p> <p>10.1.1 Background 377</p> <p>10.1.2 What is Fecal Sludge? 378</p> <p>10.1.3 Legal Considerations 378</p> <p>10.1.4 Study Area 379</p> <p>10.2 Septage Characteristics 381</p> <p>10.2.1 Introduction 381</p> <p>10.2.2 General Background of Septage Characterization 381</p> <p>10.2.3 General Treatment of Fecal Sludge 385</p> <p>10.3 Study Methodology 388</p> <p>10.3.1 General 388</p> <p>10.3.2 Research Methodology and Methods of Laboratory Analysis 388</p> <p>10.3.2.1 Data Collection 388</p> <p>10.3.2.2 Sampling and Storage 388</p> <p>10.3.2.3 Sampling of Septage 389</p> <p>10.3.2.4 Sampling of Stools and Urine 390</p> <p>10.3.2.5 Storage of Samples 390</p> <p>10.3.3 Characterization of Fecal Sludge (FS) 390</p> <p>10.3.4 Statistical Analysis of Data on Characterization of FS 390</p> <p>10.4 Septage Pre-Treatment Process 391</p> <p>10.4.1 General Treatment Options 391</p> <p>10.4.2 Selection of Treatment Options 391</p> <p>10.4.3 Septage Quality Determination 392</p> <p>10.4.4 Software Selection 392</p> <p>10.4.4.1 Modeling by GPS-X 7.0 392</p> <p>10.4.5 End-Use and Disposal 393</p> <p>10.5 Results and Discussion 393</p> <p>10.5.1 Measured Parameters for Fecal Sludge 393</p> <p>10.5.1.1 Septage Characteristics 393</p> <p>10.5.2 Stools Characteristics 398</p> <p>10.5.3 Urine Characteristics 398</p> <p>10.5.4 Specific Parameters in Details 398</p> <p>10.5.4.1 pH and EC 398</p> <p>10.5.4.2 Turbidity 398</p> <p>10.5.4.3 COD/BOD5 401</p> <p>10.5.4.4 Total Nitrogen and Ammonia 401</p> <p>10.5.4.5 TS, TDS, and TSS 402</p> <p>10.5.4.6 VS, VDS, and VSS 402</p> <p>10.5.4.7 PO<sub>4</sub> -P and PO<sub>4</sub> -T 403</p> <p>10.5.4.8 Fat and Grease 403</p> <p>10.5.4.9 Alkalinity 404</p> <p>10.5.4.10 TC and FC 404</p> <p>10.6 Pre-Treatment of the Fecal Sludge – Results and Discussions 404</p> <p>10.6.1 Quantification of Domestic Septage 404</p> <p>10.6.2 Design Septage Characteristics 405</p> <p>10.6.2.1 Untreated Septage Characteristics 405</p> <p>10.6.2.2 Treated Septage Characteristics 406</p> <p>10.6.3 Software Design 406</p> <p>10.6.3.1 Treatment Plant Modeling 406</p> <p>10.6.3.2 Optimizing the Appropriate Model 408</p> <p>10.7 Treatment Plant Estimated Cost Breakdown 408</p> <p>10.8 Conclusion 410</p> <p>10.9 Recommendations 412</p> <p>References 413</p> <p><b>11 Lipase Catalyzed Reactions: A Promising Approach for Clean Synthesis of Oleochemicals 417<br /></b><i>Ahmad Mustafa</i></p> <p>11.1 Introduction to Oleochemicals Industry 418</p> <p>11.2 Sources of Lipases 420</p> <p>11.2.1 Bacterial Lipases 420</p> <p>11.2.2 Fungal Lipases 422</p> <p>11.2.3 Plant Lipases 422</p> <p>11.2.4 Animal Lipases 422</p> <p>11.3 Application of Lipases 422</p> <p>11.3.1 Monoglycerides Production 423</p> <p>11.3.2 Oil/Fats Glycerolysis (Chemically Catalyzed) 423</p> <p>11.3.3 Oil/Fats Glycerolysis (Enzymatically Catalyzed) 425</p> <p>11.3.4 Biodiesel Production 429</p> <p>11.4 Lipase Catalyzed Production of Biodiesel 430</p> <p>11.4.1 Production of Biodiesel from Oil Extracted from Spent Bleaching Earth (SBE) 431</p> <p>11.5 Esterification of Fatty Acids with Glycerol 433</p> <p>11.5.1 Chemically Catalyzed Esterification 433</p> <p>11.5.2 Lipase Catalyzed Production of Monoglycerides 435</p> <p>11.6 Interesterification 435</p> <p>11.6.1 Chemical Interesterification 438</p> <p>11.6.2 Enzymatic Interesterification 438</p> <p>11.7 Environmental Benefits of Enzymatic Process Against Chemical Process 439</p> <p>11.8 Conclusion 440</p> <p>References 441</p> <p><b>12 Seaweeds for Sustainable Development 449<br /></b><i>Nermin Adel El Semary</i></p> <p>12.1 Introduction 449</p> <p>12.2 Types of Seaweeds 451</p> <p>12.2.1 Green Algae 451</p> <p>12.2.2 Red Algae 451</p> <p>12.2.3 Brown Algae 452</p> <p>12.3 Bioremediation 452</p> <p>12.3.1 Pollution 452</p> <p>12.3.2 Bioremediation of Polluted Water 452</p> <p>12.3.3 Algal Bioremediation of Eutrophic Water 456</p> <p>12.4 Seaweeds in Nutrition 457</p> <p>12.4.1 Human Nutrition 457</p> <p>12.4.2 Animal Feed and Feed Additive 457</p> <p>12.5 Seaweeds as a Source of Pharmaceutics 458</p> <p>12.5.1 Pharmaceutics from Green Algae 458</p> <p>12.5.2 Pharamaceutics from Brown Algae 458</p> <p>12.5.3 Pharmaceutics from Red Algae 458</p> <p>12.6 Seaweeds Hydrocolloids and Biopolymers 459</p> <p>12.6.1 Agar 459</p> <p>12.6.2 Carrageenans 459</p> <p>12.6.3 Alginates (Alginic Acid) 460</p> <p>12.7 Seaweeds and Bioenergy 460</p> <p>12.8 Seaweeds as Biofertilizers 461</p> <p>12.9 Seaweeds as Ecological Player in Sulfur Geocycle 462</p> <p>12.10 Culturing Seaweeds in the Marine Habitat (Algal Maricultures) 463</p> <p>12.10.1 Mariculture Establishment 464</p> <p>12.10.1.1 Single Culture 464</p> <p>12.10.1.2 Repeated Culture 464</p> <p>12.10.1.3 Multiple Cultures 464</p> <p>12.10.2 Cultured Seaweed Harvest 464</p> <p>12.10.3 Processes Following the Algae Harvest 465</p> <p>12.11 Conclusion 465</p> <p>12.12 Recommendations 466</p> <p>12.13 References 466</p> <p>About the Editor 471</p> <p>Index 473</p>
<p><b>Nour Shafik El-Gendy, PhD,</b> is a professor in the field of petroleum and environmental biotechnology, advisor for the Egyptian Minster of Environment, vice head for Department of Process Design & Development and former head manager of Petroleum Biotechnology Lab, Egyptian Petroleum Research Institute (EPRI). She is an editor, reviewer, and contributor to many scientific journals, and she has numerous awards, papers, and presentations to her credit, including being the author or co-author of several books. She is vice coordinator of the Scientific Research Committee, National Council for Women (NCW) of Egypt and member in the Egyptian Young Academy of Sciences (EYAS). El-Gendy is an expert in the field of environmental pollution, wastewater treatment, biofuel, petroleum upgrading, green chemistry, nanobiotechnology, recycling of wastes and biocorrosion. She has extensive research, teaching, and lecturing experience, and she is the co-editor of the book,<i> Biodesulfurization in Petroleum Refining,</i> also available from Wiley-Scrivener.</p>
<p><b>This first volume in a broad, comprehensive two-volume set, Sustainable Solutions for Environmental Pollution, concentrates on the role of waste management in solving pollution problems and the value-added products that can be created out of waste, turning a negative into an environmental and economic positive.</b></p> <p>Environmental pollution is one of the biggest problems facing our world today, in every country, region, and even down to local landfills. Not just solving these problems, but turning waste into products, even products that can make money, is a huge game-changer in the world of environmental engineering. Finding ways to make fuel and other products from solid waste, setting a course for the production of future biorefineries, and creating a clean process for generating fuel and other products are just a few of the topics covered in the groundbreaking new first volume in the two-volume set, <i>Sustainable Solutions for Environmental Pollution.</i> <p>The valorization of waste, including the creation of biofuels, turning waste cooking oil into green chemicals, providing sustainable solutions for landfills, and many other topics are also covered in this extensive treatment on the state of the art of this area in environmental engineering. <p>This groundbreaking new volume in this forward-thinking set is the most comprehensive coverage of all of these issues, laying out the latest advances and addressing the most serious current concerns in environmental pollution. Whether for the veteran engineer or the student, this is a must-have for any library. <p><b>AUDIENCE</b> <p>Petroleum, chemical, process, and environmental engineers, other scientists and engineers working in the area of environmental pollution, and students at the university and graduate level studying these areas

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €