Details

Surface Modification of Polymers


Surface Modification of Polymers

Methods and Applications
1. Aufl.

von: Jean Pinson, Damien Thiry

133,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 04.12.2019
ISBN/EAN: 9783527819218
Sprache: englisch
Anzahl Seiten: 460

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

A guide to modifying and functionalizing the surfaces of polymers <br> <br> Surface Modification of Polymers is an essential guide to the myriad methods that can be employed to modify and functionalize the surfaces of polymers. The functionalization of polymer surfaces is often required for applications in sensors, membranes, medicinal devices, and others. The contributors?noted experts on the topic?describe the polymer surface in detail and discuss the internal and external factors that influence surface properties. <br> <br> This comprehensive guide to the most important methods for the introduction of new functionalities is an authoritative resource for everyone working in the field. This book explores many applications, including the plasma polymerization technique, organic surface functionalization by initiated chemical vapor deposition, photoinduced functionalization on polymer surfaces, functionalization of polymers by hydrolysis, aminolysis, reduction, oxidation, surface modification of nanoparticles, and many more. Inside, readers will find information on various applications in the biomedical field, food science, and membrane science. This important book: <br> <br> -Offers a range of polymer functionalization methods for biomedical applications, water filtration membranes, and food science <br> -Contains discussions of the key surface modification methods, including plasma and chemical techniques, as well as applications for nanotechnology, environmental filtration, food science, and biomedicine <br> -Includes contributions from a team of international renowned experts <br> <br> Written for polymer chemists, materials scientists, plasma physicists, analytical chemists, surface physicists, and surface chemists, Surface Modification of Polymers offers a comprehensive and application-oriented review of the important functionalization methods with a special focus on biomedical applications, membrane science, and food science. <br>
<p>Introduction xiii</p> <p><b>1 The Surface of Polymers </b><b>1<br /> </b><i>Rosica Mincheva and Jean-Marie Raquez</i></p> <p>1.1 Introduction 1</p> <p>1.2 The Surface of Polymers 2</p> <p>1.2.1 Definition of a Polymer Surface 2</p> <p>1.2.2 Factors Determining a Polymer Surface 3</p> <p>1.2.2.1 Internal Factors 3</p> <p>1.2.2.2 External Factors 4</p> <p>1.2.3 The Polymer Surface at a Microscopic Level 11</p> <p>1.3 Properties of Polymer Surfaces at Interfaces 12</p> <p>1.3.1 Surface Wettability 13</p> <p>1.3.2 Surface Thermal Properties 15</p> <p>1.3.2.1 Surface<i> T</i><sub>g </sub>15</p> <p>1.3.2.2 Surface Crystallization 17</p> <p>1.4 Experimental Methods for Investigating Polymer Surfaces at Interfaces 21</p> <p>1.5 Conclusions 21</p> <p>References 21</p> <p><b>Part I Gas Phase Methods </b><b>31</b></p> <p><b>2 Surface Treatment of Polymers by Plasma </b><b>33<br /> </b><i>Pieter Cools, Laura Astoreca, Parinaz Saadat Esbah Tabaei, Monica Thukkaram, Herbert De Smet, Rino Morent, and Nathalie De Geyter</i></p> <p>2.1 Plasma: An Introduction 33</p> <p>2.1.1 Definition 33</p> <p>2.1.2 Thermal Versus Nonthermal Plasma 34</p> <p>2.1.3 The Formation of Nonthermal Plasma 35</p> <p>2.1.4 Plasma Generation and Operating Conditions 37</p> <p>2.1.4.1 Different Methods of Plasma Generation 37</p> <p>2.1.4.2 DC Discharges 38</p> <p>2.1.4.3 DC Pulsed Discharges 38</p> <p>2.1.4.4 RF and MW Discharges 38</p> <p>2.1.4.5 Dielectric Barrier Discharge (DBD) 39</p> <p>2.1.4.6 Atmospheric Pressure Plasma Jet (APPJ) 40</p> <p>2.1.4.7 Gliding Arc 41</p> <p>2.1.5 Nonthermal Plasma for Polymer Surface Treatment 41</p> <p>2.2 Applications of Plasma Surface Activation of Polymers 43</p> <p>2.2.1 Adhesion Improvement 43</p> <p>2.2.2 Packaging and Textile Applications 47</p> <p>2.2.2.1 Printability Enhancement 47</p> <p>2.2.2.2 Dyeability Improvement 47</p> <p>2.2.2.3 Mass Transfer Changes 49</p> <p>2.2.3 Biomedical Applications 50</p> <p>2.2.3.1 Inert Synthetic Polymers 50</p> <p>2.2.3.2 Biodegradable Polymers 53</p> <p>2.3 Plasma Grafting 56</p> <p>2.4 Hydrophobic Recovery 59</p> <p>2.5 Conclusion 61</p> <p>References 61</p> <p><b>3 A Joint Mechanistic Description of Plasma Polymers Synthesized at Low and Atmospheric Pressure </b><b>67<br /> </b><i>Damien Thiry, François Reniers, and Rony Snyders</i></p> <p>3.1 Introduction 67</p> <p>3.2 Plasma Polymerization 69</p> <p>3.2.1 Plasma Fundamentals 70</p> <p>3.2.2 Growth Mechanism 72</p> <p>3.3 Probing the Plasma Chemistry 83</p> <p>3.3.1 Optical Emission Spectroscopy 84</p> <p>3.3.2 Mass Spectrometry 87</p> <p>3.4 Conclusions 96</p> <p>References 97</p> <p><b>4 Organic Surface Functionalization by Initiated CVD (iCVD) </b><b>107<br /> </b><i>Karen K. Gleason</i></p> <p>4.1 Introduction 107</p> <p>4.2 Mechanistic Principles of iCVD 108</p> <p>4.3 Functional, Surface Reactive, and Responsive Organic Films Prepared by iCVD 113</p> <p>4.4 Interfacial Engineering with iCVD: Adhesion and Grafting 127</p> <p>4.5 Reactors for Synthesizing Organic Films by iCVD 128</p> <p>4.6 Summary 129</p> <p>References 130</p> <p><b>5 Atomic Layer Deposition and Vapor Phase Infiltration </b><b>135<br /> </b><i>Mark D. Losego and Qing Peng</i></p> <p>5.1 Atomic Layer Deposition Versus Vapor Phase Infiltration 135</p> <p>5.2 Atomic Layer Deposition (ALD) on Polymers 138</p> <p>5.2.1 Chemical Mechanisms of ALD 138</p> <p>5.2.2 ALD on Polymers with Dense –OH Groups: Cellulose and Poly(vinyl alcohol) 140</p> <p>5.2.3 ALD onto “Unreactive” Polymer Substrates 141</p> <p>5.2.4 Applications of ALD Coated Polymers 143</p> <p>5.2.4.1 ALD Coated Cotton Fibers 143</p> <p>5.2.4.2 Applications for ALD Coatings on Other Polymers 144</p> <p>5.3 Vapor Phase Infiltration of Polymers 145</p> <p>5.3.1 Processing Thermodynamics and Kinetics of VPI 145</p> <p>5.3.1.1 Thermodynamics of Vapor-Phase Precursor Sorption into Polymers 145</p> <p>5.3.1.2 Kinetics of Precursor Diffusion During VPI 147</p> <p>5.3.1.3 VPI Processes Incorporating Both Penetrant Diffusion and Reaction 148</p> <p>5.3.1.4 Measuring the Thermodynamics and Kinetics of a VPI Process 149</p> <p>5.3.2 Applications of Vapor Phase Infiltrated Polymers 150</p> <p>5.3.2.1 Altering Mechanical Performance 150</p> <p>5.3.2.2 Contrasting Agent for Multi-phase Polymer Imaging 152</p> <p>5.3.2.3 Improved Chemical Resistance 152</p> <p>5.3.2.4 Patterning for Microsystems 153</p> <p>5.3.2.5 Vapor Diffusion Barriers 154</p> <p>5.3.2.6 Conducting Polymers and Hybrid Photovoltaic Cells 154</p> <p>5.3.2.7 Other Application Spaces 155</p> <p>5.4 Summary and Future Outlook for ALD and VPI on Polymers 156</p> <p>References 156</p> <p><b>Part II UV and Related Methods </b><b>161</b></p> <p><b>6 Photoinduced Functionalization on Polymer Surfaces </b><b>163<br /> </b><i>Kazuhiko Ishihara</i></p> <p>6.1 Introduction 163</p> <p>6.2 Improving the Surface Properties of Polymeric Materials by Photoirradiation 165</p> <p>6.3 Photoreaction of Polymers with Other Polymers 166</p> <p>6.3.1 Photoinduced Chemical Reaction Between Polymers 166</p> <p>6.3.2 Photoinduced Grafting at the Polymer Surface 168</p> <p>6.3.3 Preparation of High-functionality Surface by Photoinduced Graft Polymerization 169</p> <p>6.3.4 Application of Photoinduced Grafting Process to Artificial Organs 172</p> <p>6.4 Self-initiated Photoinduced Graft Polymerization 174</p> <p>6.4.1 Poly(ether ketone) as Photoinitiator for Graft Polymerization 174</p> <p>6.4.2 Effects of Inorganic Salts on Photoinduced Graft Polymerization in an Aqueous System 178</p> <p>6.5 Conclusion and Future Perspective 180</p> <p>References 181</p> <p><b>7 </b><b>𝜸-Rays and Ions Irradiation </b><b>185<br /> </b><i>Alejandro Ramos-Ballesteros, Victor H. Pino-Ramos, Felipe López-Saucedo,</i><i>Guadalupe G. Flores-Rojas, and Emilio Bucio</i></p> <p>7.1 𝛾-Rays and Ions Irradiation 185</p> <p>7.2 Ionizing Radiation Sources 186</p> <p>7.3 𝛾-Ray-Induced Modifications 186</p> <p>7.3.1 Grafting Modifications 186</p> <p>7.3.1.1 Radiation-induced Grafting Methods 188</p> <p>7.3.1.2 Ionic Grafting 192</p> <p>7.3.1.3 RAFT-graft Polymerization 193</p> <p>7.3.1.4 Applications 194</p> <p>7.3.2 Cross-linking 197</p> <p>7.3.2.1 𝛾-Ray Cross-linking Modifications 199</p> <p>7.3.2.2 Cross-linking with Additives 200</p> <p>7.3.2.3 Industrial Applications 201</p> <p>7.4 Heavy Ion-Induced Modifications 202</p> <p>7.4.1 Polymers 204</p> <p>7.5 Conclusions 205</p> <p>Acknowledgments 206</p> <p>References 206</p> <p><b>Part III Chemical Methods </b><b>211</b></p> <p><b>8 Functionalization of Polymers by Hydrolysis, Aminolysis, Reduction, Oxidation, and Some Related Reactions </b><b>213<br /> </b><i>Dardan Hetemi and Jean Pinson</i></p> <p>8.1 Hydrolysis and Aminolysis 213</p> <p>8.1.1 PLA and Polyesters 213</p> <p>8.1.2 Hydrolysis 214</p> <p>8.1.3 Aminolysis 214</p> <p>8.1.4 PCL 215</p> <p>8.1.5 PET 216</p> <p>8.1.6 PMMA 216</p> <p>8.1.7 Cellulose 217</p> <p>8.2 Chemical Reduction 220</p> <p>8.2.1 PEEK 220</p> <p>8.2.2 PET 225</p> <p>8.2.3 PMMA 227</p> <p>8.2.4 PC 227</p> <p>8.2.5 PTFE 229</p> <p>8.3 Chemical Oxidation 231</p> <p>8.4 Non-covalent Surface Modification 234</p> <p>8.5 Conclusion 235</p> <p>References 236</p> <p><b>9 Functionalization of Polymers by Reaction of Radicals, Nitrenes, and Carbenes </b><b>241<br /> </b><i>Jean Pinson</i></p> <p>9.1 Functionalization of Polymers by Reaction of Radicals 241</p> <p>9.1.1 Peroxides as Radical Initiators 241</p> <p>9.1.2 Hydrogen Peroxides as Radical Initiator 244</p> <p>9.1.3 Persulfates as Radical Initiators 246</p> <p>9.1.4 Oxygen as Radical Initiator 248</p> <p>9.1.5 Azo Compounds as Radical Initiator 249</p> <p>9.1.6 Diazonium Salts as Radical Initiator 250</p> <p>9.1.6.1 Polypyrrole 251</p> <p>9.1.6.2 Polyaniline 251</p> <p>9.1.6.3 Poly(3,4-ethylenedioxythiophene)–Poly(styrenesulfonate) (PEDOT:PSS) 253</p> <p>9.1.6.4 Polymethylmethacrylate (PMMA) 254</p> <p>9.1.6.5 Polypropylene (PP) 255</p> <p>9.1.6.6 Polyvinyl Chloride 255</p> <p>9.1.6.7 Cyclic Olefin Copolymers (COC) 256</p> <p>9.1.6.8 Polyetheretherketone (PEEK) 256</p> <p>9.1.6.9 PET (Polyethylene Terephthalate) 257</p> <p>9.1.6.10 Polysulfone Membranes 258</p> <p>9.1.6.11 Cation Exchange Membranes 258</p> <p>9.1.6.12 Fluoro Polymers 259</p> <p>9.1.6.13 Natural Polymers 260</p> <p>9.1.7 Alkyl Halides as Radical Initiator 260</p> <p>9.2 Surface Modification of Polymers with Carbenes and Nitrenes 260</p> <p>9.2.1 Carbenes 261</p> <p>9.2.2 Nitrenes 264</p> <p>9.3 Conclusion 267</p> <p>References 268</p> <p><b>10 Surface Modification of Polymeric Substrates with Photo- and Sonochemically Designed Macromolecular Grafts </b><b>273<br /> </b><i>Fatima Mousli, Youssef Snoussi, Ahmed M. Khalil, Khouloud Jlassi, Ahmed Mekki, and Mohamed M. Chehimi</i></p> <p>10.1 Introduction 273</p> <p>10.1.1 Context 273</p> <p>10.1.2 Scope of the Chapter 274</p> <p>10.2 Surface-confined Radical Photopolymerization of Insulating Vinylic and Other Monomers 274</p> <p>10.2.1 Type I and Type II Photoinitiation Systems 275</p> <p>10.2.2 Simultaneous Photoinduced Electron Transfer and Free Radical Polymerization Confined to Surfaces 282</p> <p>10.2.3 Surface-initiated Photo<i>iniferter</i> 284</p> <p>10.2.4 “Brushing Up from Anywhere” Using Polydopamine Thin Adhesive Coatings 284</p> <p>10.2.5 Recent Trends in Surface-confined Photopolymerization (CRP) 287</p> <p>10.3 Surface-confined Photopolymerization of Conjugated Monomers 289</p> <p>10.3.1 Polypyrrole 290</p> <p>10.3.1.1 Mechanisms of Photopolymerization of Pyrrole 290</p> <p>10.3.1.2 Substrates for in Situ Photoinduced Polymerization of Pyrrole and Potential Applications 291</p> <p>10.3.2 Polyaniline 294</p> <p>10.3.2.1 Mechanisms of Photopolymerization of Aniline 294</p> <p>10.3.2.2 Substrates for in Situ Photoinduced Polymerization of Aniline 298</p> <p>10.4 Surface-confined Sonochemical Polymerization of Conjugated and Vinylic Monomers 298</p> <p>10.4.1 Insights into Sonochemistry: Origin of the Phenomenon and Mechanism of Polymer Synthesis 298</p> <p>10.4.2 Ultrasound-assisted Polymerization or Polymer Deposition over Organic Polymeric Substrates 303</p> <p>10.4.2.1 Sonopolymerization 303</p> <p>10.4.2.2 Ultrasonic Spray 303</p> <p>10.4.3 Sonopolymerization over Miscellaneous Types of Surface: Inorganic Polymeric Substrates 305</p> <p>10.5 Conclusion 306</p> <p>Acknowledgments 307</p> <p>References 307</p> <p><b>Part IV Applications </b><b>317</b></p> <p><b>11 Surface Modification of Nanoparticles: Methods and Applications </b><b>319<br /> </b><i>Gopikrishna Moku, Vijayagopal Raman Gopalsamuthiram, Thomas R. Hoye, and Jayanth Panyam</i></p> <p>11.1 Introduction 319</p> <p>11.2 Polymers Used in the Preparation of Nanoparticles 320</p> <p>11.3 Common Biodegradable Polymers for Nanoparticle Fabrication 320</p> <p>11.3.1 Albumin 320</p> <p>11.3.2 Alginate 320</p> <p>11.3.2.1 Chitosan 321</p> <p>11.3.3 Gelatin 322</p> <p>11.3.4 Poly(lactide-<i>co</i>-glycolide) (PLGA) and Polylactide (PLA) 322</p> <p>11.3.5 Poly-ε-caprolactone (PCL) 323</p> <p>11.4 Fabrication of Nanoparticles 323</p> <p>11.5 Linker Chemistry for Attaching Ligands on Polymeric Nanoparticles 324</p> <p>11.5.1 Hydrazone Bond Formation 327</p> <p>11.5.2 Non-covalent Attachment 328</p> <p>11.6 Surface-functionalized Polymeric Nanoparticles for Drug Delivery Applications 328</p> <p>11.6.1 Polysaccharides 329</p> <p>11.6.2 Lipids 329</p> <p>11.6.3 Aptamers 332</p> <p>11.6.4 Antibodies 332</p> <p>11.6.5 Peptides 333</p> <p>11.6.5.1 Polyethylene Glycol (PEG) 334</p> <p>11.7 Characterization of Surface-modified Nanoparticles 336</p> <p>11.7.1 Particle Size 336</p> <p>11.7.2 Dynamic Light Scattering (DLS) 337</p> <p>11.7.3 Scanning Electron Microscopy (SEM) 337</p> <p>11.7.4 Transmission Electron Microscopy (TEM) 339</p> <p>11.7.5 Surface Charge 339</p> <p>11.7.6 Surface Hydrophobicity 340</p> <p>11.7.7 Fourier Transform IR (FTIR) Spectroscopy 341</p> <p>11.8 Summary/Conclusion 342</p> <p>References 342</p> <p><b>12 Surface Modification of Polymers for Food Science </b><b>347<br /> </b><i>Valentina Siracusa</i></p> <p>12.1 Introduction 347</p> <p>12.2 Physical and Chemical Methods 348</p> <p>12.2.1 Gas Phase and Radiation 349</p> <p>12.2.1.1 Gas Phase 349</p> <p>12.2.1.2 Radiation 350</p> <p>12.2.2 Liquid and Bulk Phase Methods 352</p> <p>12.2.2.1 Adsorption Methods 352</p> <p>12.2.2.2 Desorption Method 352</p> <p>12.2.3 Interfacial Adhesion of Polymers 353</p> <p>12.2.4 Grafting and Polymerization 354</p> <p>12.3 Mechanical Method 354</p> <p>12.4 Biological Method 354</p> <p>12.5 Surface Modification of Polymer for Food Packaging 355</p> <p>12.5.1 Applications 355</p> <p>12.5.1.1 Surface Sterilization 355</p> <p>12.5.1.2 Printing 355</p> <p>12.5.1.3 Mass Transfer 356</p> <p>12.5.2 Polymers 356</p> <p>12.6 Conclusion 358</p> <p>References 359</p> <p><b>13 Surface Modification of Water Purification Membranes </b><b>363<br /> </b><i>Anthony Szymczyk, Bart van der Bruggen, and Mathias Ulbricht</i></p> <p>13.1 Introduction 363</p> <p>13.2 Irradiation-Based Direct Polymer Modification 365</p> <p>13.2.1 Plasma Treatment 365</p> <p>13.2.2 UV Irradiation 366</p> <p>13.2.3 Irradiation with High Energy Sources 368</p> <p>13.3 Coatings 369</p> <p>13.3.1 Coatings from Gas Phase 369</p> <p>13.3.2 Coatings from Wet Phase 371</p> <p>13.4 Grafting Methods 378</p> <p>13.4.1 Grafting-to 378</p> <p>13.4.2 Grafting-from 381</p> <p>13.4.2.1 Plasma-Induced Graft Polymerization 381</p> <p>13.4.2.2 UV-Induced Grafting 383</p> <p>13.4.2.3 Grafting Induced by High Energy Radiations 385</p> <p>13.4.2.4 Grafting Initiated by Chemical/Electrochemical Means 385</p> <p>13.4.3 Controlled Grafting-from 389</p> <p>13.5 Conclusion 392</p> <p>References 394</p> <p><b>14 Surface Modification of Polymer Substrates for Biomedical Applications </b><b>399<br /> </b><i>P. Slepicka, N. Slepičková Kasálková, Z. Kolská, and V. Švor</i><i>čík</i></p> <p>14.1 Introduction 399</p> <p>14.2 Plasma Treatment 400</p> <p>14.3 Laser Modification 411</p> <p>14.3.1 Interaction with Cells 411</p> <p>14.3.2 Sensor Construction 412</p> <p>14.4 Conclusion 416</p> <p>Acknowledgments 417</p> <p>References 417</p> <p>Index 427</p>
<p><b><i>Jean Pinson, PhD,</i></b><i> is Professor Emeritus of the Université Paris Diderot. He is interested in the functionalization and modification of polymer surfaces and the surface chemistry of diazonium salts.</i> <p><b><i>Damien Thiry, PhD,</i></b><i> is Senior Researcher at the University of Mons (Chimie des Interactions Plasma-Surface (ChIPS)), Belgium.</i>
<p><b>A guide to modifying and functionalizing the surfaces of polymers</b> <p><i>Surface Modification of Polymers: Methods and Applications</i> is an essential guide to the myriad methods that can be employed to modify and functionalize the surfaces of polymers. The functionalization of polymer surfaces is often required for applications in sensors, membranes, medicinal devices, and others. The contributors—noted experts on the topic—describe the polymer surface in detail and discuss the internal and external factors that influence surface properties. <p>This comprehensive guide to the most important methods for the introduction of new functionalities is an authoritative resource for everyone working in the field. This book explores many applications, including the plasma polymerization technique, organic surface functionalization by initiated chemical vapor deposition, photoinduced functionalization on polymer surfaces, functionalization of polymers by hydrolysis, aminolysis, reduction, oxidation, surface modification of nanoparticles, and many more. Inside, readers will find information on various applications in the biomedical field, food science, and membrane science. This important book: <ul> <li>Offers a range of polymer functionalization methods for biomedical applications, water filtration membranes, and food science</li> <li>Contains discussions of the key surface modification methods, including plasma and chemical techniques, as well as applications for nanotechnology, environmental filtration, food science, and biomedicine</li> <li>Includes contributions from a team of international renowned experts</li> </ul> <p>Written for polymer chemists, materials scientists, plasma physicists, analytical chemists, surface physicists, and surface chemists, <i>Surface Modification of Polymers: Methods and Applications</i> offers a comprehensive and application-oriented review of the important functionalization methods with a special focus on biomedical applications, membrane science, and food science.

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
40,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €