Details

Sulfur-Containing Polymers


Sulfur-Containing Polymers

From Synthesis to Functional Materials
1. Aufl.

von: Xing-Hong Zhang, Patrick Theato

142,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 23.03.2021
ISBN/EAN: 9783527823802
Sprache: englisch
Anzahl Seiten: 480

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A must-have resource to the booming field of sulfur-containing polymers</b></p> <p><i>Sulfur-Containing Polymers</i> is a state-of-the-art text that offers a synthesis of the various sulfur-containing polymers from low-cost sulfur resources such as elemental sulfur, carbon disulfide (CS2), carbonyl sulfide (COS) and mercaptan. With contributions from noted experts on the topic, the book presents an in-depth understanding of the mechanisms related to the synthesis of sulfur-containing polymers. The book also includes a review of the various types of sulfur-containing polymers, such as: poly(thioester)s, poly(thioether)s and poly(thiocarbonate)s and poly(thiourethane)s with linear or hyperbranched (dendrimer) architectures. The expert authors provide the fundamentals on the structure-property relationship and applications of sulfur-containing polymers.</p> <p>Designed to be beneficial for both research and application-oriented chemists and engineers, the book contains the most recent research and developments of sulfur-containing polymers. This important book:</p> <ul> <li>Offers the first comprehensive handbook on the topic</li> <li>Contains state-of-the-art research on synthesis of sulfur containing polymers from low-cost sulfur-containing compounds</li> <li>Examines the synthesis, mechanism, structure properties, and applications of various types of sulful-containing polymers</li> <li>Includes contributions from well-known experts</li> </ul> <p>Written for polymer chemists, materials scientists, chemists in industry, biochemists, and chemical engineers, <i>Sulfur-Containing Polymers</i> offers a groundbreaking text to the field with inforamtion on the most recent research.</p>
<p>Introduction xiii</p> <p><b>1 Synthesis of Sulfur-Containing Polymers Through Multicomponent Polymerizations 1<br /></b><i>Yuzhang Huang, Rongrong Hu, and Ben Zhong Tang</i></p> <p>1.1 Introduction 1</p> <p>1.2 Multicomponent Polymerizations of Elemental Sulfur 2</p> <p>1.2.1 Multicomponent Polymerization of Sulfur, Dialdehydes, and Diamines 3</p> <p>1.2.2 Multicomponent Polymerization of Sulfur, Diynes, and Aliphatic Amines 5</p> <p>1.2.3 Multicomponent Polymerization of Sulfur, Benzyl Diamines, and Aliphatic Diamines 7</p> <p>1.2.4 Multicomponent Polymerization of Sulfur, Diarylacetic Acids, and Aliphatic/Aromatic Diamines 9</p> <p>1.2.5 Multicomponent Polymerization of Sulfur, Diisocyanides, and Aliphatic Diamines 11</p> <p>1.3 Cu(I)-Catalyzed Multicomponent Polymerizations of Sulfonyl Azides/Hydrazides 13</p> <p>1.3.1 Multicomponent Polymerization of Sulfonyl Azides, Alkynes, and Amines/Alcohols 14</p> <p>1.3.2 Multicomponent Polymerization of Sulfonyl Azides, Alkynes, and Other Monomers 16</p> <p>1.3.3 Multicomponent Polymerization of Sulfonyl Hydrazide, Alkynes, and Diphenyl Dichalcogen 20</p> <p>1.3.4 Topological Polymers Prepared from Sulfonyl Azides and Alkyne-Based MCPs 20</p> <p>1.4 Multicomponent Polymerizations with Thiol-Related Monomers 22</p> <p>1.4.1 One-Pot Multicomponent Tandem Polymerization of Alkyne, Carbonyl Chloride, and Thiol 22</p> <p>1.4.2 Multicomponent Polymerizations with Cyclic Dithiocarbonate 25</p> <p>1.4.3 Multicomponent Polymerizations with Cyclic Thiolactone 26</p> <p>1.5 The Applications of Sulfur-Containing Polymers Prepared from MCP 28</p> <p>1.5.1 Chemosensors 28</p> <p>1.5.2 Metal Ion Removal/Enrichment 29</p> <p>1.5.3 Cell Imaging 30</p> <p>1.6 Conclusion 31</p> <p>Acknowledgments 34</p> <p>References 34</p> <p><b>2 Carbon Disulfide Derived Polymers 39<br /></b><i>Gulzar A. Bhat and Donald J. Darensbourg</i></p> <p>2.1 Introduction 39</p> <p>2.2 Synthesis of Thiiranes (Episulfides) 41</p> <p>2.3 Copolymerization Reactions 44</p> <p>2.3.1 Copolymerization of Carbon Disulfide and Episulfides 44</p> <p>2.3.2 Copolymerization of Carbon Disulfide and Epoxides 51</p> <p>2.3.2.1 Scrambling Mechanism for Sulfur/Oxygen Atoms 58</p> <p>2.3.2.2 NMR Scrambling Studies 60</p> <p>2.3.2.3 Mixed Species Scrambling 60</p> <p>2.4 Other Related CS<sub>2</sub>-Based Polymers 63</p> <p>2.5 Concluding Remarks 74</p> <p>Acknowledgments 74</p> <p>References 74</p> <p><b>3 Carbonyl Sulfide Derived Polymers 81<br /></b><i>Cheng-Jian Zhang, Jia-Liang Yang, Xiao-Han Cao, and Xing-Hong Zhang</i></p> <p>3.1 Introduction 81</p> <p>3.1.1 Overview of COS 81</p> <p>3.1.2 Preparation of COS 82</p> <p>3.1.2.1 Direct Reaction of CO and Sulfur 82</p> <p>3.1.2.2 Using Carbon Disulfide (CS<sub>2</sub>) 82</p> <p>3.1.2.3 Laboratory Preparation of COS 83</p> <p>3.1.3 Environmental and Safety Considerations 83</p> <p>3.1.4 COS Chemistry 84</p> <p>3.1.4.1 Dissociation 84</p> <p>3.1.4.2 Hydrolysis 84</p> <p>3.1.4.3 Oxidation 85</p> <p>3.1.4.4 Reduction 85</p> <p>3.1.4.5 Reaction with SO<sub>2</sub> 86</p> <p>3.1.4.6 Reaction with Ammonia and Amines 86</p> <p>3.1.4.7 Miscellaneous Reactions 86</p> <p>3.1.4.8 The Claus Reaction 87</p> <p>3.2 Metal Catalysts for COS Copolymerization 87</p> <p>3.2.1 Zinc-Cobalt(III) Double-Metal Cyanide Complex 89</p> <p>3.2.2 Catalysts Centered with Chromium (Cr) 93</p> <p>3.2.3 Catalyst Centered with Iron (Fe) and Cobalt (Co) 95</p> <p>3.2.4 Alkoxy Metal Salts 96</p> <p>3.3 Organocatalysts for COS Copolymerization 96</p> <p>3.3.1 TEB-Organic Base Pair 97</p> <p>3.3.2 Dual-Site Lewis Pair 101</p> <p>3.3.3 Thiourea-Organic Base Pairs 104</p> <p>3.3.4 Supramolecular Anion 107</p> <p>3.4 Oxygen-Sulfur Exchange Reaction 110</p> <p>3.5 Utilization of O/S ER for Poly(thioether)s 113</p> <p>3.5.1 COS-Epoxides Route to Poly(thioether)s 113</p> <p>3.5.2 CS<sub>2</sub>-Epoxides Route to Poly(thioether)s 115</p> <p>3.5.3 Repurposing Poly(monothiocarbonate)s to Poly(thioether)s 120</p> <p>3.6 Crystalline COS-Derived Polymers 121</p> <p>3.7 COS-Derived Block Polymers 123</p> <p>3.8 Properties of COS-Derived Polymers 124</p> <p>3.8.1 Thermal Properties 124</p> <p>3.8.2 Crystalline Properties 126</p> <p>3.8.3 Optical Properties 129</p> <p>3.8.4 Electronic Properties 132</p> <p>3.9 Summary and Outlook 137</p> <p>References 138</p> <p><b>4 Thiol-Based Click Polymerizations for Sulfur-Containing Polymers 147<br /></b><i>Die Huang, Anjun Qin, and Ben Zhong Tang</i></p> <p>4.1 Introduction 147</p> <p>4.2 Thiol-Ene Click Polymerization 148</p> <p>4.2.1 Radical-Initiated Thiol-Ene Click Polymerization 148</p> <p>4.2.2 Thiol-Ene Michael Addition Click Polymerization 151</p> <p>4.3 Thiol-Yne Click Polymerization 154</p> <p>4.3.1 Radical-Initiated Thiol-Yne Click Polymerization 154</p> <p>4.3.2 Base-Mediated Thiol-Yne Click Polymerization 156</p> <p>4.3.3 Metal-Catalyzed Thiol-Yne Click Polymerization 157</p> <p>4.3.4 Spontaneous Thiol-Yne Click Polymerization 159</p> <p>4.4 Other Thiol-Based Click Polymerizations 159</p> <p>4.4.1 Thiol-Epoxy Click Polymerization 160</p> <p>4.4.2 Thiol-Isocyanate Click Polymerization 163</p> <p>4.4.3 Thiol-Halogen Click Polymerization 164</p> <p>4.5 Conclusion 164</p> <p>Acknowledgments 166</p> <p>References 166</p> <p><b>5 Synthesis of Polythioesters 171</b></p> <p><i>Li-Yang Wang and Wei-Min Ren</i></p> <p>5.1 Introduction 171</p> <p>5.2 Synthesis of Aromatic Polythioesters 172</p> <p>5.3 Synthesis of Semi-aromatic Polythioesters 174</p> <p>5.4 Synthesis of Aliphatic Polythioesters 179</p> <p>5.5 Summary and Concluding Remarks 185</p> <p>Acknowledgments 186</p> <p>References 186</p> <p><b>6 Polymers with Sulfur-Nitrogen Bonds 191<br /></b><i>Hatice Mutlu and Patrick Theato</i></p> <p>6.1 Introduction 191</p> <p>6.2 Synthesis of Sulfur-Nitrogen Containing Polymers 192</p> <p>6.2.1 Poly(sulfenamide)s 192</p> <p>6.2.2 Poly(diaminosulfide)s 196</p> <p>6.2.3 Poly(aminodisulfide)s and Poly(diaminodisulfide)s 199</p> <p>6.2.3.1 Poly(aminodisulfide)s 200</p> <p>6.2.3.2 Poly(diaminodisulfide)s 201</p> <p>6.2.4 Poly(oxothiazene)s 205</p> <p>6.2.5 Poly(sulfonylimidate)s 207</p> <p>6.2.6 Poly(sulfonylamidine)s 213</p> <p>6.3 Applications of Polymers with Sulfur-Nitrogen Bond 221</p> <p>6.3.1 Biomedical Applications 221</p> <p>6.3.2 Metal-Ion Detection 225</p> <p>6.3.3 Flame Retardant Chemicals Based on Polymers with Sulfur-Nitrogen Bonds 227</p> <p>6.3.4 Energy Storage Applications 228</p> <p>6.4 Conclusion and Outlook 229</p> <p>References 229</p> <p><b>7 Thioester Functional Polymers 235<br /></b><i>Suzan Aksakal, Resat Aksakal, and C. Remzi Becer</i></p> <p>7.1 Introduction 235</p> <p>7.2 Thioesters: Structural Features, Reactivities, and Reactions 236</p> <p>7.3 Preparation of Thioester Containing Structures 237</p> <p>7.3.1 Access to Thioester Containing Polymers: Thioesters in the Side Chain 238</p> <p>7.3.2 Access to Thioester Containing Polymers: Thioester in the Chain End 246</p> <p>7.3.3 Access to Thioester Containing Polymers via Polymerization Process 247</p> <p>7.3.4 Access to Thioester-Bearing Structures via Post-modification Approach 249</p> <p>7.4 Post-Polymerization Modification of Thioesters 251</p> <p>7.5 Conclusion and Outlook 254</p> <p>References 256</p> <p><b>8 Thiophene-Based Polymers: Synthesis and Applications 265<br /></b><i>Haifeng Ji and Xiaojie Zhang</i></p> <p>8.1 Introduction 265</p> <p>8.2 Development of Synthetic Methods 266</p> <p>8.2.1 Oxidative Polymerization and Electrochemical Polymerization 266</p> <p>8.2.2 Transmetalation Polymerization 269</p> <p>8.2.2.1 Polymerization with Ni Catalysis 269</p> <p>8.2.2.2 Polymerization with Pd Catalysis 273</p> <p>8.2.2.3 Suzuki Coupling Method 274</p> <p>8.2.2.4 Stille Coupling Method 275</p> <p>8.2.2.5 Direct Arylation Method 276</p> <p>8.2.3 Other Polymerization Methods 278</p> <p>8.2.3.1 Photoinitiated Polymerization 278</p> <p>8.2.3.2 Solid-State Polymerization 280</p> <p>8.2.3.3 Acid-Catalyzed Polymerization 283</p> <p>8.3 Applications of Polythiophene and Its Derivatives 284</p> <p>8.3.1 Organic Thin-Film Transistors 285</p> <p>8.3.2 Organic Photovoltaics 286</p> <p>8.3.3 Organic Light-Emitting Diodes 287</p> <p>8.3.4 Biological Applications 288</p> <p>8.4 Conclusions and Future Scope 290</p> <p>References 290</p> <p><b>9 High Refractive Index Sulfur-Containing Polymers (HRISPs) 305<br /></b><i>Johannes M. Scheiger and Patrick Theato</i></p> <p>9.1 Introduction 305</p> <p>9.2 Basics of Optics 306</p> <p>9.2.1 Absorption and Refraction 306</p> <p>9.2.2 Refractive Index 307</p> <p>9.2.2.1 Refractive Index Determination 308</p> <p>9.2.3 Dispersion 311</p> <p>9.2.4 Birefringence 312</p> <p>9.3 High Refractive Index Polymers (HRIPs) 313</p> <p>9.3.1 General Strategies and Applications 314</p> <p>9.4 Sulfur-Containing HRIPs 315</p> <p>9.4.1 Polyimides and Polyamides 315</p> <p>9.4.2 Poly(meth)acrylates and Polythioacrylates 321</p> <p>9.4.3 Polycarbonates and Polyesters 325</p> <p>9.4.4 Thermosets 327</p> <p>9.4.5 Inverse Vulcanization 328</p> <p>9.5 Conclusion and Outlook 334</p> <p>References 335</p> <p><b>10 Selenium-Containing Dynamic Polymers: From Synthesis to Functions 339<br /></b><i>Jiahao Xia and Huaping Xu</i></p> <p>10.1 Introduction 339</p> <p>10.2 Synthesis of Selenium-Containing Polymers 340</p> <p>10.2.1 Step Growth Polymerization 340</p> <p>10.2.2 Radical Polymerization 342</p> <p>10.2.3 Ring-Opening Polymerization 345</p> <p>10.2.4 Synthesis of Dendrimer and Hyperbranched Selenium-Containing Polymer 345</p> <p>10.3 Selenium-Containing Dynamic Covalent Chemistry 348</p> <p>10.3.1 Diselenide Bond 348</p> <p>10.3.2 Se—S Bond 351</p> <p>10.3.3 Se—Te Bond 351</p> <p>10.3.4 Se—N Bond 353</p> <p>10.4 Selenium-Containing Dynamic Materials 356</p> <p>10.4.1 Selenium-Containing Elastomer 356</p> <p>10.4.2 Selenium-Containing Surface/Interface Materials 360</p> <p>10.4.3 Selenium-Containing Nanomaterials 360</p> <p>10.5 Conclusion and Outlook 362</p> <p>Acknowledgments 363</p> <p>References 363</p> <p><b>11 Poly(disulfide)s 367<br /></b><i>Raju Bej and Suhrit Ghosh</i></p> <p>11.1 Introduction 367</p> <p>11.2 Synthesis of Poly(disulfide)s 369</p> <p>11.2.1 Oxidative Polymerization of Dithiols 370</p> <p>11.2.2 Ring-Opening Polymerization (ROP) of Cyclic Disulfide 374</p> <p>11.2.3 Photo-Induced Disulfide Metathesis 375</p> <p>11.2.4 Fragmentation Polymerization 375</p> <p>11.2.5 Self-Organizing Surface-Initiated Polymerization (SOSIP) 377</p> <p>11.2.6 Thiol-Disulfide Exchange Reaction 378</p> <p>11.3 Amphiphilic PDS and Drug Delivery Application 381</p> <p>11.4 Cell-Penetrating Poly(disulfide)s 388</p> <p>11.5 Summary and Outlook 389</p> <p>References 389</p> <p><b>12 Reduction-Responsive Disulfide-Containing Polymers for Biomedical Applications 393<br /></b><i>Xing Wang and Decheng Wu</i></p> <p>12.1 Introduction 393</p> <p>12.2 Disulfide-Containing Topological Polymers 395</p> <p>12.2.1 Systems with the Disulfide Linkages 395</p> <p>12.2.2 Disulfide-Containing Linear Polymers 395</p> <p>12.2.2.1 Linear Polymers with Cleavable Backbones 396</p> <p>12.2.2.2 Linear Polymers with Cleavable Side Chains 397</p> <p>12.2.3 Disulfide-Containing Dendritic Polymers 398</p> <p>12.2.3.1 Disulfide-Containing Hyperbranched Polymers 399</p> <p>12.2.3.2 Disulfide-Containing Dendrimers 400</p> <p>12.2.4 Disulfide-Containing Polypeptides and Proteins 401</p> <p>12.2.5 Disulfide-Containing Polymeric Nanoparticles 403</p> <p>12.2.5.1 Disulfide Linker for Amphiphilic Polymers 403</p> <p>12.2.5.2 Disulfide Linker for Nano-Assemblies 404</p> <p>12.2.5.3 Controlled Fabrication of Solution Nano-Assemblies 406</p> <p>12.2.6 Disulfide-Containing Crosslinking Hydrogels 407</p> <p>12.2.6.1 Disulfide-Crosslinked Micro-/Nanogels 407</p> <p>12.2.6.2 Disulfide-Crosslinked Macroscopic Hydrogels 407</p> <p>12.2.6.3 Disulfide-Crosslinked Natural Hydrogels 410</p> <p>12.3 Disulfide-Containing Polymers for Biomedical Applications 412</p> <p>12.3.1 Targeted Drug Delivery 412</p> <p>12.3.1.1 Disulfide-Containing Nano-Assemblies for Targeted Drug Delivery 413</p> <p>12.3.1.2 Disulfide-Containing Nanogels for Drug Delivery 414</p> <p>12.3.1.3 Disulfide-Containing Hydrogels for Drug Delivery 415</p> <p>12.3.2 Gene Delivery 416</p> <p>12.3.3 Biomedical Imaging 418</p> <p>12.3.4 Drug Conjugates 419</p> <p>12.3.5 Self-healing/Self-repairing 420</p> <p>12.4 Summary and Perspectives 422</p> <p>References 424</p> <p>Index 429</p>
<p><i><b>Xing-Hong Zhang, PhD,</b> is Full Professor at Department of Polymer Science and Engineering, Zhejiang University, China. His current research interest focuses on the synthesis and catalysis of sulfur-containing polymers and polycarbonates.</i></p><p><i><b>Patrick Theato, PhD,</b> is Full Professor at Karlsruhe Institute of Technology, Germany. His current research interests mainly focus on the synthesis of precisely tailored polymers.</i></p>
<p><b>A must-have resource to the booming field of sulfur-containing polymers</b></p><p><i>Sulfur-Containing Polymers : From Synthesis to Functional Materials</i> is a state-of-the-art text that offers a synthesis of the various sulfur-containing polymers from low-cost sulfur resources such as elemental sulfur, carbon disulfide (CS<sub>2</sub>), carbonyl sulfide (COS) and mercaptan. With contributions from noted experts on the topic, the book presents an in-depth understanding of the mechanisms related to the synthesis of sulfur-containing polymers. The book also includes a review of the various types of sulfur-containing polymers, such as: poly(thioester)s, poly(thioether)s, poly(thiocarbonate)s, and poly(thiourethane)s with linear or hyperbranched (dendrimer) architectures. The expert authors provide the fundamentals on the structure-property relationship and applications of sulfur-containing polymers.</i><p>Designed to be beneficial for both research and application-oriented chemists and engineers, the book contains the most recent research and developments of sulfur-containing polymers. This important book:</p><ul><li>Offers the first comprehensive handbook on the topic</li><li>Contains state-of-the-art research on synthesis of sulfur-containing polymers from low-cost sulfur-containing compounds</li><li>Examines the synthesis, mechanism, structure properties, and applications of various types of sulfur-containing polymers</li><li>Includes contributions from well-known experts</li></ul><p>Written for polymer chemists, materials scientists, chemists in industry, biochemists, and chemical engineers, <i>Sulfur-Containing Polymers</i> offers a groundbreaking text to the field with inforamtion on the most recent research.</p>

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €