Details

Step-by-Step Design of Large-Scale Photovoltaic Power Plants


Step-by-Step Design of Large-Scale Photovoltaic Power Plants


1. Aufl.

von: Davood Naghaviha, Hassan Nikkhajoei, Houshang Karimi

114,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 12.01.2022
ISBN/EAN: 9781119736585
Sprache: englisch
Anzahl Seiten: 224

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>How to design a solar power plant, from start to finish</b> <p>In <i>Step-by-Step Design of Large-Scale Photovoltaic Power Plants,</i> a team of distinguished engineers delivers a comprehensive reference on PV power plants—and their design—for specialists, experts, and academics. Written in three parts, the book covers the detailed theoretical knowledge required to properly design a PV power plant. It goes on to explore the step-by-step requirements for creating a real-world PV power plant, including parts and components design, mathematical formulations and calculations, analyses, evaluations, and planning. <p>The book concludes with a discussion of a sample solar plant design, as well as tips on how to avoid common design mistakes, and how to handle the operation and maintenance of PV power plants. <p><i>Step-by-Step Design of Large-Scale Photovoltaic Power Plants</i> also includes: <ul> <li>Thorough introductions to the basic requirements of design, economic analyses, and investment revenue</li> <li>Comprehensive explorations of the requirements for feasibility study and grid connection study</li> <li>Introducing solar resource, and determining optimum tilt angle and module inter-row spacing</li> <li>Presenting methodology for design of large-scale PV plant, requirements of engineering document, and optimal design algorithm</li> <li>In-depth examinations for selecting PV module, inverter, string, and DC side equipment <li>Practical discussions of system losses, as well as estimation of yearly electrical energy production, capacity factor, and performance ratio of large-scale PV plant</li> </ul> <p>Perfect for professionals in the solar power industry, <i>Step-by-Step Design of Large-Scale Photovoltaic Power Plants</i> will also earn a place in the libraries of equipment manufacturers and university professors seeking a one-stop resource for the design of PV power plants.
<p>PREFACE                                                                                                                                                                        <br />ACKNOWLEDGMENTS                                                                                                                                  </p> <p>ACRONYMS                                                                                                                                                               </p> <p>SYMBOLS                                                                         </p> <p><b>1 Introduction </b></p> <p>1.1 Solar Energy 1</p> <p>1.2 Diverse Solar Energy Applications 1</p> <p>1.2.1 Solar Thermal Power Plant 2</p> <p>1.2.2 PV Thermal Hybrid Power Plants 4</p> <p>1.2.3 PV Power Plant 4</p> <p>1.3 Global PV Power Plants 9</p> <p>1.4 Perspective of PV Power Plants 11</p> <p>1.5 A Review on the Design of Large-Scale PV Power Plant 13</p> <p>1.6 Outline of the Book 14</p> <p>References 15</p> <p><b>2 Design Requirements 19</b></p> <p>2.1 Overview 19</p> <p>2.2 Development Phases 19</p> <p>2.2.1 Concept Development and Site Identification 20</p> <p>2.2.2 Prefeasibility Study 20</p> <p>2.2.3 Feasibility Study 20</p> <p>2.2.4 Permitting, Financing and Contracts 20</p> <p>2.2.5 Detailed Design and Engineering 21</p> <p>2.2.6 Construction 21</p> <p>2.2.7 Commercial Operation 21</p> <p>2.3 Project Predesign 21</p> <p>2.4 Project Detailed Design 21</p> <p>2.5 The Main Components Required for Realizing an LS-PVPP 22</p> <p>2.5.1 PV Panels (PV Module) 22</p> <p>2.5.2 Solar Inverter 22</p> <p>2.5.3 Photovoltaic Mounting Systems (Solar Module Racking) 26</p> <p>2.5.4 DC Cable 26</p> <p>2.5.5 DC Combiner Box 26</p> <p>2.5.6 DC Protection System 26</p> <p>2.5.7 AC Combiner Box 26</p> <p>2.5.8 Low-Voltage Switchgear 26</p> <p>2.5.9 Transformers 27</p> <p>2.5.10 Medium-Voltage Switchgear 27</p> <p>2.5.11 LV and MV AC Cables 27</p> <p>2.5.12 AC Protection Devices 27</p> <p>2.6 An Overview of PV Technologies 27</p> <p>2.6.1 Background on Solar Cell 27</p> <p>2.6.2 Types and Classifications 28</p> <p>2.7 Solar Inverter Topologies Overview 28</p> <p>2.7.1 Central Inverter 28</p> <p>2.7.2 String Inverter 29</p> <p>2.7.3 Multi-string Inverter29</p> <p>2.7.4 Micro-Inverter 29</p> <p>2.8 Solar Panel Mounting 30</p> <p>2.9 Solar Panel Tilt 30</p> <p>2.10 Solar Tracking System 31</p> <p>2.10.1 One-Axis Tracker 31</p> <p>2.10.1.1 North–South Horizontal-Axis Tracking 31</p> <p>2.10.1.2 Polar Tracking 31</p> <p>2.10.1.3 East–West Horizontal-Axis Tracking 31</p> <p>2.10.1.4 Azimuthal-Axis Tracking 32</p> <p>2.10.2 Two-Axis Tracker 32</p> <p>2.10.3 Driving Motor 32</p> <p>2.10.4 Solar Tracker Control 33</p> <p>References 34</p> <p><b>3 Feasibility Studies 35</b></p> <p>3.1 Introduction 35</p> <p>3.2 Preliminary Feasibility Studies 35</p> <p>3.3 Technical Feasibility Study 36</p> <p>3.3.1 Site Selection 36</p> <p>3.3.1.1 Amount of Sunlight 36</p> <p>3.3.1.2 Land Area and Geometry 36</p> <p>3.3.1.3 Climate Conditions 37</p> <p>3.3.1.4 Site Access to Power Grid 38</p> <p>3.3.1.5 Site Road Access 38</p> <p>3.3.1.6 Site Topography 38</p> <p>3.3.1.7 Land Geotechnics and Seismicity 40</p> <p>3.3.1.8 Drainage, Seasonal Flooding 41</p> <p>3.3.1.9 Land Use and Legal Permits 41</p> <p>3.3.1.10 Air Pollution and Suspended Solid Particles 42</p> <p>3.3.1.11 Geopolitical Risk 43</p> <p>3.3.1.12 Financial Incentives 43</p> <p>3.3.2 Annual Electricity Production 43</p> <p>3.3.3 Equipment Technical Specifications 43</p> <p>3.3.4 Execution and Construction Processes 43</p> <p>3.3.5 Site Plan 43</p> <p>3.4 Environmental Feasibility 44</p> <p>3.5 Social Feasibility 45</p> <p>3.6 Economic Feasibility 45</p> <p>3.6.1 Financial Model Inputs 45</p> <p>3.6.2 Financial Model Results 47</p> <p>3.6.3 Financial and Economic Indicators 48</p> <p>3.6.4 Financial Indicators 48</p> <p>3.6.4.1 Net Present Value 48</p> <p>3.6.4.2 Internal Rate of Return 48</p> <p>3.6.4.3 Investment Return Period 49</p> <p>3.6.4.4 Break Even Point 49</p> <p>3.7 Timing Feasibility 50</p> <p>3.8 Summary 50</p> <p>References 51</p> <p><b>4 Grid Connection Studies 53</b></p> <p>4.1 Introduction 53</p> <p>4.2 Introducing Topics of Grid Connection Studies 53</p> <p>4.2.1 Load Flow Studies 53</p> <p>4.2.2 Contingency (N-1) 54</p> <p>4.2.3 Three-phase and Single-phase Short Circuit Studies 55</p> <p>4.2.4 Grounding System Studies 55</p> <p>4.2.5 Network Protection Studies 56</p> <p>4.2.6 Power Quality Studies 57</p> <p>4.2.7 Stability Studies 58</p> <p>4.3 Modeling of Grid and PV Power Plants 59</p> <p>4.3.1 Background Information Required for Modeling 59</p> <p>4.3.2 Simulation of PV Plant and Network 60</p> <p>4.3.3 Load Flow Studies Before and After PV Plant Connection 60</p> <p>4.3.4 Contingency (N-1) Studies Before and After PV Plant Connection 66</p> <p>4.3.5 Three-phase Short Circuit Studies 68</p> <p>4.3.6 Power Quality Studies 68</p> <p>4.3.7 Sustainability Studies 72</p> <p>4.3.8 Investigating Additional Parameters for Grid Connection Studies 73</p> <p>4.4 Summary 76</p> <p>References 76</p> <p><b>5 Solar Resource and Irradiance 79</b></p> <p>5.1 Introduction 79</p> <p>5.2 Radiometric Terms 79</p> <p>5.2.1 Extraterrestrial Irradiance 79</p> <p>5.2.2 Solar Geometry 80</p> <p>5.2.3 Solar Radiation and Earth’s Atmosphere 81</p> <p>5.3 Solar Resources 82</p> <p>5.3.1 Satellite Solar Data 86</p> <p>5.3.2 Radiation Measurement 86</p> <p>5.4 Solar Energy Radiation on Panels 86</p> <p>5.5 Solar Azimuth and Altitude Angle 89</p> <p>5.6 Tilt Angle and Orientation 92</p> <p>5.7 Shadow Distances and Row Spacing 95</p> <p>5.7.1 Sun Path 96</p> <p>5.7.2 Shadow Calculations for Fixed PV Systems 96</p> <p>5.7.3 Shadow Calculations for Single-Axis Tracking PV Systems) Horizontal E–W Tracking Axis) 99</p> <p>References 100</p> <p><b>6 Large-Scale PV Plant Design Overview 101                                                                                                       </b></p> <p>6.1 Introduction 101</p> <p>6.2 Classification of LSPVPP Engineering Documents 101</p> <p>6.2.1 Part 1: Feasibility Study 101</p> <p>6.2.2 Part 2: Basic Design 102</p> <p>6.2.3 Part 3: Detailed Design and Shop Drawing 107</p> <p>6.2.4 Part 4: As-Built and Final Documentation 107</p> <p>6.3 Roadmap Proposal for LSPVPP Design 108</p> <p>6.3.1 Project Definition 108</p> <p>6.3.2 Collecting General Information 109</p> <p>6.3.3 Collecting Information By Site Visit 109</p> <p>6.3.4 Limitations and Obstacles Identification 110</p> <p>6.3.5 PV Module and Inverter Selection111</p> <p>6.3.6 String Size Calculations 111</p> <p>6.3.7 Solar PV Mounting Structure Selection 111</p> <p>6.3.8 Tilt Angle Calculation 113</p> <p>6.3.9 Calculations of Far and Near Shading 113</p> <p>6.3.10 Optimization Process 113</p> <p>6.3.11 Energy Balance and Value Engineering 115</p> <p>6.3.12 Optimal Transformer Size 116</p> <p>6.3.13 General SLD and Layout 116</p> <p>6.3.14 Detailed Design 117</p> <p>6.3.15 Electrical Parameters and Value Engineering 117</p> <p>6.3.16 Preparing Final Documents 117</p> <p>6.4 Conclusion 117</p> <p>References 118</p> <p><b>7 PV Power Plant DC Side Design 119</b></p> <p>7.1 Introduction 119</p> <p>7.2 DC Side Design Methodology 119</p> <p>7.3 PV Modules Selection 121</p> <p>7.3.1 Module Technology 121</p> <p>7.3.2 PV Module Size 123</p> <p>7.3.3 Selection Criteria 123</p> <p>7.4 Inverter Selection 123</p> <p>7.4.1 Inverter Topologies 126</p> <p>7.4.1.1 Micro Inverter 126</p> <p>7.4.1.2 Multi-string Inverter 126</p> <p>7.4.1.3 String Inverter 126</p> <p>7.4.1.4 Central Inverter 126</p> <p>7.4.1.5 Virtual Central Inverter 128</p> <p>7.4.2 Comparison of Inverter Topologies 128</p> <p>7.5 PV Modules Number 129</p> <p>7.5.1 Method 1 133</p> <p>7.5.1.1 Minimum String Size 133</p> <p>7.5.1.2 Maximum String Size 134</p> <p>7.5.1.3 Determining Maximum Current of a PV Module 135</p> <p>7.5.1.4 Determining Number of Inverters 135</p> <p>7.5.2 Method 2 136</p> <p>7.6 Size of PV Plant DC Side 136</p> <p>7.7 DC Cables 138</p> <p>7.7.1 Criteria 138</p> <p>7.7.2 DC Cables Cross Section 139</p> <p>7.7.2.1 Current Capacity 139</p> <p>7.7.2.2 Voltage Drop 141</p> <p>7.7.2.3 Power Loss 143</p> <p>7.7.2.4 Short-circuit Current 143</p> <p>7.8 DC Box Combiner 144</p> <p>7.9 String Diode 145</p> <p>7.10 Fuse 145</p> <p>7.10.1 Rated Voltage 146</p> <p>7.10.2 Rated Current 146</p> <p>7.10.3 Fuse Testing 147</p> <p>7.10.4 Melting Time 147</p> <p>7.11 Surge Arrester 148</p> <p>7.12 DC Switch 149</p> <p>7.13 Conclusion 150</p> <p>Note 150</p> <p>References 150</p> <p><b>8 PV System Losses and Energy Yield</b></p> <p>8.1. Introduction</p> <p>8.2. PV System Losses</p> <p>8.2.1. Sunlight Losses</p> <p>8.2.1.1. Array Incidence Losses</p> <p>8.2.1.2. Soiling Losses</p> <p>8.2.1.3. Dust Losses</p> <p>8.2.1.4. Snow Losses</p> <p>8.2.2. Sunlight into DC Electricity Conversion</p> <p>8.2.2.1. Temperature-r Related Losses</p> <p>8.2.2.2. Shading Losses</p> <p>8.2.2.3. Low Irradiance</p> <p>8.2.2.4. Module Quality</p> <p>8.2.2.5. Light-Induced Degradation</p> <p>8.2.2.6. Potential-Induced Degradation</p> <p>8.2.2.7. Manufacturing Module Mismatch</p> <p>8.2.2.8. Degradation</p> <p>8.2.3. DC to AC Conversion Losses</p> <p>8.2.3.1. Inverter Losses</p> <p>8.2.3.2. MPPT Losses</p> <p>8.2.3.3. Tracking Curtailment</p> <p>8.2.3.4. PV Plant DC Losses</p> <p>8.2.4. PV Plant AC Losses</p> <p>8.2.4.1. AC Losses</p> <p>8.2.4.2. Auxiliary Power Losses</p> <p>8.2.4.3. Downtime and Unavailability</p> <p>8.2.4.4. Grid Compliance Losses</p> <p>8.3. Energy Yield Prediction</p> <p>8.3.1. Irradiation on Modules</p> <p>8.3.2. PV Plant Losses</p> <p>8.3.3. Performance Modeling</p> <p>8.3.4. Uncertainty in Energy Yield</p> <p>8.3.5. Performance Ratio</p> <p>8.3.6. Capacity Factor</p> <p>8.4. Conclusion</p> <p>References</p>
<p><b>Davood Naghaviha</b> is Chief Engineer and Renewable Energy Expert at Isfahan Electric Power Company, Iran. </p> <p><b> Hassan Nikkhajoei, PhD,</b> is Director of United Globe Engineering Inc., Canada. <p><b>Houshang Karimi, PhD,</b> is Associate Professor in the Department of Electrical Engineering at Polytechnique Montreal, Quebec, Canada.
<p><b>How to design a solar power plant, from start to finish</b></p> <p>In <i>Step-by-Step Design of Large-Scale Photovoltaic Power Plants</i>, a team of distinguished engineers delivers a comprehensive reference on PV power plants—and their design—for specialists, experts, and academics. Written in three parts, the book covers the detailed theoretical knowledge required to properly design a PV power plant. It goes on to explore the step-by-step requirements for creating a real-world PV power plant, including parts and components design, mathematical formulations and calculations, analyses, evaluations, and planning. <p>The book concludes with a discussion of a sample solar plant design, as well as tips on how to avoid common design mistakes, and how to handle the operation and maintenance of PV power plants. <p><i>Step-by-Step Design of Large-Scale Photovoltaic Power Plants</i> also includes: <ul><li>Thorough introductions to the basic requirements of design, economic analyses, and investment revenue</li> <li>Comprehensive explorations of the requirements for feasibility study and grid connection study</li> <li>Introducing solar resource, and determining optimum tilt angle and module inter-row spacing</li> <li>Presenting methodology for design of large-scale PV plant, requirements of engineering document, and optimal design algorithm</li> <li>In-depth examinations for selecting PV module, inverter, string, and DC side equipment</li> <li>Practical discussions of system losses, as well as estimation of yearly electrical energy production, capacity factor, and performance ratio of large-scale PV plant</ul> <p>Perfect for professionals in the solar power industry, <i>Step-by-Step Design of Large-Scale Photovoltaic Power Plants</i> will also earn a place in the libraries of equipment manufacturers and university professors seeking a one-stop resource for the design of PV power plants.

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €