Details

Statistical Thermodynamics


Statistical Thermodynamics

Basics and Applications to Chemical Systems
1. Aufl.

von: Iwao Teraoka

76,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 14.02.2019
ISBN/EAN: 9781119375289
Sprache: englisch
Anzahl Seiten: 352

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This textbook introduces chemistry and chemical engineering students to molecular descriptions of thermodynamics, chemical systems, and biomolecules.<br /><br /> <ul> <li>Equips students with the ability to apply the method to their own systems, as today's research is microscopic and molecular and articles are written in that language</li> <li>Provides ample illustrations and tables to describe rather difficult concepts</li> <li>Makes use of plots (charts) to help students understand the mathematics necessary for the contents</li> <li>Includes practice problems and answers</li> </ul>
<p>Preface xiii</p> <p>Acknowledgments xvii</p> <p>About the Companion Website xix</p> <p>Symbols and Constants xxi</p> <p><b>1 Introduction 1</b></p> <p>1.1 Classical Thermodynamics and Statistical Thermodynamics 1</p> <p>1.2 Examples of Results Obtained from Statistical Thermodynamics 2</p> <p>1.2.1 Heat Capacity of Gas of Diatomic Molecules 2</p> <p>1.2.2 Heat Capacity of a Solid 3</p> <p>1.2.3 Blackbody Radiation 3</p> <p>1.2.4 Adsorption 4</p> <p>1.2.5 Helix–Coil Transition 5</p> <p>1.2.6 Boltzmann Factor 6</p> <p>1.3 Practices of Notation 6</p> <p><b>2 Review of Probability Theory 9</b></p> <p>2.1 Probability 9</p> <p>2.2 Discrete Distributions 11</p> <p>2.2.1 Binomial Distribution 12</p> <p>2.2.2 Poisson Distribution 13</p> <p>2.2.3 Multinomial Distribution 14</p> <p>2.3 Continuous Distributions 15</p> <p>2.3.1 Uniform Distribution 19</p> <p>2.3.2 Exponential Distribution 19</p> <p>2.3.3 Normal Distribution 21</p> <p>2.3.4 Distribution of a Dihedral Angle 21</p> <p>2.4 Means and Variances 22</p> <p>2.4.1 Discrete Distributions 22</p> <p>2.4.2 Continuous Distributions 26</p> <p>2.4.3 Central Limit Theorem 27</p> <p>2.5 Uncertainty 28</p> <p>Problems 31</p> <p><b>3 Energy and Interactions 35</b></p> <p>3.1 Kinetic Energy and Potential Energy of Atoms and Ions 35</p> <p>3.1.1 Kinetic Energy 35</p> <p>3.1.2 Gravitational Potential 36</p> <p>3.1.3 Ion in an Electric Field 36</p> <p>3.1.4 Total Energy of Atoms and Ions 37</p> <p>3.2 Kinetic Energy and Potential Energy of Diatomic Molecules 37</p> <p>3.2.1 Kinetic Energy (Translation, Rotation, Vibration) 37</p> <p>3.2.2 Dipolar Potential 42</p> <p>3.2.2.1 Potential of a Permanent Dipole 42</p> <p>3.2.2.2 Potential of an Induced Dipole 44</p> <p>3.3 Kinetic Energy of Polyatomic Molecules 46</p> <p>3.3.1 Linear Polyatomic Molecule 46</p> <p>3.3.2 Nonlinear Polyatomic Molecule 48</p> <p>3.4 Interactions Between Molecules 50</p> <p>3.4.1 Excluded-Volume Interaction 52</p> <p>3.4.2 Coulomb Interaction 52</p> <p>3.4.3 Dipole–Dipole Interaction 53</p> <p>3.4.4 van der Waals Interaction 54</p> <p>3.4.5 Lennard-Jones Potential 55</p> <p>3.5 Energy as an Extensive Property 57</p> <p>3.6 Kinetic Energy of a Gas Molecule in Quantum Mechanics 58</p> <p>3.6.1 Quantization of Translational Energy 58</p> <p>3.6.2 Quantization of Rotational Energy 61</p> <p>3.6.3 Quantization of Vibrational Energy 63</p> <p>3.6.4 Electronic Energy Levels 65</p> <p>3.6.5 Comparison of Energy Level Spacings 66</p> <p>Problems 67</p> <p><b>4 Statistical Mechanics 69</b></p> <p>4.1 Basic Assumptions, Microcanonical Ensembles, and Canonical Ensembles 69</p> <p>4.1.1 Basic Assumptions 69</p> <p>4.1.2 Microcanonical Ensembles 73</p> <p>4.1.3 Canonical Ensembles 75</p> <p>4.2 Probability Distribution in Canonical Ensembles and Partition Functions 77</p> <p>4.2.1 Probability Distribution 77</p> <p>4.2.2 Partition Function for a System with Discrete States 79</p> <p>4.2.3 Partition Function for a System with Continuous States 81</p> <p>4.2.4 Energy Levels and States 83</p> <p>4.3 Internal Energy 88</p> <p>4.4 Identification of 𝛽 89</p> <p>4.5 Equipartition Law 91</p> <p>4.6 Other Thermodynamic Functions 93</p> <p>4.7 Another View of Entropy 97</p> <p>4.8 Fluctuations of Energy 99</p> <p>4.9 Grand Canonical Ensembles 100</p> <p>4.10 Cumulants of Energy 107</p> <p>Problems 110</p> <p><b>5 Canonical Ensemble of Gas Molecules 113</b></p> <p>5.1 Velocity of Gas Molecules 113</p> <p>5.2 Heat Capacity of a Classical Gas 116</p> <p>5.2.1 Point Mass 117</p> <p>5.2.2 Rigid Dumbbell 117</p> <p>5.2.3 Elastic Dumbbell 118</p> <p>5.3 Heat Capacity of a Quantum-Mechanical Gas 120</p> <p>5.3.1 General Formulas 120</p> <p>5.3.2 Translation 122</p> <p>5.3.3 Rotation 124</p> <p>5.3.4 Vibration 127</p> <p>5.3.5 Comparison with Classical Models 128</p> <p>5.4 Distribution of Rotational Energy Levels 129</p> <p>5.5 Conformations of a Molecule 130</p> <p>Problems 132</p> <p><b>6 Indistinguishable Particles 135</b></p> <p>6.1 Distinguishable Particles and Indistinguishable Particles 135</p> <p>6.2 Partition Function of Indistinguishable Particles 137</p> <p>6.2.1 System of Distinguishable Particles 137</p> <p>6.2.2 System of Indistinguishable Particles 137</p> <p>6.3 Condition of Nondegeneracy 142</p> <p>6.4 Significance of Division by N! 144</p> <p>6.4.1 Gas in a Two-Part Box 144</p> <p>6.4.2 Chemical Potential 145</p> <p>6.4.3 Mixture of Two Gases 146</p> <p>6.5 Indistinguishability and Center-of-Mass Movement 147</p> <p>6.6 Open System of Gas 147</p> <p>Problems 149</p> <p><b>7 Imperfect Gas 153</b></p> <p>7.1 Virial Expansion 153</p> <p>7.2 Molecular Expression of Interaction in the Canonical Ensemble 157</p> <p>7.3 Second Virial Coefficients in Different Models 164</p> <p>7.3.1 Hard-Core Repulsion Only 164</p> <p>7.3.2 Square-well Potential 165</p> <p>7.3.3 Lennard-Jones Potential 167</p> <p>7.4 Joule–Thomson Effect 167</p> <p>Problems 171</p> <p><b>8 Rubber Elasticity 175</b></p> <p>8.1 Rubber 175</p> <p>8.2 Polymer Chain in One Dimension 176</p> <p>8.3 Polymer Chain in Three Dimensions 180</p> <p>8.4 Network of Springs 184</p> <p>Problems 185</p> <p><b>9 Law of Mass Action 189</b></p> <p>9.1 Reaction of Two Monatomic Molecules 190</p> <p>9.2 Decomposition of Homonuclear Diatomic Molecules 193</p> <p>9.3 Isomerization 195</p> <p>9.4 Method of the Steepest Descent 197</p> <p>Problems 198</p> <p><b>10 Adsorption 201</b></p> <p>10.1 Adsorption Phenomena 201</p> <p>10.2 Langmuir Isotherm 202</p> <p>10.3 BET Isotherm 206</p> <p>10.4 Dissociative Adsorption 211</p> <p>10.5 Interaction Between Adsorbed Molecules 213</p> <p>Problems 213</p> <p><b>11 Ising Model 217</b></p> <p>11.1 Model 217</p> <p>11.2 Partition Function 220</p> <p>11.2.1 One-Dimensional Ising Model 220</p> <p>11.2.2 Calculating Statistical Averages 221</p> <p>11.2.2.1 Average Number of Up Spins 222</p> <p>11.2.2.2 Average of the Number of Spin Alterations (Number of Domains – 1) 222</p> <p>11.2.2.3 Domain Size 223</p> <p>11.2.2.4 Size of a Domain of Uniform Spins 223</p> <p>11.2.3 A Few Examples of 1D Ising Model 223</p> <p>11.2.3.1 Linear Ising Model, N = 3 223</p> <p>11.2.3.2 Ring Ising Model, N = 3 225</p> <p>11.2.3.3 Ring Ising Model, N = 4 225</p> <p>11.3 Mean-FieldTheories 226</p> <p>11.3.1 Bragg–Williams (B–W) Approximation 227</p> <p>11.3.2 Flory–Huggins (F–H) Approximation 231</p> <p>11.3.3 Approximation by a Mean-Field (MF) Theory 235</p> <p>11.4 Exact Solution of 1D Ising Model 236</p> <p>11.4.1 General Formula 236</p> <p>11.4.2 Large-N Approximation 239</p> <p>11.4.3 Exact Partition Function for Arbitrary N 241</p> <p>11.4.4 Ring Ising Model, Arbitrary N 244</p> <p>11.4.5 Comparison of the Exact Results with Those of Mean-Field Approximations 245</p> <p>11.5 Variations of the Ising Model 247</p> <p>11.5.1 System of Uniform Spins 247</p> <p>11.5.2 Random Local Fields of Opposite Directions 249</p> <p>11.5.3 Dilute Local Fields 252</p> <p>Problems 254</p> <p><b>12 Helical Polymer 263</b></p> <p>12.1 Helix-Forming Polymer 263</p> <p>12.2 Optical Rotation and Circular Dichroism 266</p> <p>12.3 Pristine Poly(n-hexyl isocyanate) 267</p> <p>12.4 Variations to the Helical Polymer 271</p> <p>12.4.1 Copolymer of Chiral and Achiral Isocyanate Monomers 272</p> <p>12.4.2 Copolymer of R- and S-Enantiomers of Isocyanate 274</p> <p>Problems 274</p> <p><b>13 Helix–Coil Transition 277</b></p> <p>13.1 Historical Background 277</p> <p>13.2 Polypeptides 281</p> <p>13.3 Zimm–Bragg Model 283</p> <p>Problems 289</p> <p><b>14 Regular Solutions 291</b></p> <p>14.1 Binary Mixture of Equal-Size Molecules 291</p> <p>14.1.1 Free Energy of Mixing 291</p> <p>14.1.2 Derivatives of the Free Energy of Mixing 296</p> <p>14.1.3 Phase Separation 300</p> <p>14.2 Binary Mixture of Molecules of Different Sizes 304</p> <p>Problems 312</p> <p><b>Appendix A Mathematics 315</b></p> <p>A.1 Hyperbolic Functions 315</p> <p>A.2 Series 317</p> <p>A.3 Binomial Theorem and Trinomial Theorem 317</p> <p>A.4 Stirling’s formula 318</p> <p>A.5 Integrals 318</p> <p>A.6 Error Functions 318</p> <p>A.7 Gamma Functions 319</p> <p>References 321</p> <p>Index 325</p> <p> </p>
<p><b>IWAO TERAOKA, P<small>H</small>D,</b> is a professor of chemistry at Tandon School of Engineering of NYU. His current research areas include photonic sensors and liquid chromatography, but in early years he worked on physical chemistry of polymer solutions. He is a recipient of the 1994 NSF Young Investigator Award. Professor Teraoka is also the author of <i>Polymer Solutions: An Introduction to Physical Properties</i> and more than 100 original papers and 6 book chapters.
<p><b>Discusses the basics and applications of statistical thermodynamics to chemical systems</b> <p>This textbook introduces chemistry and chemical engineering students to molecular descriptions of thermodynamics, chemical systems, and biomolecules. It focuses on topics such as adsorption, mixture, and chemical equilibria, which are integral to their grasping of the subject. It teaches readers how to apply the tools of statistical mechanics to different thermodynamic systems and provides chapter-end practice problems to aide in their understanding. <p><i>Statistical Thermodynamics: Basics and Applications to Chemical Systems</i> addresses topics that are most applicable to the interests of chemistry and chemical engineering students. These topics include: probability; energy and interactions; statistical mechanics; harmonic oscillators; ideal gas; imperfect gas; heat capacities of gas; rubber elasticity; conformation of polymers; surface adsorption; law of mass action; Ising model; helical polymers; helix-coil transition; and liquid mixture. <ul> <li>Focuses on applications of statistical mechanics to chemistry, biochemistry, and biology</li> <li>Equips students with the ability to apply the method to their own systems, as today's research is microscopic and molecular and articles are written in that language</li> <li>Provides ample illustrations and tables to describe rather difficult concepts</li> <li>Makes use of plots (charts) to help students understand the mathematics necessary for the contents</li> <li>Includes practice problems and answers</li> </ul> <p><i>Statistical Thermodynamics</i> is an ideal text for undergraduate and graduate students studying chemistry, chemical engineering, materials science, and other related programs.

Diese Produkte könnten Sie auch interessieren:

Fundamentals of Electrochemical Deposition
Fundamentals of Electrochemical Deposition
von: Milan Paunovic, Mordechay Schlesinger
PDF ebook
141,99 €
The Quantum in Chemistry
The Quantum in Chemistry
von: Roger Grinter
PDF ebook
45,99 €
Physical Chemistry
Physical Chemistry
von: Paul M. S. Monk
PDF ebook
47,99 €