Details

Statistical Methods for Evaluating Safety in Medical Product Development


Statistical Methods for Evaluating Safety in Medical Product Development


Statistics in Practice 1. Aufl.

von: A. Lawrence Gould

73,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 08.12.2014
ISBN/EAN: 9781118763100
Sprache: englisch
Anzahl Seiten: 392

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>This book gives professionals in clinical research valuable information on the challenging issues of the design, execution, and management of clinical trials, and how to resolve these issues effectively. It also provides understanding and practical guidance on the application of contemporary statistical methods to contemporary issues in safety evaluation during medical product development. Each chapter provides sufficient detail to the reader to undertake the design and analysis of experiments at various stages of product development, including comprehensive references to the relevant literature.</p> <ul> <li>Provides a guide to statistical methods and application in medical product development</li> <li>Assists readers in undertaking design and analysis of experiments at various stages of product development</li> <li>Features case studies throughout the book, as well as, SAS and R code</li> </ul>
<p>Preface xiii</p> <p>List of Contributors xv</p> <p><b>1 Introduction 1</b><br /> <i>A. Lawrence Gould</i></p> <p>1.1 Introduction 1</p> <p>1.2 Background and context 2</p> <p>1.3 A fundamental principle for understanding safety evaluation 3</p> <p>1.4 Stages of safety evaluation in drug development 4</p> <p>1.5 National medical product safety monitoring strategy 5</p> <p>1.6 Adverse events vs adverse drug reactions, and an overall view of safety evaluation 5</p> <p>1.7 A brief historical perspective on safety evaluation 7</p> <p>1.8 International conference on harmonization 8</p> <p>1.9 ICH guidelines 9</p> <p>References 11</p> <p><b>2 Safety graphics 22</b><br /> <i>A. Lawrence Gould</i></p> <p>2.1 Introduction 22</p> <p>2.1.1 Example and general objectives 22</p> <p>2.1.2 What is the graphic trying to say? 25</p> <p>2.2 Principles and guidance for constructing effective graphics 26</p> <p>2.2.1 General principles 26</p> <p>2.3 Graphical displays for addressing specific issues 26</p> <p>2.3.1 Frequency of adverse event reports or occurrences 26</p> <p>2.3.2 Timing of adverse event reports or occurrences 33</p> <p>2.3.3 Temporal variation of vital sign and laboratory measurements 36</p> <p>2.3.4 Temporal variation of combinations of vital sign and laboratory measurements 39</p> <p>2.3.5 Functional/multidimensional data 44</p> <p>2.3.6 Multivariate outlier detection with multiplicity adjustment based on robust estimates of mean and covariance matrix 48</p> <p>2.3.7 Monitoring individual patient trends 53</p> <p>2.4 Discussion 53</p> <p>References 60</p> <p><b>3 QSAR modeling: prediction of biological activity from chemical structure 66</b><br /> <i>Andy Liaw and Vladimir Svetnik</i></p> <p>3.1 Introduction 66</p> <p>3.2 Data 67</p> <p>3.2.1 Chemical descriptors 67</p> <p>3.2.2 Activity data 68</p> <p>3.3 Model building 69</p> <p>3.3.1 Random forests 69</p> <p>3.3.2 Stochastic gradient boosting 70</p> <p>3.4 Model validation and interpretation 71</p> <p>3.5 Data example 74</p> <p>3.6 Discussion 76</p> <p>References 81</p> <p><b>4 Ethical and practical issues in phase 1 trials in healthy volunteers 84</b><br /> <i>Stephen Senn</i></p> <p>4.1 Introduction 84</p> <p>4.2 Ethical basics 85</p> <p>4.3 Inferential matters 86</p> <p>4.3.1 Analysis of serious side-effects 87</p> <p>4.3.2 Timing of events 87</p> <p>4.4 Design for subject safety 88</p> <p>4.4.1 Dosing interval 88</p> <p>4.4.2 Contemporary dosing 88</p> <p>4.5 Analysis 89</p> <p>4.5.1 Objectives of first-in-man trials 89</p> <p>4.5.2 (In)adequacy of statistical analysis plans 89</p> <p>4.5.3 ‘Formal’ statistical analyses 90</p> <p>4.6 Design for analysis 90</p> <p>4.6.1 Treatment assignments and the role of placebo 90</p> <p>4.6.2 Dose-escalation trial design issues 91</p> <p>4.6.3 Precision at interim stages 93</p> <p>4.7 Some final thoughts 94</p> <p>4.7.1 Sharing information 94</p> <p>4.8 Conclusions 96</p> <p>4.9 Further reading 96</p> <p>References 97</p> <p><b>5 Phase 1 trials 99</b><br /> <i>A. Lawrence Gould</i></p> <p>5.1 Introduction 99</p> <p>5.2 Dose determined by toxicity 101</p> <p>5.2.1 Algorithmic (rule-based) approaches 101</p> <p>5.3 Model-based approaches 104</p> <p>5.3.1 Basic CRM design 104</p> <p>5.3.2 Adaptive refinement of dosage list 105</p> <p>5.3.3 Hybrid designs 106</p> <p>5.3.4 Comparisons with rule-based designs 107</p> <p>5.4 Model-based designs with more than one treatment (or non-monotonic toxicity) 108</p> <p>5.5 Designs considering toxicity and efficacy 110</p> <p>5.5.1 Binary efficacy and toxicity considered jointly 110</p> <p>5.5.2 Use of surrogate efficacy outcomes 112</p> <p>5.5.3 Reduction of efficacy and toxicity outcomes to ordered categories 112</p> <p>5.5.4 Binary toxicity and continuous efficacy 113</p> <p>5.5.5 Time to occurrence of binary toxicity and efficacy endpoints 114</p> <p>5.5.6 Determining dosage and treatment schedule 115</p> <p>5.6 Combinations of active agents 117</p> <p>5.7 Software 117</p> <p>5.8 Discussion 117</p> <p>References 118</p> <p><b>6 Summarizing adverse event risk 122</b><br /> <i>A. Lawrence Gould</i></p> <p>6.1 Introduction 122</p> <p>6.2 Summarization of key features of adverse event occurrence 123</p> <p>6.3 Confidence/credible intervals for risk differences and ratios 126</p> <p>6.3.1 Metrics 126</p> <p>6.3.2 Coverage and interpretation 126</p> <p>6.3.3 Binomial model 127</p> <p>6.3.4 Poisson model 140</p> <p>6.3.5 Computational results 142</p> <p>6.4 Screening for adverse events 142</p> <p>6.4.1 Outline of approach 146</p> <p>6.4.2 Distributional model 146</p> <p>6.4.3 Specification of priors 148</p> <p>6.4.4 Example 149</p> <p>6.5 Discussion 151</p> <p>References 177</p> <p><b>7 Statistical analysis of recurrent adverse events 180</b><br /> <i>Liqun Diao, Richard J. Cook and Ker-Ai Lee</i></p> <p>7.1 Introduction 180</p> <p>7.2 Recurrent adverse event analysis 181</p> <p>7.2.1 Statistical methods for a single sample 181</p> <p>7.2.2 Recurrent event analysis and death 183</p> <p>7.2.3 Summary statistics for recurrent adverse events 184</p> <p>7.3 Comparisons of adverse event rates 185</p> <p>7.4 Remarks on computing and an application 186</p> <p>7.4.1 Computing and software 186</p> <p>7.4.2 Illustration: Analyses of bleeding in a transfusion trial 188</p> <p>7.5 Discussion 190</p> <p>References 191</p> <p><b>8 Cardiovascular toxicity, especially QT/QTc prolongation 193</b><br /> <i>Arne Ring and Robert Schall</i></p> <p>8.1 Introduction 193</p> <p>8.1.1 The QT interval as a biomarker of cardiovascular risk 193</p> <p>8.1.2 Association of the QT interval with the heart rate 194</p> <p>8.2 Implementation in preclinical and clinical drug development 194</p> <p>8.2.1 Evaluations from sponsor perspective 194</p> <p>8.2.2 Regulatory considerations on TQT trials 196</p> <p>8.3 Design considerations for “Thorough QT trials” 198</p> <p>8.3.1 Selection of therapeutic and supra-therapeutic exposure 198</p> <p>8.3.2 Single-versus multiple-dose studies; co-administration of interacting drugs 199</p> <p>8.3.3 Baseline measurements 199</p> <p>8.3.4 Parallel versus cross-over design 200</p> <p>8.3.5 Timing of ECG measurements 200</p> <p>8.3.6 Sample size 200</p> <p>8.3.7 Complex situations 200</p> <p>8.3.8 TQT trials in patients 201</p> <p>8.4 Statistical analysis: thorough QT/QTc study 201</p> <p>8.4.1 Data 201</p> <p>8.4.2 Heart rate correction 203</p> <p>8.4.3 A general framework for the assessment of QT prolongation 208</p> <p>8.4.4 Statistical inference: Proof of “Lack of QT prolongation” 211</p> <p>8.4.5 Mixed models for data from TQT studies 212</p> <p>8.5 Examples of ECG trial designs and analyses from the literature 215</p> <p>8.5.1 Parallel trial: Nalmefene 215</p> <p>8.5.2 Cross-over trial: Linagliptin 216</p> <p>8.5.3 Cross-over with minor QTc effect: Sitagliptin 217</p> <p>8.5.4 TQT study with heart rate changes but without QTc effect: Darifenacin 218</p> <p>8.5.5 Trial with both changes in HR and QT(c): Tolterodine 218</p> <p>8.5.6 Boosting the exposure with pharmacokinetic interactions: Domperidone 219</p> <p>8.5.7 Double placebo TQT cross-over design 220</p> <p>8.6 Other issues in cardiovascular safety 220</p> <p>8.6.1 Rosiglitazone 221</p> <p>8.6.2 Requirements of the FDA guidance 221</p> <p>8.6.3 Impact on the development of antidiabetic drugs 223</p> <p>8.6.4 General impact on biomarker validation 224</p> <p>References 224</p> <p><b>9 Hepatotoxicity 229</b><br /> <i>Donald C. Trost</i></p> <p>9.1 Introduction 229</p> <p>9.2 Liver biology and chemistry 230</p> <p>9.2.1 Liver function 230</p> <p>9.2.2 Liver pathology 232</p> <p>9.2.3 Clinical laboratory tests for liver status 235</p> <p>9.2.4 Other clinical manifestations of liver abnormalities 240</p> <p>9.3 Drug-induced liver injury 240</p> <p>9.3.1 Literature review 240</p> <p>9.3.2 Liver toxicology 241</p> <p>9.3.3 Clinical trial design 243</p> <p>9.4 Classical statistical approaches to the detection of hepatic toxicity 245</p> <p>9.4.1 Statistical distributions of analytes 245</p> <p>9.4.2 Reference limits 245</p> <p>9.4.3 Hy’s rule and other empirical methods 252</p> <p>9.5 Stochastic process models for liver homeostasis 253</p> <p>9.5.1 The Ornstein–Uhlenbeck process model 253</p> <p>9.5.2 OU data analysis 258</p> <p>9.5.3 OU model applied to reference limits 263</p> <p>9.6 Summary 265</p> <p>References 266</p> <p><b>10 Neurotoxicity 271</b><br /> <i>A. Lawrence Gould</i></p> <p>10.1 Introduction 271</p> <p>10.2 Multivariate longitudinal observations 272</p> <p>10.3 Electroencephalograms (EEGs) 275</p> <p>10.3.1 Special considerations 275</p> <p>10.3.2 Mixed effect models 279</p> <p>10.3.3 Spatial smoothing by incorporating spatial relationships of channels 281</p> <p>10.3.4 Explicit adjustment for muscle-induced (non-EEG) artifacts 282</p> <p>10.3.5 Potential extensions 285</p> <p>10.4 Discussion 285</p> <p>References 289</p> <p><b>11 Safety monitoring 293</b><br /> <i>Jay Herson</i></p> <p>11.1 Introduction 293</p> <p>11.2 Planning for safety monitoring 294</p> <p>11.3 Safety monitoring-sponsor view (masked, treatment groups pooled) 297</p> <p>11.3.1 Frequentist methods for masked or pooled analysis 297</p> <p>11.3.2 Likelihood methods for masked or pooled analysis 298</p> <p>11.3.3 Bayesian methods for masked or pooled analysis 299</p> <p>11.4 Safety monitoring-DMC view (partially or completely unmasked) 301</p> <p>11.4.1 DMC data review operations 301</p> <p>11.4.2 Types of safety data routinely reviewed 301</p> <p>11.4.3 Assay sensitivity 302</p> <p>11.4.4 Comparing safety between treatments 304</p> <p>11.5 Future challenges in safety monitoring 312</p> <p>11.5.1 Adaptive designs 312</p> <p>11.5.2 Changes in the setting of clinical trials 313</p> <p>11.5.3 New technologies 313</p> <p>11.6 Conclusions 313</p> <p>References 314</p> <p><b>12 Sequential testing for safety evaluation 319</b><br /> <i>Jie Chen</i></p> <p>12.1 Introduction 319</p> <p>12.2 Sequential probability ratio test (SPRT) 320</p> <p>12.2.1 Wald SPRT basics 320</p> <p>12.2.2 SPRT for a single-parameter exponential family 321</p> <p>12.2.3 A clinical trial example 322</p> <p>12.2.4 Application to monitoring occurrence of adverse events 323</p> <p>12.3 Sequential generalized likelihood ratio tests 325</p> <p>12.3.1 Sequential GLR tests and stopping boundaries 325</p> <p>12.3.2 Extension of sequential GLR tests to multiparameter exponential families 327</p> <p>12.3.3 Implementation of sequential GLR tests 327</p> <p>12.3.4 Example from Section 12.2.3, continued 328</p> <p>12.4 Concluding remarks 330</p> <p>References 331</p> <p><b>13 Evaluation of post-marketing safety using spontaneous reporting databases 332</b><br /> <i>Ismaïl Ahmed, Bernard Bégaud and Pascale Tubert-Bitter</i></p> <p>13.1 Introduction 332</p> <p>13.2 Data structure 333</p> <p>13.3 Disproportionality methods 334</p> <p>13.3.1 Frequentist methods 334</p> <p>13.3.2 Bayesian methods 335</p> <p>13.4 Issues and biases 337</p> <p>13.4.1 Notoriety bias 337</p> <p>13.4.2 Dilution bias 338</p> <p>13.4.3 Competition bias 338</p> <p>13.5 Method comparisons 339</p> <p>13.6 Further refinements 339</p> <p>13.6.1 Recent improvements on the detection rule 339</p> <p>13.6.2 Bayesian screening approach 340</p> <p>13.6.3 Confounding and interactions 341</p> <p>13.6.4 Comparison of two signals 341</p> <p>13.6.5 An alternative approach 341</p> <p>References 342</p> <p><b>14 Pharmacovigilance using observational/longitudinal databases and web-based information 345</b><br /> <i>A. Lawrence Gould</i></p> <p>14.1 Introduction 345</p> <p>14.2 Methods based on observational databases 347</p> <p>14.2.1 Disproportionality analysis with redefinition of report frequency table entries 347</p> <p>14.2.2 LGPS and LEOPARD 350</p> <p>14.2.3 Self-controlled case series (SCCS) 350</p> <p>14.2.4 Case–control approach 351</p> <p>14.2.5 Self-controlled cohort 352</p> <p>14.2.6 Temporal pattern discovery 353</p> <p>14.2.7 Unexpected temporal association rules 354</p> <p>14.2.8 Time to onset for vaccine safety 355</p> <p>14.3 Web-based pharmacovigilance (infodemiology and infoveillance) 356</p> <p>14.4 Discussion 357</p> <p>References 358</p> <p>Index 361</p>
<p><strong>A. Lawrence Gould</strong>, Senior Director, Scientific Staff, Merck Research Laboratories, USA.

Diese Produkte könnten Sie auch interessieren:

Statistics for Microarrays
Statistics for Microarrays
von: Ernst Wit, John McClure
PDF ebook
90,99 €