Details

Spectrum Sharing in Cognitive Radio Networks


Spectrum Sharing in Cognitive Radio Networks

Towards Highly Connected Environments
1. Aufl.

von: Prabhat Thakur, Ghanshyam Singh

106,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 27.05.2021
ISBN/EAN: 9781119665441
Sprache: englisch
Anzahl Seiten: 384

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>SPECTRUM SHARING IN COGNITIVE RADIO NETWORKS</b> <p><b>Discover the latest advances in spectrum sharing in wireless networks from two internationally recognized experts in the field</b><p><i>Spectrum Sharing in Cognitive Radio Networks: Towards Highly Connected Environments</i> delivers an in-depth and insightful examination of hybrid spectrum access techniques with advanced frame structures designed for efficient spectrum utilization. The accomplished authors present the energy and spectrum efficient frameworks used in high-demand distributed architectures by relying on the self-scheduled medium access control (SMC-MAC) protocol in cognitive radio networks.<p>The book begins with an exploration of the fundamentals of recent advances in spectrum sharing techniques before moving onto advanced frame structures with spectrum accessing approaches and the role of spectrum prediction and spectrum monitoring to eliminate interference. The authors also cover spectrum mobility, interference, and spectrum management for connected environments in substantial detail.<p><i>Spectrum Sharing in Cognitive Radio Networks: Towards Highly Connected Environments</i> offers readers a recent and rational theoretical mathematical model of spectrum sharing strategies that can be used for practical simulation of future generation wireless communication technologies. It also highlights ongoing trends, revealing fresh research outcomes that will be of interest to active researchers in the area. Readers will also benefit from:<ul><li>An inclusive study of connected environments, 3GPP Releases, and the evolution of wireless communication generations with a discussion of advanced frame structures and access strategies in cognitive radio networks</li><li>A treatment of cognitive radio networks using spectrum prediction and monitoring techniques</li><li>An analysis of the effects of imperfect spectrum monitoring on cognitive radio networks</li><li>An exploration of spectrum mobility in cognitive radio networks using spectrum prediction and monitoring techniques</li><li>An examination of MIMO-based CR-NOMA communication systems for spectral and interference efficient designs</li></ul><p>Perfect for senior undergraduate and graduate students in Electrical and Electronics Communication Engineering programs, <i>Spectrum Sharing in Cognitive Radio Networks: Towards Highly Connected Environments</i> will also earn a place in the libraries of professional engineers and researchers working in the field, whether in private industry, government, or academia.
<p>Preface xiii</p> <p>Special Acknowledgements xxi</p> <p>List of Acronyms xxiii</p> <p>List of Figures xxvii</p> <p>List of Tables xxxiii</p> <p>List of Symbols xxxv</p> <p><b>1 Introduction </b><i>1</i></p> <p>1.1 Introduction <i>1</i></p> <p>1.1.1 Connected Environments <i>2</i></p> <p>1.1.2 Evolution of Wireless Communication <i>5</i></p> <p>1.1.3 Third Generation Partnership Project <i>10</i></p> <p>1.2 Cognitive Radio Technology <i>10</i></p> <p>1.2.1 Spectrum Accessing/Sharing Techniques <i>13</i></p> <p>1.2.1.1 Interweave Spectrum Access <i>14</i></p> <p>1.2.1.2 Underlay Spectrum Access <i>17</i></p> <p>1.2.1.3 Overlay Spectrum Access <i>17</i></p> <p>1.2.1.4 Hybrid Spectrum Access <i>17</i></p> <p>1.3 Implementation of CR Networks <i>20</i></p> <p>1.4 Motivation <i>22</i></p> <p>1.5 Organization of Book <i>23</i></p> <p>1.6 Summary <i>27</i></p> <p>References <i>27</i></p> <p><b>2 Advanced Frame Structures in Cognitive Radio Networks </b><i>39</i></p> <p>2.1 Introduction <i>39</i></p> <p>2.2 Related Work <i>40</i></p> <p>2.2.1 Frame Structures <i>40</i></p> <p>2.2.2 Spectrum Accessing Strategies <i>41</i></p> <p>2.3 Proposed Frame Structures for HSA Technique <i>43</i></p> <p>2.4 Analysis of Throughput and Data Loss <i>45</i></p> <p>2.5 Simulations and Results <i>47</i></p> <p>2.6 Summary <i>50</i></p> <p>References <i>51</i></p> <p><b>3 Cognitive Radio Network with Spectrum Prediction and Monitoring</b></p> <p><b>Techniques </b><i>55</i></p> <p>3.1 Introduction <i>55</i></p> <p>3.2 Related Work <i>57</i></p> <p>3.2.1 Spectrum Prediction <i>57</i></p> <p>3.2.2 Spectrum Monitoring <i>58</i></p> <p>3.3 System Models <i>59</i></p> <p>3.3.1 System Model for Approach-1 <i>59</i></p> <p>3.3.2 System Model for Approach-2 <i>60</i></p> <p>3.4 Performance Analysis <i>61</i></p> <p>3.4.1 Throughput Analysis Using Approach-1 <i>61</i></p> <p>3.4.2 Analysis of Performance Metrics of the Approach-2 <i>65</i></p> <p>3.5 Results and Discussion <i>67</i></p> <p>3.5.1 Proposed Approach-1 <i>67</i></p> <p>3.5.2 Proposed Approach-2 <i>69</i></p> <p>3.6 Summary <i>72</i></p> <p>References <i>72</i></p> <p><b>4 Effect of Spectrum Prediction in Cognitive Radio Networks </b><i>77</i></p> <p>4.1 Introduction <i>77</i></p> <p>4.1.1 Spectrum Access Techniques <i>78</i></p> <p>4.2 System Model <i>80</i></p> <p>4.3 Throughput Analysis <i>87</i></p> <p>4.4 Simulation Results and Discussion <i>89</i></p> <p>4.5 Summary <i>93</i></p> <p>References <i>94</i></p> <p><b>5 Effect of Imperfect Spectrum Monitoring on Cognitive Radio</b></p> <p><b>Networks </b><i>97</i></p> <p>5.1 Introduction <i>97</i></p> <p>5.2 Related Work <i>99</i></p> <p>5.2.1 Spectrum Sensing <i>99</i></p> <p>5.2.2 Spectrum Monitoring <i>100</i></p> <p>5.3 System Model <i>101</i></p> <p>5.4 Performance Analysis of Proposed System Using Imperfect Spectrum</p> <p>Monitoring <i>102</i></p> <p>5.4.1 Computation of Ratio of the Achieved Throughput to Data Loss <i>108</i></p> <p>5.4.2 Computation of Power Wastage <i>108</i></p> <p>5.4.3 Computation of Interference Efficiency <i>109</i></p> <p>5.4.4 Computation of Energy Efficiency <i>109</i></p> <p>5.5 Results and Discussion <i>110</i></p> <p>5.6 Summary <i>115</i></p> <p>References <i>116</i></p> <p><b>6 Cooperative Spectrum Monitoring in Homogeneous and</b></p> <p><b>Heterogeneous Cognitive Radio Networks </b><i>121</i></p> <p>6.1 Introduction <i>121</i></p> <p>6.2 Background <i>122</i></p> <p>6.3 System Model <i>124</i></p> <p>6.4 Performance Analysis of Proposed CRN <i>126</i></p> <p>6.4.1 Computation of Achieved Throughput and Data Loss <i>130</i></p> <p>6.4.2 Computation of Interference Efficiency <i>131</i></p> <p>6.4.3 Computation of Energy Efficiency <i>131</i></p> <p>6.5 Results and Discussion <i>132</i></p> <p>6.5.1 Homogeneous Cognitive Radio Network <i>132</i></p> <p>6.5.2 Heterogeneous Cognitive Radio Networks <i>134</i></p> <p>6.6 Summary <i>143</i></p> <p>References <i>143</i></p> <p><b>7 Spectrum Mobility in Cognitive Radio Networks Using Spectrum</b></p> <p><b>Prediction and Monitoring Techniques </b><i>147</i></p> <p>7.1 Introduction <i>147</i></p> <p>7.2 System Model <i>151</i></p> <p>7.3 Performance Analysis <i>153</i></p> <p>7.4 Results and Discussion <i>156</i></p> <p>7.5 Summary <i>162</i></p> <p>References <i>163</i></p> <p><b>8 Hybrid Self-Scheduled Multichannel Medium Access Control Protocol</b></p> <p><b>in Cognitive Radio Networks </b><i>167</i></p> <p>8.1 Introduction <i>167</i></p> <p>8.2 Related Work <i>169</i></p> <p>8.2.1 CR-MAC Protocols <i>169</i></p> <p>8.2.2 Interference at PU <i>171</i></p> <p>8.3 System Model and Proposed Hybrid Self-Scheduled Multichannel</p> <p>MAC Protocol <i>172</i></p> <p>8.3.1 System Model <i>172</i></p> <p>8.3.2 Proposed HSMC-MAC Protocol <i>173</i></p> <p>8.4 Performance Analysis <i>174</i></p> <p>8.4.1 With Perfect Spectrum Sensing <i>176</i></p> <p>8.4.2 With Imperfect Spectrum Sensing <i>178</i></p> <p>8.4.3 More Feasible Scenarios <i>180</i></p> <p>8.5 Simulations and Results Analysis <i>182</i></p> <p>8.5.1 With Perfect Spectrum Sensing <i>182</i></p> <p>8.5.2 With Imperfect Spectrum Sensing <i>185</i></p> <p>8.6 Summary <i>190</i></p> <p>References <i>190</i></p> <p><b>9 Frameworks of Non-Orthogonal Multiple Access Techniques in</b></p> <p><b>Cognitive Radio Networks </b><i>195</i></p> <p>9.1 Introduction <i>195</i></p> <p>9.1.1 Related Work <i>196</i></p> <p>9.1.2 Motivation <i>199</i></p> <p>9.1.3 Organization <i>199</i></p> <p>9.2 CR Spectrum Accessing Strategies <i>199</i></p> <p>9.3 Functions of NOMA System for Uplink and Downlink Scenarios <i>204</i></p> <p>9.3.1 Downlink Scenario for Cellular-NOMA <i>204</i></p> <p>9.3.2 Uplink Scenario for Cellular-NOMA <i>207</i></p> <p>9.4 Proposed Frameworks of CR with NOMA <i>208</i></p> <p>9.4.1 Framework-1 <i>209</i></p> <p>9.4.2 Framework-2 <i>210</i></p> <p>9.5 Simulation Environment and Results <i>212</i></p> <p>9.6 Research Potentials for NOMA and CR-NOMA Implementations <i>213</i></p> <p>9.6.1 Imperfect CSI <i>214</i></p> <p>9.6.2 Spectrum Hand-off Management <i>215</i></p> <p>9.6.3 Standardization <i>215</i></p> <p>9.6.4 Less Complex and Cost-Effective Systems <i>215</i></p> <p>9.6.5 Energy-Efficient Design and Frameworks <i>216</i></p> <p>9.6.6 Quality-of-Experience Management <i>216</i></p> <p>9.6.7 Power Allocation Strategy for CUs to Implement NOMA Without</p> <p>Interfering PU <i>217</i></p> <p>9.6.8 Cooperative CR-NOMA <i>217</i></p> <p>9.6.9 Interference Cancellation Techniques <i>217</i></p> <p>9.6.10 Security Aspects in CR-NOMA <i>218</i></p> <p>9.6.11 Role of User Clustering and Challenges <i>218</i></p> <p>9.6.12 Wireless Power Transfer to NOMA <i>219</i></p> <p>9.6.13 Multicell NOMA with Coordinated Multipoint Transmission <i>220</i></p> <p>9.6.14 Multiple-Carrier NOMA <i>221</i></p> <p>9.6.15 Cross-Layer Design <i>221</i></p> <p>9.6.16 MIMO-NOMA-CR <i>222</i></p> <p>9.7 Summary <i>222</i></p> <p>References <i>223</i></p> <p><b>10 Performance Analysis of MIMO-Based CR-NOMA Communication</b></p> <p><b>Systems </b><i>229</i></p> <p>10.1 Introduction <i>229</i></p> <p>10.2 Related Work for Several Combinations of CR, NOMA, and MIMO</p> <p>Systems <i>231</i></p> <p>10.3 System Model <i>234</i></p> <p>10.3.1 Downlink Scenarios <i>236</i></p> <p>10.3.2 Uplink Scenario <i>238</i></p> <p>10.4 Performance Analysis <i>238</i></p> <p>10.4.1 Downlink Scenario <i>238</i></p> <p>10.4.1.1 Throughput Computation for MIMO-CR-NOMA <i>239</i></p> <p>10.4.1.2 Throughput Computation for CR-NOMA Systems <i>240</i></p> <p>10.4.1.3 Sum Throughput for CR-OMA, CR-NOMA, CR-MIMO, and</p> <p>CR-NOMA-MIMO Frameworks <i>240</i></p> <p>10.4.2 Uplink Scenario <i>241</i></p> <p>10.4.2.1 Throughput Computation for MIMO-CR-NOMA <i>241</i></p> <p>10.4.2.2 Throughput Calculation for CR-NOMA Systems <i>242</i></p> <p>10.4.2.3 Sum Throughput for CR-OMA, CR-NOMA, CR-MIMO, and</p> <p>CR-NOMA-MIMO Frameworks <i>242</i></p> <p>10.4.2.4 Computation of Interference Efficiency of CU-4 In Case of</p> <p>CR-MIMO-NOMA <i>243</i></p> <p>10.5 Simulation and Results Analysis <i>243</i></p> <p>10.5.1 Simulation Results for Downlink Scenario <i>243</i></p> <p>10.5.2 Simulation Results for Uplink Scenario <i>245</i></p> <p>10.6 Summary <i>249</i></p> <p>References <i>250</i></p> <p><b>11 Interference Management in Cognitive Radio Networks </b><i>255</i></p> <p>11.1 Introduction <i>255</i></p> <p>11.1.1 White space <i>257</i></p> <p>11.1.2 Grey Spaces <i>257</i></p> <p>11.1.3 Black Spaces <i>257</i></p> <p>11.1.4 Interference Temperature <i>257</i></p> <p>11.2 Interfering and Non-interfering CRN <i>258</i></p> <p>11.2.1 Interfering CRN <i>258</i></p> <p>11.2.2 Non-Interfering CRN <i>259</i></p> <p>11.3 Interference Cancellation Techniques in the CRN <i>261</i></p> <p>11.3.1 At the CU Transmitter <i>261</i></p> <p>11.3.2 At the CR-Receiver <i>264</i></p> <p>11.4 Cross-Layer Interference Mitigation in Cognitive Radio Networks <i>268</i></p> <p>11.5 Interference Management in Cognitive Radio Networks via Cognitive</p> <p>Cycle Constituents <i>269</i></p> <p>11.5.1 Spectrum Sensing <i>269</i></p> <p>11.5.2 Spectrum Prediction <i>269</i></p> <p>11.5.3 Transmission Below PUs’ Interference Tolerable Limit <i>271</i></p> <p>11.5.4 Using Advanced Encoding Techniques <i>271</i></p> <p>11.5.5 Spectrum Monitoring <i>272</i></p> <p>11.6 Summary <i>274</i></p> <p>References <i>274</i></p> <p><b>12 Simulation Frameworks and Potential Research Challenges for</b></p> <p><b>Internet-of-Vehicles Networks </b><i>281</i></p> <p>12.1 Introduction <i>281</i></p> <p>12.1.1 Consumer IoT <i>283</i></p> <p>12.1.2 Industrial IoT <i>283</i></p> <p>12.2 Applications of CIoT <i>284</i></p> <p>12.2.1 Smart Home and Automation <i>284</i></p> <p>12.2.2 Smart Wearables <i>284</i></p> <p>12.2.3 Home Security and Smart Domestics <i>285</i></p> <p>12.2.4 Smart Farming <i>285</i></p> <p>12.3 Applications of Industrial IoT <i>285</i></p> <p>12.3.1 Smart Industry <i>286</i></p> <p>12.3.2 Smart Grid/Utilities <i>286</i></p> <p>12.3.3 Smart Communication <i>286</i></p> <p>12.3.4 Smart City <i>287</i></p> <p>12.3.5 Smart Energy Management <i>287</i></p> <p>12.3.6 Smart Retail Management <i>288</i></p> <p>12.3.7 Robotics <i>288</i></p> <p>12.3.8 Smart Cars/Connected Vehicles <i>289</i></p> <p>12.4 Communication Frameworks for IoVs <i>289</i></p> <p>12.4.1 Vehicle-to-Vehicle (V2V) Communication <i>291</i></p> <p>12.4.2 Vehicle to Infrastructure (V2I) Communication <i>292</i></p> <p>12.4.3 Infrastructure to Vehicles (I2V) Communication <i>293</i></p> <p>12.4.4 Vehicle-to-Broadband (V2B) Communication <i>293</i></p> <p>12.4.5 Vehicle-to-Pedestrians (V2P) Communication <i>293</i></p> <p>12.5 Simulation Environments for Internet-of-Vehicles <i>295</i></p> <p>12.5.1 SUMO <i>296</i></p> <p>12.5.2 Network Simulator (NetSim) <i>296</i></p> <p>12.5.3 Ns-2 <i>297</i></p> <p>12.5.4 Ns-3 <i>297</i></p> <p>12.5.5 OMNeT++ <i>298</i></p> <p>12.6 Potential Research Challenges <i>299</i></p> <p>12.6.1 Social Challenges <i>299</i></p> <p>12.6.2 Technical Challenges <i>300</i></p> <p>12.7 Summary <i>302</i></p> <p>References <i>302</i></p> <p><b>13 Radio Resource Management in Internet-of-Vehicles </b><i>311</i></p> <p>13.1 Introduction <i>311</i></p> <p>13.1.1 Dedicated Short-Range Communication <i>313</i></p> <p>13.1.2 Wireless Access for Vehicular Environments <i>314</i></p> <p>13.1.3 Communication Access for Land Mobile (CALM) <i>314</i></p> <p>13.2 Cellular Communication <i>315</i></p> <p>13.2.1 3GPP Releases <i>315</i></p> <p>13.2.2 Long-Term Evolution <i>317</i></p> <p>13.2.3 New Radio <i>317</i></p> <p>13.2.4 Dynamic Spectrum Access <i>318</i></p> <p>13.3 Role of Cognitive Radio for Spectrum Management <i>319</i></p> <p>13.4 Effect of Mobile Nature of Vehicles/Nodes on the Networking <i>320</i></p> <p>13.5 Spectrum Sharing in IoVs <i>322</i></p> <p>13.5.1 Spectrum Sensing Scenarios <i>322</i></p> <p>13.5.2 Spectrum Sharing Scenarios <i>324</i></p> <p>13.5.3 Spectrum Mobility/Handoff Scenarios <i>325</i></p> <p>13.6 Frameworks of Vehicular Networks with Cognitive Radio <i>326</i></p> <p>13.6.1 CR-Based IoVs Networks Architecture <i>327</i></p> <p>13.7 Key Potentials and Research Challenges <i>328</i></p> <p>13.7.1 Key Potentials <i>328</i></p> <p>13.7.2 Research Challenges <i>329</i></p> <p>13.8 Summary <i>333</i></p> <p>References <i>333</i></p> <p><b>Index </b><i>000</i></p>
<p><b>Prabhat Thakur,</b><b> PhD, </b>is a Post-Doctoral Researcher in the Department of Electrical and Electronics Engineering Science, Faculty of Engineering and the Built Environment at the University of Johannesburg, South Africa. His research focus is on the energy, spectral, and interference efficient designs for spectrum sharing in cognitive radio communication systems. </p> <p><b>Ghanshyam Singh</b><b>, PhD, </b>is Professor with the Department of Electrical and Electronics Engineering Science, APK Campus, at the University of Johannesburg, South Africa. He has authored or co-authored over 250 scientific papers. </p>
<b>SPECTRUM SHARING IN COGNITIVE RADIO NETWORKS</b> <p><b>Discover the latest advances in spectrum sharing in wireless networks from two internationally recognized experts in the field</b></p> <p><i>Spectrum Sharing in Cognitive Radio Networks: Towards Highly Connected Environments</i> delivers an in-depth and insightful examination of hybrid spectrum access techniques with advanced frame structures designed for efficient spectrum utilization. The accomplished authors present the energy and spectrum efficient frameworks used in high-demand distributed architectures by relying on the self-scheduled medium access control (SMC-MAC) protocol in cognitive radio networks.</p> <p>The book begins with an exploration of the fundamentals of recent advances in spectrum sharing techniques before moving onto advanced frame structures with spectrum accessing approaches and the role of spectrum prediction and spectrum monitoring to eliminate interference. The authors also cover spectrum mobility, interference, and spectrum management for connected environments in substantial detail.</p> <p><i>Spectrum Sharing in Cognitive Radio Networks: Towards Highly Connected Environments</i> offers readers a recent and rational theoretical mathematical model of spectrum sharing strategies that can be used for practical simulation of future generation wireless communication technologies. It also highlights ongoing trends, revealing fresh research outcomes that will be of interest to active researchers in the area. Readers will also benefit from:</p> <ul> <li>An inclusive study of connected environments, 3GPP Releases, and the evolution of wireless communication generations with a discussion of advanced frame structures and access strategies in cognitive radio networks</li> <li>A treatment of cognitive radio networks using spectrum prediction and monitoring techniques</li> <li>An analysis of the effects of imperfect spectrum monitoring on cognitive radio networks</li> <li>An exploration of spectrum mobility in cognitive radio networks using spectrum prediction and monitoring techniques</li> <li>An examination of MIMO-based CR-NOMA communication systems for spectral and interference efficient designs</li> </ul> <p>Perfect for senior undergraduate and graduate students in Electrical and Electronics Communication Engineering programs, <i>Spectrum Sharing in Cognitive Radio Networks: Towards Highly Connected Environments</i> will also earn a place in the libraries of professional engineers and researchers working in the field, whether in private industry, government, or academia.</p>

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €