Details

Space Flight Dynamics


Space Flight Dynamics


Aerospace Series 2. Aufl.

von: Craig A. Kluever, Peter Belobaba, Jonathan Cooper, Allan Seabridge

92,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 12.03.2018
ISBN/EAN: 9781119157847
Sprache: englisch
Anzahl Seiten: 592

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Thorough coverage of space flight topics with self-contained chapters serving a variety of courses in orbital mechanics, spacecraft dynamics, and astronautics</b></p> <p>This concise yet comprehensive book on space flight dynamics addresses all phases of a space mission: getting to space (launch trajectories), satellite motion in space (orbital motion, orbit transfers, attitude dynamics), and returning from space (entry flight mechanics). It focuses on orbital mechanics with emphasis on two-body motion, orbit determination, and orbital maneuvers with applications in Earth-centered missions and interplanetary missions.</p> <p><i>Space Flight Dynamics</i> presents wide-ranging information on a host of topics not always covered in competing books. It discusses relative motion, entry flight mechanics, low-thrust transfers, rocket propulsion fundamentals, attitude dynamics, and attitude control. The book is filled with illustrated concepts and real-world examples drawn from the space industry. Additionally, the book includes a “computational toolbox” composed of MATLAB M-files for performing space mission analysis.</p> <p>Key features:</p> <ul> <li>Provides practical, real-world examples illustrating key concepts throughout the book</li> <li>Accompanied by a website containing MATLAB M-files for conducting space mission analysis</li> <li>Presents numerous space flight topics absent in competing titles</li> </ul> <p><i>Space Flight Dynamics</i> is a welcome addition to the field, ideally suited for upper-level undergraduate and graduate students studying aerospace engineering.</p>
<p>Preface xi</p> <p><b>1 Historical Overview 1</b></p> <p>1.1 Introduction 1</p> <p>1.2 Early Modern Period 1</p> <p>1.3 Early Twentieth Century 3</p> <p>1.4 Space Age 4</p> <p><b>2 Two-Body Orbital Mechanics 7</b></p> <p>2.1 Introduction 7</p> <p>2.2 Two-Body Problem 7</p> <p>2.3 Constants of Motion 11</p> <p>2.3.1 Conservation of Angular Momentum 11</p> <p>2.3.2 Conservation of Energy 13</p> <p>2.4 Conic Sections 15</p> <p>2.4.1 Trajectory Equation 15</p> <p>2.4.2 Eccentricity Vector 20</p> <p>2.4.3 Energy and Semimajor Axis 21</p> <p>2.5 Elliptical Orbit 23</p> <p>2.5.1 Ellipse Geometry 24</p> <p>2.5.2 Flight-Path Angle and Velocity Components 24</p> <p>2.5.3 Period of an Elliptical Orbit 31</p> <p>2.5.4 Circular Orbit 32</p> <p>2.5.5 Geocentric Orbits 33</p> <p>2.6 Parabolic Trajectory 38</p> <p>2.7 Hyperbolic Trajectory 42</p> <p>2.8 Summary 46</p> <p>Further Reading 46</p> <p>Problems 47</p> <p><b>3 Orbit Determination 55</b></p> <p>3.1 Introduction 55</p> <p>3.2 Coordinate Systems 55</p> <p>3.3 Classical Orbital Elements 57</p> <p>3.4 Transforming Cartesian Coordinates to Orbital Elements 60</p> <p>3.5 Transforming Orbital Elements to Cartesian Coordinates 66</p> <p>3.5.1 Coordinate Transformations 68</p> <p>3.6 Ground Tracks 75</p> <p>3.7 Orbit Determination from One Ground-Based Observation 79</p> <p>3.7.1 Topocentric-Horizon Coordinate System 79</p> <p>3.7.2 Inertial Position Vector 81</p> <p>3.7.3 Inertial Velocity Vector 82</p> <p>3.7.4 Ellipsoidal Earth Model 85</p> <p>3.8 Orbit Determination from Three Position Vectors 88</p> <p>3.9 Survey of Orbit-Determination Methods 95</p> <p>3.9.1 Orbit Determination Using Angles-Only Measurements 95</p> <p>3.9.2 Orbit Determination Using Three Position Vectors 97</p> <p>3.9.3 Orbit Determination from Two Position Vectors and Time 97</p> <p>3.9.4 Statistical Orbit Determination 98</p> <p>3.10 Summary 99</p> <p>References 100</p> <p>Problems 100</p> <p><b>4 Time of Flight 107</b></p> <p>4.1 Introduction 107</p> <p>4.2 Kepler’s Equation 107</p> <p>4.2.1 Time of Flight Using Geometric Methods 107</p> <p>4.2.2 Time of Flight Using Analytical Methods 108</p> <p>4.2.3 Relating Eccentric and True Anomalies 112</p> <p>4.3 Parabolic and Hyperbolic Time of Flight 117</p> <p>4.3.1 Parabolic Trajectory Flight Time 117</p> <p>4.3.2 Hyperbolic Trajectory Flight Time 119</p> <p>4.4 Kepler’s Problem 123</p> <p>4.5 Orbit Propagation Using Lagrangian Coefficients 127</p> <p>4.6 Lambert’s Problem 135</p> <p>4.7 Summary 145</p> <p>References 145</p> <p>Problems 146</p> <p><b>5 Non-Keplerian Motion 151</b></p> <p>5.1 Introduction 151</p> <p>5.2 Special Perturbation Methods 152</p> <p>5.2.1 Non-Spherical Central Body 153</p> <p>5.3 General Perturbation Methods 159</p> <p>5.3.1 Lagrange’s Variation of Parameters 160</p> <p>5.3.2 Secular Perturbations due to Oblateness ( J2) 164</p> <p>5.4 Gauss’ Variation of Parameters 174</p> <p>5.5 Perturbation Accelerations for Earth Satellites 180</p> <p>5.5.1 Non-Spherical Earth 180</p> <p>5.5.2 Third-Body Gravity 182</p> <p>5.5.3 Atmospheric Drag 185</p> <p>5.5.4 Solar Radiation Pressure 189</p> <p>5.6 Circular Restricted Three-Body Problem 192</p> <p>5.6.1 Jacobi’s Integral 194</p> <p>5.6.2 Lagrangian Points 195</p> <p>5.7 Summary 203</p> <p>References 203</p> <p>Problems 204</p> <p><b>6 Rocket Performance 213</b></p> <p>6.1 Introduction 213</p> <p>6.2 Rocket Propulsion Fundamentals 213</p> <p>6.3 The Rocket Equation 214</p> <p>6.4 Launch Trajectories 219</p> <p>6.5 Staging 226</p> <p>6.6 Launch Vehicle Performance 231</p> <p>6.7 Impulsive Maneuvers 233</p> <p>6.8 Summary 234</p> <p>References 235</p> <p>Problems 235</p> <p><b>7 Impulsive Orbital Maneuvers 241</b></p> <p>7.1 Introduction 241</p> <p>7.2 Orbit Shaping 242</p> <p>7.3 Hohmann Transfer 245</p> <p>7.3.1 Coplanar Transfer with Tangential Impulses 248</p> <p>7.4 General Coplanar Transfer 252</p> <p>7.5 Inclination-Change Maneuver 256</p> <p>7.6 Three-Dimensional Orbit Transfer 259</p> <p>7.7 Summary 264</p> <p>References 264</p> <p>Problems 264</p> <p><b>8 Relative Motion and Orbital Rendezvous 275</b></p> <p>8.1 Introduction 275</p> <p>8.2 Linear Clohessy–Wiltshire Equations 275</p> <p>8.3 Homogeneous Solution of the Clohessy–Wiltshire Equations 280</p> <p>8.4 Orbital Rendezvous Using the Clohessy–Wiltshire Equations 288</p> <p>8.5 Summary 298</p> <p>References 298</p> <p>Problems 298</p> <p><b>9 Low-Thrust Transfers 303</b></p> <p>9.1 Introduction 303</p> <p>9.2 Electric Propulsion Fundamentals 304</p> <p>9.3 Coplanar Circle-to-Circle Transfer 306</p> <p>9.3.1 Comparing Impulsive and Low-Thrust Transfers 313</p> <p>9.4 Coplanar Transfer with Earth-Shadow Effects 315</p> <p>9.5 Inclination-Change Maneuver 318</p> <p>9.6 Transfer Between Inclined Circular Orbits 320</p> <p>9.7 Combined Chemical-Electric Propulsion Transfer 322</p> <p>9.8 Low-Thrust Transfer Issues 328</p> <p>9.9 Summary 329</p> <p>References 329</p> <p>Problems 330</p> <p><b>10 Interplanetary Trajectories 335</b></p> <p>10.1 Introduction 335</p> <p>10.2 Patched-Conic Method 338</p> <p>10.2.1 Sphere of Influence 339</p> <p>10.2.2 Coplanar Heliocentric Transfers between Circular Orbits 341</p> <p>10.3 Phase Angle at Departure 351</p> <p>10.4 Planetary Arrival 355</p> <p>10.5 Heliocentric Transfers Using an Accurate Ephemeris 359</p> <p>10.5.1 Pork-Chop Plots 367</p> <p>10.5.2 Julian Date 368</p> <p>10.6 Gravity Assists 370</p> <p>10.7 Summary 378</p> <p>References 379</p> <p>Problems 379</p> <p><b>11 Atmospheric Entry 385</b></p> <p>11.1 Introduction 385</p> <p>11.2 Entry Flight Mechanics 386</p> <p>11.3 Ballistic Entry 390</p> <p>11.4 Gliding Entry 396</p> <p>11.5 Skip Entry 404</p> <p>11.6 Entry Heating 412</p> <p>11.7 Space Shuttle Entry 418</p> <p>11.8 Summary 422</p> <p>References 423</p> <p>Problems 423</p> <p><b>12 Attitude Dynamics 429</b></p> <p>12.1 Introduction 429</p> <p>12.2 Rigid Body Dynamics 430</p> <p>12.2.1 Angular Momentum of a Rigid Body 432</p> <p>12.2.2 Principal Axes 438</p> <p>12.2.3 Rotational Kinetic Energy 439</p> <p>12.2.4 Euler’s Moment Equations 441</p> <p>12.3 Torque-Free Motion 442</p> <p>12.3.1 Euler Angle Rates 447</p> <p>12.4 Stability and Flexible Bodies 457</p> <p>12.4.1 Spin Stability about the Principal Axes 457</p> <p>12.4.2 Stability of Flexible Bodies 459</p> <p>12.5 Spin Stabilization 464</p> <p>12.5.1 Dual-Spin Stabilization 466</p> <p>12.6 Disturbance Torques 467</p> <p>12.6.1 Gravity-Gradient torque 467</p> <p>12.6.2 Aerodynamic Torque 468</p> <p>12.6.3 Solar Radiation Pressure Torque 469</p> <p>12.6.4 Magnetic Torque 470</p> <p>12.7 Gravity-Gradient Stabilization 470</p> <p>12.8 Summary 476</p> <p>References 477</p> <p>Problems 477</p> <p><b>13 Attitude Control 485</b></p> <p>13.1 Introduction 485</p> <p>13.2 Feedback Control Systems 485</p> <p>13.2.1 Transfer Functions 486</p> <p>13.2.2 Closed-Loop Control Systems 489</p> <p>13.2.3 Second-Order System Response 490</p> <p>13.3 Mechanisms for Attitude Control 497</p> <p>13.3.1 Reaction Jets 497</p> <p>13.3.2 Momentum-Exchange Devices 497</p> <p>13.3.3 Magnetic Torquers 501</p> <p>13.4 Attitude Maneuvers Using Reaction Wheels 501</p> <p>13.5 Attitude Maneuvers Using Reaction Jets 513</p> <p>13.5.1 Phase-Plane Analysis of Satellite Attitude Dynamics 513</p> <p>13.5.2 Reaction Jet Control Law 518</p> <p>13.6 Nutation Control Using Reaction Jets 527</p> <p>13.7 Summary 534</p> <p>References 535</p> <p>Further Reading 535</p> <p>Problems 535</p> <p>Appendix A: Physical Constants 541</p> <p>Appendix B: Review of Vectors 543</p> <p>B.1 Introduction 543</p> <p>B.2 Vectors 543</p> <p>B.3 Vector Operations 544</p> <p>B.3.1 Vector Addition 544</p> <p>B.3.2 Cross Product 545</p> <p>B.3.3 Dot Product 546</p> <p>B.3.4 Scalar Triple Product 547</p> <p>B.3.5 Vector Triple Product 547</p> <p>Appendix C: Review of Particle Kinematics 549</p> <p>C.1 Introduction 549</p> <p>C.2 Cartesian Coordinates 549</p> <p>C.3 Polar Coordinates 551</p> <p>C.4 Normal-Tangential Coordinates 552</p> <p>Index</p>
<p><b>Craig A. Kluever is C. W.</b> LaPierre Professor of Mechanical and Aerospace Engineering, University of Missouri-Columbia, USA. He has industry experience as an aerospace engineer on the Space Shuttle program and has performed extensive research at the University of Missouri in collaboration with NASA involving trajectory optimization, space mission design, entry flight mechanics, and guidance and control of aerospace vehicles.</p>
<p><b>Thorough coverage of space flight topics with self-contained chapters serving a variety of courses in orbital mechanics, spacecraft dynamics, and astronautics</b></p> <p>This concise yet comprehensive book on space flight dynamics addresses all phases of a space mission: getting to space (launch trajectories), satellite motion in space (orbital motion, orbit transfers, attitude dynamics), and returning from space (entry flight mechanics). It focuses on orbital mechanics with emphasis on two-body motion, orbit determination, and orbital maneuvers with applications in Earth-centered missions and interplanetary missions.</p> <p><i>Space Flight Dynamics</i> presents wide-ranging information on a host of topics not always covered in competing books. It discusses relative motion, entry flight mechanics, low-thrust transfers, rocket propulsion fundamentals, attitude dynamics, and attitude control. The book is filled with illustrated concepts and real-world examples drawn from the space industry. Additionally, the book includes a "computational toolbox" composed of MATLAB M-files for performing space mission analysis.</p> <p><b>Key features:</b></p> <ul> <li>Provides practical, real-world examples illustrating key concepts throughout the book</li> <li>Accompanied by a website containing MATLAB M-files for conducting space mission analysis</li> <li>Presents numerous space flight topics absent in competing titles</li> </ul> <p><i>Space Flight Dynamics</i> is a welcome addition to the field, ideally suited for upper-level undergraduate and graduate students studying aerospace engineering.</p>

Diese Produkte könnten Sie auch interessieren:

Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
PDF ebook
156,99 €
Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
EPUB ebook
156,99 €
Wear
Wear
von: Gwidon W. Stachowiak
PDF ebook
159,99 €