Details

Silicon Carbide, Volume 2


Silicon Carbide, Volume 2

Power Devices and Sensors
1. Aufl.

von: Peter Friedrichs, Tsunenobu Kimoto, Lothar Ley, Gerhard Pensl

174,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 08.04.2011
ISBN/EAN: 9783527629084
Sprache: englisch
Anzahl Seiten: 520

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><i>Silicon Carbide</i> - this easy to manufacture compound of silicon and carbon is said to be THE emerging material for applications in electronics. High thermal conductivity, high electric field breakdown strength and high maximum current density make it most promising for high-powered semiconductor devices. Apart from applications in power electronics, sensors, and NEMS, SiC has recently gained new interest as a substrate material for the manufacture of controlled graphene. SiC and graphene research is oriented towards end markets and has high impact on areas of rapidly growing interest like electric vehicles.</p> <p>This volume is devoted to high power devices products and their challenges in industrial application. Readers will benefit from reports on development and reliability aspects of Schottky barrier diodes, advantages of SiC power MOSFETs, or SiC sensors. The authors discuss MEMS and NEMS as SiC-based electronics for automotive industry as well as SiC-based circuit elements for high temperature applications, and the application of transistors in PV-inverters.</p> <p>The list of contributors reads like a "Who's Who" of the SiC community, strongly benefiting from collaborations between research institutions and enterprises active in SiC crystal growth and device development. Among the former are CREE Inc. and Fraunhofer ISE, while the industry is represented by Toshiba, Nissan, Infineon, NASA, Naval Research Lab, and Rensselaer Polytechnic Institute, to name but a few.</p>
1) Present Status and Future Prospects for Electronics in EVs/HEVs and Expectations for Wide Bandgap Semiconductor Devices<br> 2) Silicon Carbide power devices -<br> Status and upcoming challenges with a special attention to industrial application<br> 3) Effect of an intermediate graphite layer on the electronic properties of metal/SiC contacts<br> 4) Reliability aspects of SiC Schottky Diodes<br> 5) Design, process, and performance of all-epitaxial normally-off SiC JFETs<br> 6) Extreme Temperature SiC Integrated Circuit Technology<br> 7) 1200 V SiC Vertical-channel-JFET based cascode switches<br> 8) Alternative techniques to reduce interface traps in n-type 4H-SiC MOS capacitors<br> 9) High electron mobility ahieved in n-channel 4H-SiC MOSFETs oxidized in the presence of nitrogen<br> 10) 4H-SiC MISFETs with Nitrogen-containing Insulators<br> 11) SiC Inversion Mobility<br> 12) Development of SiC diodes, power MOSFETs and intellegent Power Modules<br> 13) Reliability issues of 4H-SiC power MOSFETs toward high junction temperature operation<br> 14) Application of SiC-Transistors in Photovoltaic-Inverters<br> 15) Design and Technology Considerations for SiC Bipolar Devices: BJTs, IGBTs,and GTOs<br> 16) Suppressed surface recombination structure and surface passivation for improving current gain of 4H-SiC BJTs<br> 17) SiC avalanche photodiodes and photomultipliers for ultraviolet and solar-blind light detection<br>
"Hence, the two volumes provide an invaluable source of information for everybody working with SiC or generally interested in the current and future state of power electronics." (Int. Journal of Microstructure and Materials Properties, 2011)<br /> <br />
<p><b>Peter Friedrichs</b> is Managing Director at SiCED, a joint venture between Siemens and Infineon located in Erlangen, Germany. SiCED develops technologies for SiC power semiconductors and systems based on these devices. Their research is devoted to device design and simulation, processing technology as well as the characterization of devices including also end of life tests.</p> <p><b>Tsunenobu Kimoto,</b> Professor at the Department of Electronic Science and Engineering at Kyoto University, Japan, has dedicated his work to research on the growth and characterization of wide bandgap semiconductors, the process technology and physics of SiC devices. He has authored over 300 scientific publications.</p> <p><b>Lothar Ley</b> is recently retired as Professor of Physics and Head of the Institute of Technical Physics at the University of Erlangen, Germany. From 2002 to 2008 he was speaker of the interdisciplinary Research Unit (DFG Forschergruppe) "Silicon carbide as semiconductor material: novel aspects of crystal growth and doping". Alongside its experimental research on SiC, his group currently also works on Diamond, Carbon Nanotubes, and Graphene. He has authored and co-authored over 400 scientific publications.</p> <p><b>Gerhard Pensl</b> works with his group on the growth of SiC single crystals for high power device applications, its electrical and optical characterization, and on the investigation of multi-crystalline Si for solar cells. He is Academic Director at the Institute of Applied Physics at the University Erlangen-Nurnberg, Germany, and has authored over 300 scientific publications.</p>

Diese Produkte könnten Sie auch interessieren:

Systemtheoretische Grundlagen optoelektronischer Sensoren
Systemtheoretische Grundlagen optoelektronischer Sensoren
von: Herbert Jahn, Ralf Reulke
PDF ebook
79,99 €
Superconductivity
Superconductivity
von: Kristian Fossheim, Asle Sudboe
PDF ebook
136,99 €
Solid-State Physics for Electronics
Solid-State Physics for Electronics
von: Andre Moliton
PDF ebook
215,99 €