Details

Self-Assembly and Nanotechnology Systems


Self-Assembly and Nanotechnology Systems

Design, Characterization, and Applications
1. Aufl.

von: Yoon S. Lee

137,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 03.10.2011
ISBN/EAN: 9781118103678
Sprache: englisch
Anzahl Seiten: 480

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A fundamental resource for understanding and developing effective self-assembly and nanotechnology systems</b></p> <p>Systematically integrating self-assembly, nanoassembly, and nanofabrication into one easy-to-use source, <i>Self-Assembly and Nanotechnology Systems</i> effectively helps students, professors, and researchers comprehend and develop applicable techniques for use in the field. Through case studies, countless examples, clear questions, and general applications, this book provides experiment-oriented techniques for designing, applying, and characterizing self-assembly and nanotechnology systems.</p> <p><i>Self-Assembly and Nanotechnology Systems</i> includes:</p> <ul> <li>Techniques for identifying assembly building units</li> <li>Practical assembly methods to focus on when developing nanomaterials, nanostructures, nanoproperties, nanofabricated systems, and nanomechanics</li> <li>Algorithmic diagrams in each chapter for a general overview</li> <li>Schematics designed to link assembly principles with actual systems</li> <li>Hands-on lab activities</li> </ul> <p>This informative reference also analyzes the diverse origins and structures of assembly building units, segmental analysis, and selection of assembly principles, methods, characterization techniques, and predictive models. Complementing the author's previous conceptually based book on this topic, <i>Self-Assembly and Nanotechnology Systems</i> is a practical guide that grants practitioners not only the skills to properly analyze assembly building units but also how to work with applications to exercise and develop their knowledge of this rapidly advancing scientific field.</p>
<b>PREFACE xvii</b> <p><b>ABBREVIATIONS xix</b></p> <p><b>PART I BUILDING UNITS 1</b></p> <p><b>1 Self-Assembly Systems 3</b></p> <p>1.1. Self-Assembly / 4</p> <p>1.2. Identification of Building Units / 6</p> <p>1.2.1. What Is a Self-Assembly Building Unit? / 6</p> <p>1.2.2. Segmental Analysis / 7</p> <p>1.2.2.1. Three Fundamental Segments / 7</p> <p>1.2.2.2. Two Additional Segments / 11</p> <p>1.3. Implication of Building Unit Structures for Self-Assemblies / 15</p> <p>1.4. General Assembly Diagram / 17</p> <p>1.5. Collection of Building Units / 23</p> <p>1.5.1. Basic Building Units / 23</p> <p>1.5.2. Directionally Assembling Building Units / 26</p> <p>1.5.3. Asymmetrically Packing Building Units / 28</p> <p>1.5.4. Functional Building Units / 28</p> <p>1.6. Concluding Remarks / 30</p> <p>References / 31</p> <p><b>2 Nanotechnology Systems 33</b></p> <p>2.1. Nanoassembly / 35</p> <p>2.2. Identification of Building Units / 37</p> <p>2.2.1. What Is a Nanoassembly Building Unit? / 37</p> <p>2.2.2. Fabrication Building Units / 38</p> <p>2.2.3. Reactive Building Units / 40</p> <p>2.3. Nanoelements / 41</p> <p>2.4. Implication of Building Unit Structures for Nanoassemblies / 42</p> <p>2.5. General Assembly Diagram / 45</p> <p>2.6. Self-Assembly, Nanoassembly, and Nanofabrication / 51</p> <p>2.7. Collection of Building Units / 54</p> <p>2.7.1. Ligand-Protected Nanoparticles / 54</p> <p>2.7.2. Functional Surfaces / 56</p> <p>2.7.3. Reactive Precursors / 57</p> <p>2.7.4. Substrates / 57</p> <p>2.7.5. Reducing Agents / 58</p> <p>2.8. Concluding Remarks / 58</p> <p>References / 60</p> <p><b>PART II DESIGN 61</b></p> <p><b>3 Identification of Self-Assembly Capability 63</b></p> <p>3.1. Assembly Issue / 63</p> <p>3.2. General Overview / 64</p> <p>3.3. Assembly Principles / 65</p> <p>3.3.1. Molecular Self-Assembly / 65</p> <p>3.3.1.1. Ionic Surfactants / 69</p> <p>3.3.1.2. Nonionic Surfactants / 70</p> <p>3.3.2. Colloidal Self-Assembly / 71</p> <p>3.3.2.1. Colloids with Different Origins / 74</p> <p>3.3.2.2. Colloids with Different Sizes / 75</p> <p>3.3.3. Directionally Assembling Systems / 77</p> <p>3.3.4. Self-Assembly at Surfaces / 81</p> <p>3.3.4.1. Hydrophobic Surfaces / 82</p> <p>3.3.4.2. Hydrophilic Surfaces / 87</p> <p>3.4. Collection of Primary Self-Assembled Aggregates / 89</p> <p>3.5. Summary / 89</p> <p>References / 91</p> <p><b>4 Identification of Multi-Step Self-Assemblies 93</b></p> <p>4.1. Assembly Issue / 93</p> <p>4.2. General Overview / 94</p> <p>4.3. Assembly Principles / 96</p> <p>4.3.1. Molecular Self-Assembly of Surfactants / 97</p> <p>4.3.2. Colloidal Self-Assembly / 102</p> <p>4.4. Collection of Higher-Order Self-Assembled Aggregates / 105</p> <p>4.5. Collection of Self-Assembled Aggregates within Biological Systems / 107</p> <p>4.6. Summary / 108</p> <p>References / 110</p> <p><b>5 Control of the Structures of Self-Assembled Aggregates 111</b></p> <p>5.1. Assembly Issue / 111</p> <p>5.2. General Overview / 112</p> <p>5.2.1. Primary Self-Assembled Aggregates / 112</p> <p>5.2.2. Higher-Order Self-Assembled Aggregates / 113</p> <p>5.3. Assembly Principles / 115</p> <p>5.3.1. Primary Self-Assembled Aggregates / 115</p> <p>5.3.1.1. Molecular Systems I / 117</p> <p>5.3.1.2. Molecular Systems II / 121</p> <p>5.3.1.3. Colloidal Systems / 125</p> <p>5.3.2. Higher-Order Self-Assembled Aggregates / 130</p> <p>5.3.2.1. Molecular Systems / 132</p> <p>5.3.2.2. Colloidal Systems / 134</p> <p>5.4. Collection of the Structures of Self-Assembled Aggregates / 136</p> <p>5.4.1. Primary Self-Assembled Aggregates / 136</p> <p>5.4.2. Higher-Order Self-Assembled Aggregates / 137</p> <p>5.5. Summary / 139</p> <p>References / 140</p> <p><b>6 Hierarchy and Chirality of Self-Assembled Aggregates 141</b></p> <p>6.1. Assembly Issue / 141</p> <p>6.2. General Overview / 142</p> <p>6.3. Assembly Principles / 143</p> <p>6.3.1. Molecular Systems / 145</p> <p>6.3.2. Surface Systems / 148</p> <p>6.4. Collection of Hierarchy within Self-Assembled Aggregates / 156</p> <p>6.5. Collection of Chirality Expressed by Self-Assembled Aggregates / 157</p> <p>6.6. Summary / 159</p> <p>References / 160</p> <p><b>7 Assembly with Multiple Building Units 161</b></p> <p>7.1. Assembly Issue / 161</p> <p>7.2. General Overview / 163</p> <p>7.3. Assembly Principles / 164</p> <p>7.3.1. Analysis of Building Units / 164</p> <p>7.3.2. Assembly of Nanoassembled Systems / 168</p> <p>7.3.2.1. Homogeneous Assemblies / 168</p> <p>7.3.2.2. Sequential Assemblies / 172</p> <p>7.3.2.3. Hierarchical Assemblies / 177</p> <p>7.3.3. General Assembly Trends / 180</p> <p>7.3.3.1. Homogeneous Assemblies / 180</p> <p>7.3.3.2. Heterogeneous Assemblies I / 182</p> <p>7.3.3.3. Surface Assemblies / 183</p> <p>7.3.3.4. Heterogeneous Assemblies II / 184</p> <p>7.4. Collection of Nanoassembled Systems I / 185</p> <p>7.5. Collection of Nanoporous Solids / 186</p> <p>7.5.1. Synthetic Zeolites / 187</p> <p>7.5.2. Metal-Organic Frameworks / 189</p> <p>7.6. Summary / 189</p> <p>References / 189</p> <p><b>8 Directed and Forced Assemblies 191</b></p> <p>8.1. Assembly Issue / 191</p> <p>8.2. General Overview / 192</p> <p>8.3. Assembly Principles / 196</p> <p>8.3.1. Analysis of Building Units / 196</p> <p>8.3.2. Assembly under External Forces / 199</p> <p>8.3.2.1. Forced Assemblies / 199</p> <p>8.3.2.2. Directed/Forced Assemblies / 204</p> <p>8.3.2.3. Directed Assemblies / 208</p> <p>8.3.3. General Assembly Trends under External Forces / 213</p> <p>8.3.3.1. Forced Assemblies / 214</p> <p>8.3.3.2. Directed/Forced Assemblies / 215</p> <p>8.3.3.3. Directed Assemblies / 216</p> <p>8.3.3.4. Window of Critical External Forces / 218</p> <p>8.4. Techniques for Directed and Forced Assemblies / 219</p> <p>8.5. Surface-Induced Directed and Forced Assemblies / 220</p> <p>8.6. Collection of Nanoassembled Systems II / 220</p> <p>8.7. Summary / 222</p> <p>References / 222</p> <p><b>PART III APPLICATIONS 225</b></p> <p><b>9 External Signal–Responsive Nanomaterials 227</b></p> <p>9.1. Nanoissue / 227</p> <p>9.2. General Overview / 228</p> <p>9.3. Assembly Principles / 231</p> <p>9.3.1. External Signal–Responsive Molecular Assemblies / 231</p> <p>9.3.1.1. Light-Responsive Assemblies / 232</p> <p>9.3.1.2. Catalytic Reaction–Responsive Assemblies / 235</p> <p>9.3.1.3. Electrochemical-Responsive Assemblies / 237</p> <p>9.3.1.4. Solution pH–Responsive Assemblies / 239</p> <p>9.3.2. External Signal–Responsive Colloidal Assemblies / 242</p> <p>9.3.2.1. Thermo-Responsive Assemblies / 244</p> <p>9.3.2.2. Solution pH–Responsive Assemblies / 245</p> <p>9.3.2.3. Magnetic Field–Responsive Assemblies / 247</p> <p>9.4. Collection of External Signal–Responsive Assembly Systems / 250</p> <p>9.5. From Assembly Systems to Nanomaterials / 250</p> <p>9.6. Collection of External Signal–Responsive Nanomaterials / 253</p> <p>9.7. Summary / 254</p> <p>References / 255</p> <p><b>10 Nanomaterials with Intrinsic Functionalities 257</b></p> <p>10.1. Nanoissue / 257</p> <p>10.2. General Overview / 258</p> <p>10.3. Assembly Principles / 261</p> <p>10.3.1. Molecular Assembled Systems / 263</p> <p>10.3.2. Colloidal Assembled Systems / 267</p> <p>10.4. From Assembled Systems to Nanomaterials / 270</p> <p>10.5. Collection of Nanomaterials with Intrinsic Functionalities / 270</p> <p>10.6. Summary / 272</p> <p>References / 272</p> <p><b>11 Nanostructures: Designed to Perform 275</b></p> <p>11.1. Nanoissue / 275</p> <p>11.2. General Overview / 276</p> <p>11.3. Assembly Principles / 277</p> <p>11.3.1. Analysis of Building Units / 277</p> <p>11.3.2. Nanostructure Assemblies / 281</p> <p>11.3.3. Nanopore-Based Nanostructures / 283</p> <p>11.3.4. Nanoparticle-Based Nanostructures / 287</p> <p>11.3.5. Nanofilm-Based Nanostructures / 292</p> <p>11.3.6. General Trends / 297</p> <p>11.4. Collection of Common Nanostructure Names / 298</p> <p>11.5. Collection of Nanostructures and Their Applications / 298</p> <p>11.6. Summary / 301</p> <p>References / 303</p> <p><b>12 Nanoproperties: Controlled to Express 305</b></p> <p>12.1. Nanoissue / 305</p> <p>12.2. General Overview / 306</p> <p>12.3. Assembly Principles / 307</p> <p>12.3.1. Analysis of Building Units / 307</p> <p>12.3.2. Different Types of Nanoproperties / 313</p> <p>12.3.3. Assemblies to Obtain Nanoproperties / 316</p> <p>12.3.4. Individual Types of Nanoproperties / 318</p> <p>12.3.5. Collective Types of Nanoproperties / 321</p> <p>12.3.6. Cooperative Types of Nanoproperties / 324</p> <p>12.3.7. General Trends / 327</p> <p>12.4. Collection of Nanoproperties and Their Applications / 328</p> <p>12.5. Summary / 329</p> <p>References / 331</p> <p><b>13 Nanofabricated Systems: Combined to Function 333</b></p> <p>13.1. Nanoissue / 333</p> <p>13.2. General Overview / 334</p> <p>13.3. Fabrication Principles / 335</p> <p>13.3.1. Analysis of Building Units / 336</p> <p>13.3.2. Nanofabrication / 340</p> <p>13.3.3. Bottom-Up Approach / 342</p> <p>13.3.4. Top-Down Approach / 345</p> <p>13.3.5. Bottom-Up/Top-Down Hybrid Approach / 347</p> <p>13.3.6. General Trends / 350</p> <p>13.4. Collection of Top-Down Techniques / 352</p> <p>13.5. Collection of Top-Down Bulk Materials and Functionalizing Agents / 352</p> <p>13.6. Collection of Nanofabricated Systems and Their Applications / 353</p> <p>13.7. Summary / 353</p> <p>References / 356</p> <p><b>14 Nanomechanical Movements: Combined to Operate 359</b></p> <p>14.1. Nanoissue / 359</p> <p>14.2. General Overview / 360</p> <p>14.3. Fabrication Principles / 361</p> <p>14.3.1. Element Motions / 361</p> <p>14.3.2. Working Mechanisms / 362</p> <p>14.3.3. Analysis of Building Units / 364</p> <p>14.3.4. Periodic Push Motions / 372</p> <p>14.3.5. Periodic Pull Motions / 374</p> <p>14.3.6. Push–Pull Motion Cycles / 375</p> <p>14.3.7. Periodic Push Motions under Guide Motion / 378</p> <p>14.3.8. Periodic Pull Motions under Guide Motion / 380</p> <p>14.3.9. Push–Pull Motion Cycles under Guide Motion / 383</p> <p>14.3.10. General Trends / 385</p> <p>14.4. Collection of Nanomechanical Movements / 386</p> <p>14.5. Summary / 390</p> <p>References / 390</p> <p><b>PART IV CHARACTERIZATION 393</b></p> <p><b>15 Assembly Forces and Measurements 395</b></p> <p>15.1. Intermolecular and Colloidal Forces / 395</p> <p>15.2. Collection of Intermolecular and Colloidal Forces / 396</p> <p>15.3. Measurements of Intermolecular and Colloidal Forces / 396</p> <p>15.3.1. Atomic Force Microscopy / 396</p> <p>15.3.2. Surface Forces Apparatus / 398</p> <p>15.4. Collection of Measurement Techniques / 399</p> <p>15.5. Implications of Building Unit Structures for Characterization / 399</p> <p>References / 402</p> <p><b>16 Assembly Processes and Critical Behaviors 405</b></p> <p>16.1. Critical Behaviors as the Characterization Guide of Assembly Processes / 405</p> <p>16.2. Characterization Principles / 407</p> <p>16.2.1. Self-Assembly Capability / 407</p> <p>16.2.1.1. Molecular Systems / 407</p> <p>16.2.1.2. Colloidal Systems / 409</p> <p>16.2.2. Multi-Step Self-Assemblies / 410</p> <p>16.2.2.1. Molecular Systems / 410</p> <p>16.2.2.2. Colloidal Systems / 412</p> <p>16.3. Collection of Physical Properties to Measure / 413</p> <p>16.4. Collection of Critical Assembly Parameters / 414</p> <p>References / 414</p> <p><b>17 Assembled Systems and Structural Properties 417</b></p> <p>17.1. Structural Properties for the Characterization of Assembled Systems / 417</p> <p>17.2. Characterization Principles / 419</p> <p>17.2.1. Structures of Primary Assembled Systems / 419</p> <p>17.2.1.1. Molecular Systems / 419</p> <p>17.2.1.2. Colloidal Systems / 421</p> <p>17.2.2. Structures of Higher-Order Assembled Systems / 422</p> <p>17.2.3. Hierarchy and Chirality / 422</p> <p>17.2.4. Effect of External Forces / 425</p> <p>17.2.5. Functional Assembled Systems / 426</p> <p>17.3. Collection of Structural Properties to Measure / 427</p> <p>References / 427</p> <p><b>18 Modeling and Simulations 429</b></p> <p>18.1. Assembly Systems Are Big and Multi-Scaled / 429</p> <p>18.2. Classic Models / 430</p> <p>18.2.1. Thermodynamic Models / 430</p> <p>18.2.2. Colloidal Model / 430</p> <p>18.2.3. Geometrical Model / 431</p> <p>18.2.4. Elastic Model / 431</p> <p>18.2.5. Isotherms / 431</p> <p>18.3. Simulations / 431</p> <p>18.3.1. Electronic Simulations / 432</p> <p>18.3.1.1. Density Functional Theory / 432</p> <p>18.3.1.2. Mean-Field Theory / 433</p> <p>18.3.2. Atomistic Simulations / 433</p> <p>18.3.2.1. Molecular Dynamics and Monte Carlo Methods / 433</p> <p>18.3.3. Coarse-Grained Simulations / 433</p> <p>18.3.3.1. Dissipative Particle Dynamics / 434</p> <p>18.3.3.2. Patchy Particle Model / 434</p> <p>18.3.3.3. Brownian Dynamics / 435</p> <p>18.3.3.4. BRAHMS / 435</p> <p>18.3.3.5. MARTINI / 436</p> <p>18.3.4. Continuum Simulations / 436</p> <p>18.3.5. Multi-Scale Simulations / 436</p> <p>18.4. Concluding Remarks / 437</p> <p>References / 437</p> <p><b>EPILOGUE</b></p> <p><b>Informatics for Self-Assembly and Nanotechnology Systems 441</b></p> <p>E.1. Background / 441</p> <p>E.2. Definition and Principle / 443</p> <p>E.3. Structure / 444</p> <p>E.4. Development and Benefits / 445</p> <p>E.5. Challenges / 446</p> <p>References / 446</p> <p><b>INDEX 449</b></p>
<p>“While the book may be too challenging for many general readers, it may turn out to be a useful resource for training postgraduate students in the field of self-assembly.”  (<i>Chemistry & Industry</i>, 1 June 2012)</p>
<b>YOON S. LEE, PhD</b>, is a Scientific Information Analyst at Chemical Abstracts Service. He earned his PhD from Seoul National University in South Korea and performed postdoctoral research at The Ohio State University. He is the author of <i>Self-Assembly and Nanotechnology: A Force Balance Approach</i>.
<b>A fundamental resource for understanding and developing effective self-assembly and nanotechnology systems</b> <p>Systematically integrating self-assembly, nanoassembly, and nanofabrication into one easy-to-use source, <i>Self-Assembly and Nanotechnology Systems</i> effectively helps students, professors, and researchers comprehend and develop applicable techniques for use in the field. Through case studies, countless examples, clear questions, and general applications, this book provides experiment-oriented techniques for designing, applying, and characterizing self-assembly and nanotechnology systems.</p> <p><i>Self-Assembly and Nanotechnology Systems</i> includes:</p> <ul> <li> <p>Techniques for identifying assembly building units</p> </li> <li> <p>Practical assembly methods to focus on when developing nanomaterials, nanostructures, nanoproperties, nanofabricated systems, and nanomechanics</p> </li> <li> <p>Algorithmic diagrams in each chapter for a general overview</p> </li> <li> <p>Schematics designed to link assembly principles with actual systems</p> </li> <li> <p>Hands-on lab activities</p> </li> </ul> <p>This informative reference also analyzes the diverse origins and structures of assembly building units, segmental analysis, and selection of assembly principles, methods, characterization techniques, and predictive models. Complementing the author's previous conceptually based book on this topic, <i>Self-Assembly and Nanotechnology Systems</i> is a practical guide that grants practitioners not only the skills to properly analyze assembly building units but also how to work with applications to exercise and develop their knowledge of this rapidly advancing scientific field.</p>

Diese Produkte könnten Sie auch interessieren:

Nanoscale Science and Technology
Nanoscale Science and Technology
von: Robert Kelsall, Ian W. Hamley, Mark Geoghegan
PDF ebook
88,99 €
Nanotechnology
Nanotechnology
von: Jurgen Schulte
PDF ebook
91,99 €
Scaling Issues and Design of MEMS
Scaling Issues and Design of MEMS
von: Salvatore Baglio, Salvatore Castorina, Nicolo Savalli
PDF ebook
110,99 €