Details

Scaling Issues and Design of MEMS


Scaling Issues and Design of MEMS


1. Aufl.

von: Salvatore Baglio, Salvatore Castorina, Nicolo Savalli

110,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 31.07.2008
ISBN/EAN: 9780470034088
Sprache: englisch
Anzahl Seiten: 244

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This accessible volume delivers a complete design methodology for microelectromechanical systems (MEMS). Focusing on the scaling of an autonomous micro-system, it explains the real-world problems and theoretical concepts of several different aspects inherent to the miniaturization of sensors and actuators. It reports on the analysis of dimensional scaling, the modelling, design and experimental characterization of a wide range of specific devices and applications, including: <ul type="disc"> <li>temperature microsensors based on an integrated complementary metal-oxide-semiconductor (CMOS) thermocouple;</li> <li>mechanical sensors;</li> <li>inductive microsensors for the detection of magnetic particles;</li> <li>electrostatic, thermal and magnetic actuators.</li> </ul> <p>With an original approach, this informative text encompasses the entire range of themes currently at the forefront of MEMS, including an analysis of the importantissue of energy sources in MEMS. In addition, the book explores contemporary research into the design of complete MEMS with a case study on colonies of microbots. </p> <p><i>Scaling Issues and Design of MEMS</i> aims to improve the reader’s basic knowledge on modelling issues of complex micro devices, and to encourage new thinking about scaling effects. It will provide support for practising engineers working within the defence industry and will also be of welcome interest to graduate students and researchers with a background in electronic engineering, physics, chemistry, biology and materials science.</p>
Preface. <p>Introduction.</p> <p>1. Scaling of MEMS.</p> <p>1.1 Introduction to Scaling Issues.</p> <p>1.2 Examples of Dimensional Scaling Potentials.</p> <p>1.2.1 Scaling effects on a cantilever beam.</p> <p>1.2.2 Scaling of electrostatic actuators.</p> <p>1.2.3 Scaling of thermal actuators.</p> <p>1.3 Motivation, Fabrication and Scaling of MEMS.</p> <p>1.4 Scaling as a Methodological Approach.</p> <p>References.</p> <p>2. Scaling of Microactuators - an Overview.</p> <p>2.1 Electrostatic Actuators.</p> <p>2.1.1 Transverse combs modelling.</p> <p>2.1.2 Lateral combs modelling.</p> <p>2.2 Magnetic Transducers.</p> <p>2.2.1 Magnetic actuators.</p> <p>2.2.2 Ferromagnetic transducers.</p> <p>2.3 Thermal Actuators.</p> <p>2.3.1 Thermomechanical actuators.</p> <p>Acknowledgements.</p> <p>References.</p> <p>3. Scaling of Thermal Sensors.</p> <p>3.1 Thermoelectric Sensors.</p> <p>3.2 Application: Dew-Point Relative Humidity Sensors.</p> <p>3.2.1 Device structures and operating principles.</p> <p>3.2.2 Device modelling and simulations.</p> <p>3.2.3 Device design.</p> <p>3.3 Conclusions.</p> <p>Acknowledgements.</p> <p>References.</p> <p>4. Inductive Sensors for Magnetic Fields.</p> <p>4.1 Inductive Microsensors for Magnetic Particles.</p> <p>4.1.1 Integrated inductive sensors.</p> <p>4.1.2 Planar differential transformer.</p> <p>4.1.3 Signal-conditioning circuits.</p> <p>4.1.4 Simulation of the planar differential transformer.</p> <p>4.1.5 Experimental results.</p> <p>4.2 Magnetic Immunoassay Systems.</p> <p>Acknowledgements.</p> <p>References.</p> <p>5. Scaling of Mechanical Sensors.</p> <p>5.1 Introduction.</p> <p>5.2 Device Modelling and Fabrication Processes.</p> <p>5.2.1 Fabrication processes.</p> <p>5.2.2 Devices modelling.</p> <p>5.2.3 Accelerometers.</p> <p>5.2.4 Resonant mass sensors.</p> <p>5.3 Experimental Device Prototypes.</p> <p>5.3.1 CMOS devices.</p> <p>5.3.2 SOI devices.</p> <p>5.3.3 Finite element modelling.</p> <p>5.4 Scaling Issues on Microaccelerometers and Mass Sensors.</p> <p>5.5 Some Experimental Results.</p> <p>5.6 Vibrating Microgyroscopes.</p> <p>5.6.1 Coupled vibratory gyroscopes.</p> <p>Acknowledgements.</p> <p>References. </p> <p>6. Scaling of Energy Sources.</p> <p>6.1 Introduction.</p> <p>6.2 Energy Supply Strategies for Autonomous Microsystems.</p> <p>6.2.1 Use of microlenses in photothermomechanical actuation.</p> <p>6.2.2 Technologies, materials and design of photothermomechanical actuators.</p> <p>6.3 Photothermomechanical and Photothermoelectric Strategies for Highly Efficient Power Supply of Autonomous Microsystems.</p> <p>6.3.1 Photothermoelectric power generation.</p> <p>6.4 Efficiency of the Combined Energy Supply Strategy 166.</p> <p>References.</p> <p>7. Technologies and Architectures for Autonomous MEMS Microrobots.</p> <p>7.1 Design Issues in Microrobots.</p> <p>7.2 A Microrobot Architecture Based on Photothermal Strategy.</p> <p>7.3 A Microrobot as a Paradigm for the Analysis of Scaling in Microsystems.</p> <p>References.</p> <p>8. Moving towards the Nanoscale.</p> <p>8.1 Semiconductor-Based Nano-Electromechanical Systems.</p> <p>8.2 Nanofabrication Facilities.</p> <p>8.3 Overview of Nanosensors.</p> <p>8.3.1 Use of AFM for materials and nanodevices characterization.</p> <p>8.3.2 Scanning thermal microscopy (SThM).</p> <p>8.3.3 Scanning Hall probe microscopy.</p> <p>8.3.4 Mechanical resonant immunospecific biological detector.</p> <p>8.3.5 Micromechanical sensor for differential detection of nanoscale motions.</p> <p>8.3.6 Nanomagnetic sensors.</p> <p>8.3.7 Nano-wire piezoresistors.</p> <p>8.3.8 Nanometre-scale mechanical resonators.</p> <p>8.3.9 Electric charge mechanical nanosensor.</p> <p>8.4 Concluding Remarks.</p> <p>References.</p> <p>9. Examples of Scaling Effects Analysis - DIEES-MEMSLAB. </p> <p>9.1 Introduction.</p> <p>9.2 Examples of Scaling Cantilever Beam Devices.</p> <p>9.3 DIEES-MEMSLAB-Tutorial.</p> <p>9.3.1 Introduction.</p> <p>9.3.2 Descriptions of the microstructures and analytical methods.</p> <p>9.4 Conclusions.</p> <p>References.</p> <p>10. Concluding Remarks.</p> <p>Index.</p>
<b>Salvatore Baglio,</b> Associate Professor of Electronic Instrumentations and Measurements, University of Catania, Italy.  Salvatore Baglio has co-authored over 150 scientific publications and his research interests include nonlinear and chaotic dynamical systems, smart sensors, microsensors and Microsystems. <p><b>Salvatore Castorina,</b> Electrical and Electronic Measurements Group, University of Catania.  Salvatore Castorina is co-author of over 20 scientific papers and his research interests include micro and nano electromechanical systems, magnetic and thermal, micro sensors and micro actuators, micro and nano robotics.</p> <p><b>Luigi Fortuna</b>, Professor of System Theory, University of Catania.  Luigi Fortuna has published more than 280 technical papers and his interests include nonlinear science and complexity, chaos and cellular neural networks.</p> <p><b>Nicolò</b><b>Savalli,</b> Engineering Faculty, University of Catania.  Nicolò Savalli teaches courses in Measurement Theory and Measurement Applications and is co-author of more than 35 scientific publications. His research interests include micro-electro-mechanical-systems (MEMS) and micro-opto-electro-mechanical-systems (MOEMS).</p>
This accessible volume delivers a complete design methodology for microelectromechanical systems (MEMS). Focusing on the scaling of an autonomous micro-system, it explains the real-world problems and theoretical concepts of several different aspects inherent to the miniaturization of sensors and actuators. It reports on the analysis of dimensional scaling, the modelling, design and experimental characterization of a wide range of specific devices and applications, including: <ul type="disc"> <li>temperature microsensors based on an integrated complementary metal-oxide-semiconductor (CMOS) thermocouple;</li> <li>mechanical sensors;</li> <li>inductive microsensors for the detection of magnetic particles;</li> <li>electrostatic, thermal and magnetic actuators.</li> </ul> <p>With an original approach, this informative text encompasses the entire range of themes currently at the forefront of MEMS, including an analysis of the importantissue of energy sources in MEMS. In addition, the book explores contemporary research into the design of complete MEMS with a case study on colonies of microbots. </p> <p><i>Scaling Issues and Design of MEMS</i> aims to improve the reader’s basic knowledge on modelling issues of complex micro devices, and to encourage new thinking about scaling effects. It will provide support for practising engineers working within the defence industry and will also be of welcome interest to graduate students and researchers with a background in electronic engineering, physics, chemistry, biology and materials science.</p>

Diese Produkte könnten Sie auch interessieren:

Nanoscale Science and Technology
Nanoscale Science and Technology
von: Robert Kelsall, Ian W. Hamley, Mark Geoghegan
PDF ebook
88,99 €
Nanotechnology
Nanotechnology
von: Jurgen Schulte
PDF ebook
91,99 €
Nano Mechanics and Materials
Nano Mechanics and Materials
von: Wing Kam Liu, Eduard G. Karpov, Harold S. Park
PDF ebook
114,99 €