Details

Robust Optimization


Robust Optimization

World's Best Practices for Developing Winning Vehicles
1. Aufl.

von: Subir Chowdhury, Shin Taguchi

39,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 19.01.2016
ISBN/EAN: 9781119212140
Sprache: englisch
Anzahl Seiten: 480

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Robust Optimization is a method to improve robustness using low-cost variations of a single, conceptual design. The benefits of Robust Optimization include faster product development cycles; faster launch cycles; fewer manufacturing problems; fewer field problems; lower-cost, higher performing products and processes; and lower warranty costs. All these benefits can be realized if engineering and product development leadership of automotive and manufacturing organizations leverage the power of using Robust Optimization as a competitive weapon.</p> <p><b> </b>Written by world renowned authors, <i>Robust Optimization: World’s Best Practices for Developing Winning Vehicles, </i>is a ground breaking book whichintroduces the technical management strategy of Robust Optimization. The authors discuss what the strategy entails, 8 steps for Robust Optimization and Robust Assessment, and how to lead it in a technical organization with an implementation strategy. Robust Optimization is defined and it is demonstrated how the techniques can be applied to manufacturing organizations, especially those with automotive industry applications, so that Robust Optimization creates the flexibility that minimizes product development cost, reduces product time-to-market, and increases overall productivity. </p> <p>Key features:</p> <ul> <li>Presents <i>best practices</i> from around the globe on Robust Optimization that can be applied in any manufacturing and automotive organization in the world</li> <li>Includes 19 successfully implemented best case studies from automotive original equipment manufacturers and suppliers</li> <li>Provides manufacturing industries with proven techniques to become more competitive in the global market</li> <li>Provides clarity concerning the common misinterpretations on Robust Optimization</li> </ul> <p><i>Robust Optimization: World’s Best Practices for Developing Winning Vehicles </i>is a must-have book for engineers and managers who are working on design, product, manufacturing, mechanical, electrical, process, quality area; all levels of management especially in product development area, research and development personnel and consultants. It also serves as an excellent reference for students and teachers in engineering.</p>
<p>Preface xxi</p> <p>Acknowledgments xxv</p> <p>About the Authors xxvii</p> <p><b>1 Introduction to Robust Optimization 1</b></p> <p>1.1 What Is Quality as Loss? 2</p> <p>1.2 What Is Robustness? 4</p> <p>1.3 What Is Robust Assessment? 5</p> <p>1.4 What Is Robust Optimization? 5</p> <p>1.4.1 Noise Factors 8</p> <p>1.4.2 Parameter Design 9</p> <p>1.4.3 Tolerance Design 13</p> <p><b>2 Eight Steps for Robust Optimization and Robust Assessment 17</b></p> <p>2.1 Before Eight Steps: Select Project Area 18</p> <p>2.2 Eight Steps for Robust Optimization 19</p> <p>2.2.1 Step 1: Define Scope for Robust Optimization 19</p> <p>2.2.2 Step 2: Identify Ideal Function/Response 20</p> <p>2.2.2.1 Ideal Function: Dynamic Response 20</p> <p>2.2.2.2 Nondynamic Responses 21</p> <p>2.2.3 Step 3: Develop Signal and Noise Strategies 23</p> <p>2.2.3.1 How Input M is Varied to Benchmark “Robustness” 23</p> <p>2.2.3.2 How Noise Factors Are Varied to Benchmark “Robustness” 23</p> <p>2.2.4 Step 4: Select Control Factors and Levels 32</p> <p>2.2.4.1 Traditional Approach to Explore Control Factors 32</p> <p>2.2.4.2 Exploration of Design Space by Orthogonal Array 33</p> <p>2.2.4.3 Try to Avoid Strong Interactions between Control Factors 33</p> <p>2.2.4.4 Orthogonal Array and its Mechanics 36</p> <p>2.2.5 Step 5: Execute and Collect Data 38</p> <p>2.2.6 Step 6: Conduct Data Analysis 38</p> <p>2.2.6.1 Computations of S/N and β 39</p> <p>2.2.6.2 Computation of S/N and β for L18 Data Sets 43</p> <p>2.2.6.3 Response Table for S/N and β 43</p> <p>2.2.6.4 Determination of Optimum Design 48</p> <p>2.2.7 Step 7: Predict and Confirm 49</p> <p>2.2.7.1 Confirmation 50</p> <p>2.2.8 Step 8: Lesson Learned and Action Plan 50</p> <p>2.3 Eight Steps for Robust Assessment 52</p> <p>2.3.1 Step 1: Define Scope 52</p> <p>2.3.2 Step 2: Identify Ideal Function/Response and Step 3: Develop Signal and Noise Strategies 52</p> <p>2.3.3 Step 4: Select Designs for Assessment 52</p> <p>2.3.4 Step 5: Execute and Collect Data 52</p> <p>2.3.5 Step 6: Conduct Data Analysis 52</p> <p>2.3.6 Step 7: Make Judgments 53</p> <p>2.3.7 Step 8: Lesson Learned and Action Plan 53</p> <p>2.4 As You Go through Case Studies in This Book 55</p> <p><b>3 Implementation of Robust Optimization 57</b></p> <p>3.1 Introduction 57</p> <p>3.2 Robust Optimization Implementation 57</p> <p>3.2.1 Leadership Commitment 58</p> <p>3.2.2 Executive Leader and the Corporate Team 58</p> <p>3.2.3 Effective Communication 60</p> <p>3.2.4 Education and Training 61</p> <p>3.2.5 Integration Strategy 62</p> <p>3.2.6 Bottom Line Performance 62</p> <p><b>PART ONE VEHICLE LEVEL OPTIMIZATION 63</b></p> <p><b>4 Optimization of Vehicle Offset Crashworthy Design Using a Simplified AnalysisModel 65</b><br /><i>Chrysler LLC, USA</i></p> <p>4.1 Executive Summary 65</p> <p>4.2 Introduction 66</p> <p>4.3 Stepwise Implementation of DFSS Optimization for Vehicle Offset Impact 67</p> <p>4.3.1 Step 1: Scope Defined for Optimization 67</p> <p>4.3.2 Step 2: Identify/Select Design Alternatives 67</p> <p>4.3.3 Step 3: Identify Ideal Function 68</p> <p>4.3.4 Step 4: Develop Signal and Noise Strategy 69</p> <p>4.3.4.1 Input and Output Signal Strategy 69</p> <p>4.3.5 Step 5: Select Control/Noise Factors and Levels 70</p> <p>4.3.5.1 Simplified Spring Mass Model Creation and Validation 70</p> <p>4.3.5.2 Control Variable Selection 72</p> <p>4.3.5.3 Control Factor Level Application for Spring Stiffness Updates 73</p> <p>4.3.6 Step 6: Execute and Conduct Data Analysis 73</p> <p>4.3.7 Step 7: Validation of Optimized Model 74</p> <p>4.4 Conclusion 77</p> <p>4.4.1 Acknowledgments 77</p> <p>4.5 References 77</p> <p><b>5 Optimization of the Component Characteristics for Improving Collision Safety by Simulation 79</b><br /><i>Isuzu Advanced Engineering Center, Ltd, Japan</i></p> <p>5.1 Executive Summary 79</p> <p>5.2 Introduction 80</p> <p>5.3 Simulation Models 81</p> <p>5.4 Concept of Standardized S/N Ratios with Respect to Survival Space 82</p> <p>5.5 Results and Consideration 86</p> <p>5.6 Conclusion 94</p> <p>5.6.1 Acknowledgment 94</p> <p>5.7 Reference 94</p> <p><b>PART TWO SUBSYSTEMS LEVEL OPTIMIZATION BY ORIGINAL EQUIPMENT MANUFACTURERS (OEMs) 95</b></p> <p><b>6 Optimization of Small DC Motors Using Functionality for Evaluation 97</b><br /><i>Nissan Motor Co., Ltd, Japan and Jidosha Denki Kogyo Co., Ltd, Japan</i></p> <p>6.1 Executive Summary 97</p> <p>6.2 Introduction 98</p> <p>6.3 Functionality for Evaluation in Case of DC Motors 98</p> <p>6.4 Experiment Method and Measurement Data 99</p> <p>6.5 Factors and Levels 100</p> <p>6.6 Data Analysis 101</p> <p>6.7 Analysis Results 104</p> <p>6.8 Selection of Optimal Design and Confirmation 104</p> <p>6.9 Benefits Gained 107</p> <p>6.10 Consideration of Analysis for Audible Noise 108</p> <p>6.11 Conclusion 110</p> <p>6.11.1 The Importance of Functionality for Evaluation 110</p> <p>6.11.2 Evaluation under the Unloaded (Idling) Condition 110</p> <p>6.11.3 Evaluation of Audible Noise (Quality Characteristic) 111</p> <p>6.11.4 Acknowledgment 111</p> <p><b>7 Optimal Design for a Double-Lift Window Regulator System Used in Automobiles 113</b><br /><i>Nissan Motor Co., Ltd, Japan and Ohi Seisakusho Co., Ltd, Japan</i></p> <p>7.1 Executive Summary 113</p> <p>7.2 Introduction 114</p> <p>7.3 Schematic Figure of Double-Lift Window Regulator System 114</p> <p>7.4 Ideal Function 114</p> <p>7.5 Noise Factors 116</p> <p>7.6 Control Factors 117</p> <p>7.7 Conventional Data Analysis and Results 119</p> <p>7.8 Selection of Optimal Condition and Confirmation Test Results 120</p> <p>7.9 Evaluation of Quality Characteristics 122</p> <p>7.10 Concept of Analysis Based on Standardized S/N Ratio 124</p> <p>7.11 Analysis Results Based on Standardized S/N Ratio 125</p> <p>7.12 Comparison between Analysis Based on Standardized S/N Ratio and Analysis Based on Conventional S/N Ratio 127</p> <p>7.13 Conclusion 132</p> <p>7.13.1 Acknowledgments 132</p> <p>7.14 Further Reading 132</p> <p><b>8 Optimization of Next-Generation Steering System Using Computer Simulation 133</b><br /><i>Nissan Motor Co., Ltd, Japan</i></p> <p>8.1 Executive Summary 133</p> <p>8.2 Introduction 134</p> <p>8.3 System Description 134</p> <p>8.4 Measurement Data 135</p> <p>8.5 Ideal Function 136</p> <p>8.6 Factors and Levels 136</p> <p>8.6.1 Signal and Response 136</p> <p>8.6.2 Noise Factors 136</p> <p>8.6.3 Indicative Factor 137</p> <p>8.6.4 Control Factors 137</p> <p>8.7 Pre-analysis for Compounding the Noise Factors 137</p> <p>8.8 Calculation of Standardized S/N Ratio 138</p> <p>8.9 Analysis Results 141</p> <p>8.10 Determination of Optimal Design and Confirmation 141</p> <p>8.11 Tuning to the Targeted Value 142</p> <p>8.12 Conclusion 144</p> <p>8.12.1 Acknowledgment 145</p> <p><b>9 Future Truck Steering Effort Robustness 147<br /></b><i>General Motors Corporation, USA</i></p> <p>9.1 Executive Summary 147</p> <p>9.2 Background 148</p> <p>9.2.1 Methodology 148</p> <p>9.2.2 Hydraulic Power-Steering Assist System 149</p> <p>9.2.3 Valve Assembly Design 152</p> <p>9.2.4 Project Scope 153</p> <p>9.3 Parameter Design 154</p> <p>9.3.1 Ideal Steering Effort Function 154</p> <p>9.3.2 Control Factors 157</p> <p>9.3.3 Noise Compounding Strategy and Input Signals 157</p> <p>9.3.4 Standardized S/N Post-Processing 159</p> <p>9.3.5 Quality Loss Function 165</p> <p>9.4 Acknowledgments 172</p> <p>9.5 References 172</p> <p><b>10 Optimal Design of Engine Mounting System Based on Quality Engineering 173</b><br /><i>Mazda Motor Corporation, Japan</i></p> <p>10.1 Executive Summary 173</p> <p>10.2 Background 174</p> <p>10.3 Design Object 174</p> <p>10.4 Application of Standard S/N Ratio Taguchi Method 175</p> <p>10.5 Iterative Application of Standard S/N Ratio Taguchi Method 178</p> <p>10.6 Influence of Interval of Factor Level 181</p> <p>10.7 Calculation Program 184</p> <p>10.8 Conclusions 185</p> <p>10.8.1 Acknowledgments 186</p> <p>10.9 References 186</p> <p><b>11 Optimization of a Front-Wheel-Drive Transmission for Improved Efficiency and Robustness 187</b><br /><i>Chrysler Group, LLC, USA and ASI Consulting Group, LLC, USA</i></p> <p>11.1 Executive Summary 187</p> <p>11.2 Introduction 188</p> <p>11.3 Experimental 189</p> <p>11.3.1 Ideal Function and Measurement 189</p> <p>11.4 Signal Strategy 190</p> <p>11.5 Noise Strategy 191</p> <p>11.6 Control Factor Selection 192</p> <p>11.7 Orthogonal Array Selection 193</p> <p>11.8 Results and Discussion 196</p> <p>11.8.1 S/N Calculations 196</p> <p>11.8.2 Graphs of Runs 200</p> <p>11.8.3 Response Plots 201</p> <p>11.8.4 Confirmation Run 201</p> <p>11.8.5 Verification of Results 203</p> <p>11.9 Conclusion 206</p> <p>11.9.1 Acknowledgments 207</p> <p>11.10 References 207</p> <p><b>12 Fuel Delivery System Robustness 209</b><br /><i>Ford Motor Company, USA</i></p> <p>12.1 Executive Summary 209</p> <p>12.2 Introduction 210</p> <p>12.2.1 Fuel System Overview 210</p> <p>12.2.2 Conventional Fuel System 211</p> <p>12.2.3 New Fuel System 211</p> <p>12.3 Experiment Description 211</p> <p>12.3.1 Test Method 211</p> <p>12.3.2 Ideal Function 211</p> <p>12.4 Noise Factors 213</p> <p>12.4.1 Control Factors 213</p> <p>12.4.2 Fixed Factors 214</p> <p>12.5 Experiment Test Results 214</p> <p>12.6 Sensitivity (β) Analysis 214</p> <p>12.7 Confirmation Test Results 217</p> <p>12.7.1 Bench Test Confirmation 217</p> <p>12.7.1.1 Initial Fuel Delivery System 217</p> <p>12.7.1.2 Optimal Fuel Delivery System 218</p> <p>12.7.2 Vehicle Verification 218</p> <p>12.7.2.1 Initial Fuel Delivery System 219</p> <p>12.7.2.2 Optimal Fuel Delivery System 219</p> <p>12.8 Conclusion 220</p> <p><b>13 Improving Coupling Factor in Vehicle Theft Deterrent Systems Using Design for Six Sigma (DFSS) 223</b><br /><i>General Motors Corporation, USA</i></p> <p>13.1 Executive Summary 223</p> <p>13.2 Introduction 224</p> <p>13.3 Objectives 225</p> <p>13.4 The Voice of the Customer 225</p> <p>13.5 Experimental Strategy 225</p> <p>13.5.1 Response 225</p> <p>13.5.2 Noise Strategy 226</p> <p>13.5.3 Control Factors 226</p> <p>13.5.4 Input Signal 227</p> <p>13.6 The System 227</p> <p>13.7 The Experimental Results 228</p> <p>13.8 Conclusions 229</p> <p>13.8.1 Summary 233</p> <p>13.8.2 Acknowledgments 234</p> <p><b>PART THREE SUBSYSTEMS LEVEL OPTIMIZATION BY SUPPLIERS 235</b></p> <p><b>14 Magnetic Sensing System Optimization 237</b><br /><i>ALPS Electric, Japan</i></p> <p>14.1 Executive Summary 237</p> <p>14.1.1 The Magnetic Sensing System 238</p> <p>14.2 Improvement of Design Technique 239</p> <p>14.2.1 Traditional Design Technique 239</p> <p>14.2.2 Design Technique by Quality Engineering 239</p> <p>14.3 System Design Technique 241</p> <p>14.3.1 Parameter Design Diagram 241</p> <p>14.3.2 Signal Factor, Control Factor, and Noise Factor 242</p> <p>14.3.3 Implementation of Parameter Design 244</p> <p>14.3.4 Results of the Confirmation Experiment 244</p> <p>14.4 Effect by Shortening of Development Period 246</p> <p>14.5 Conclusion 246</p> <p>14.5.1 Acknowledgments 247</p> <p>14.6 References 247</p> <p><b>15 Direct Injection Diesel Injector Optimization 249</b><br /><i>Delphi Automotive Systems, Europe and Delphi Automotive Systems, USA</i></p> <p>15.1 Executive Summary 249</p> <p>15.2 Introduction 250</p> <p>15.2.1 Background 250</p> <p>15.2.2 Problem Statement 250</p> <p>15.2.3 Objectives and Approach to Optimization 251</p> <p>15.3 Simulation Model Robustness 253</p> <p>15.3.1 Background 253</p> <p>15.3.2 Approach to Optimization 257</p> <p>15.3.3 Results 257</p> <p>15.4 Parameter Design 257</p> <p>15.4.1 Ideal Function 257</p> <p>15.4.2 Signal and Noise Strategies 258</p> <p>15.4.2.1 Signal Levels 258</p> <p>15.4.2.2 Noise Strategy 258</p> <p>15.4.3 Control Factors and Levels 259</p> <p>15.4.4 Experimental Layout 259</p> <p>15.4.5 Data Analysis and Two-Step Optimization 259</p> <p>15.4.6 Confirmation 263</p> <p>15.4.7 Discussions on Parameter Design Results 264</p> <p>15.4.7.1 Technical 264</p> <p>15.4.7.2 Economical 264</p> <p>15.5 Tolerance Design 268</p> <p>15.5.1 Signal Point by Signal Point Tolerance Design 269</p> <p>15.5.1.1 Factors and Experimental Layout 269</p> <p>15.5.1.2 Analysis of Variance (ANOVA) for Each Injection Point 269</p> <p>15.5.1.3 Loss Function 269</p> <p>15.5.2 Dynamic Tolerance Design 270</p> <p>15.5.2.1 Dynamic Analysis of Variance 271</p> <p>15.5.2.2 Dynamic Loss Function 273</p> <p>15.6 Conclusions 275</p> <p>15.6.1 Project Related 275</p> <p>15.6.2 Recommendations for Taguchi Methods 277</p> <p>15.6.3 Acknowledgments 278</p> <p>15.7 Reference and Further Reading 278</p> <p><b>16 General Purpose Actuator Robust Assessment and Benchmark Study 279</b><br /><i>Robert Bosch, LLC, USA</i></p> <p>16.1 Executive Summary 279</p> <p>16.2 Introduction 280</p> <p>16.3 Objectives 280</p> <p>16.3.1 Robust Assessment Measurement Method 281</p> <p>16.3.1.1 Test Equipment 281</p> <p>16.3.1.2 Data Acquisition 284</p> <p>16.3.1.3 Data Analysis Strategy 285</p> <p>16.4 Robust Assessment 286</p> <p>16.4.1 Scope and P-Diagram 286</p> <p>16.4.2 Ideal Function 286</p> <p>16.4.3 Signal and Noise Strategy 290</p> <p>16.4.4 Control Factors 291</p> <p>16.4.5 Raw Data 291</p> <p>16.4.6 Data Analysis 291</p> <p>16.5 Conclusion 296</p> <p>16.5.1 Acknowledgments 297</p> <p>16.6 Further Reading 297</p> <p><b>17 Optimization of a Discrete Floating MOS Gate Driver 299</b><br /><i>Delphi-Delco Electronic Systems, USA</i></p> <p>17.1 Executive Summary 299</p> <p>17.2 Background 300</p> <p>17.3 Introduction 302</p> <p>17.4 Developing the “Ideal” Function 302</p> <p>17.5 Noise Strategy 305</p> <p>17.6 Control Factors and Levels 305</p> <p>17.7 Experiment Strategy and Measurement System 306</p> <p>17.8 Parameter Design Experiment Layout 306</p> <p>17.9 Results 307</p> <p>17.10 Response Charts 307</p> <p>17.11 Two-Step Optimization 311</p> <p>17.12 Confirmation 312</p> <p>17.13 Conclusions 312</p> <p>17.13.1 Acknowledgments 314</p> <p><b>18 Reformer Washcoat Adhesion on Metallic Substrates 315</b><br /><i>Delphi Automotive Systems, USA</i></p> <p>18.1 Executive Summary 315</p> <p>18.2 Introduction 316</p> <p>18.3 Experimental Setup 317</p> <p>18.3.1 The Ideal Function 318</p> <p>18.3.2 P-Diagram 318</p> <p>18.3.3 Control Factors 319</p> <p>18.3.3.1 Alloy Composition 319</p> <p>18.3.3.2 Washcoat Composition 320</p> <p>18.3.3.3 Slurry Parameters 320</p> <p>18.3.3.4 Cleaning Procedures 320</p> <p>18.3.3.5 Preparation 320</p> <p>18.4 Control Factor Levels 320</p> <p>18.5 Noise Factors 320</p> <p>18.5.1 Signal Factor 320</p> <p>18.5.2 Unwanted Outputs 320</p> <p>18.6 Description of Experiment 322</p> <p>18.6.1 Furnace 322</p> <p>18.6.2 Orthogonal Array and Inner Array 323</p> <p>18.6.3 Signal-to-Noise and Beta Calculations 323</p> <p>18.6.4 Response Tables 323</p> <p>18.7 Two Step Optimization and Prediction 323</p> <p>18.7.1 Optimum Design 329</p> <p>18.7.2 Predictions 329</p> <p>18.8 Confirmation 329</p> <p>18.8.1 Design Improvement 329</p> <p>18.9 Measurement System Evaluation 334</p> <p>18.10 Conclusion 334</p> <p>18.11 Supplemental Background Information 336</p> <p>18.12 Acknowledgment 340</p> <p>18.13 Reference and Further Reading 340</p> <p><b>19 Making Better Decisions Faster: Sequential Application of Robust Engineering to Math-Models, CAE Simulations, and Accelerated Testing 341</b><br /><i>Robert Bosch Corporation, USA</i></p> <p>19.1 Executive Summary 341</p> <p>19.2 Introduction 342</p> <p>19.2.1 Thermal Equivalent Circuit – Detailed 343</p> <p>19.2.2 Thermal Equivalent Circuit – Simplified 343</p> <p>19.2.3 Closed Form Solution 343</p> <p>19.3 Objective 345</p> <p>19.3.1 Thermal Robustness Design Template 345</p> <p>19.3.2 Critical Design Parameters for Thermal Robustness 345</p> <p>19.3.3 Cascade Learning (aka Leveraged Knowledge) 346</p> <p>19.3.4 Test Taguchi Robust Engineering Methodology 346</p> <p>19.4 Robust Optimization 347</p> <p>19.4.1 Scope and P-Diagram 347</p> <p>19.4.2 Ideal Function 347</p> <p>19.4.3 Signal and Noise Strategy 349</p> <p>19.4.4 Input Signal 350</p> <p>19.4.5 Control Factors and Levels 350</p> <p>19.4.6 Math-Model Generated Data 351</p> <p>19.4.7 Data Analysis 351</p> <p>19.4.8 Thermal Robustness (Signal-to-Noise) 354</p> <p>19.4.9 Subsystem Thermal Resistance (Beta) 356</p> <p>19.4.10 Prediction and Confirmation 357</p> <p>19.4.11 Verification 362</p> <p>19.5 Conclusions 364</p> <p>19.5.1 Acknowledgments 365</p> <p>19.6 Futher Reading 366</p> <p><b>20 Pressure Switch Module Normally Open Feasibility Investigation and Supplier Competition 367</b><br /><i>Robert Bosch, LLC, USA</i></p> <p>20.1 Executive Summary 367</p> <p>20.2 Introduction 368</p> <p>20.2.1 Current Production Pressure Switch Module – Detailed 368</p> <p>20.2.2 Current Production (N.C.) Switching Element – Detailed 369</p> <p>20.3 Objective 370</p> <p>20.4 Robust Assessment 370</p> <p>20.4.1 Scope and P-Diagram 370</p> <p>20.4.2 Ideal Function 371</p> <p>20.4.3 Noise Strategy 372</p> <p>20.4.4 Testing Criteria 372</p> <p>20.4.5 Control Factors and Levels 373</p> <p>20.4.6 Test Data 374</p> <p>20.4.7 Data Analysis 375</p> <p>20.4.8 Prediction and Confirmation 379</p> <p>20.4.9 Verification 383</p> <p>20.5 Summary and Conclusions 383</p> <p>20.5.1 Acknowledgments 385</p> <p><b>PART FOUR MANUFACTURING PROCESS OPTIMIZATION 387</b></p> <p><b>21 Robust Optimization of a Lead-Free Reflow Soldering Process 389</b><br /><i>Delphi Delco Electronics Systems, USA and ASI Consulting Group, LLC, USA</i></p> <p>21.1 Executive Summary 389</p> <p>21.2 Introduction 390</p> <p>21.3 Experimental 391</p> <p>21.3.1 Robust Engineering Methodology 391</p> <p>21.3.2 Visual Scoring 394</p> <p>21.3.3 Pull Test 396</p> <p>21.4 Results and Discussion 396</p> <p>21.4.1 Visual Scoring Results 396</p> <p>21.4.2 Pull Test Results 400</p> <p>21.4.3 Next Steps 401</p> <p>21.5 Conclusion 401</p> <p>21.5.1 Acknowledgment 402</p> <p>21.6 References 402</p> <p><b>22 Catalyst Slurry Coating Process Optimization for Diesel Catalyzed Particulate Traps 403</b><br /><i>Delphi Energy and Chassis Systems, USA</i></p> <p>22.1 Executive Summary 403</p> <p>22.2 Introduction 404</p> <p>22.3 Project Description 405</p> <p>22.4 Process Map 406</p> <p>22.4.1 Initial Performance 406</p> <p>22.5 First Parameter Design Experiment 406</p> <p>22.5.1 Function Analysis 407</p> <p>22.5.2 Ideal Function 409</p> <p>22.5.3 Measurement System Evaluation 409</p> <p>22.5.4 Parameter Diagram 411</p> <p>22.5.5 Factors and Levels 411</p> <p>22.5.6 Compound Noise Strategy 412</p> <p>22.5.7 Parameter Design Experiment Layout (1) 412</p> <p>22.5.8 Means Plots 414</p> <p>22.5.9 Means Tables 414</p> <p>22.5.10 Two-Step Optimization and Prediction 415</p> <p>22.5.11 Predicted Performance Improvement Before and After 416</p> <p>22.6 Follow-up Parameter Design Experiment 416</p> <p>22.6.1 Parameter Design Experiment Layout (2) 417</p> <p>22.6.2 Means Plots for Signal-to-Noise Ratios 417</p> <p>22.6.3 Confirmation Results in Tulsa 417</p> <p>22.6.4 Noise Factor Q Affect on Slurry Coating 417</p> <p>22.7 Transfer to Florange 419</p> <p>22.7.1 Ideal Function and Parameter Diagram 421</p> <p>22.7.2 Parameter Design Experiment Layout (3) 421</p> <p>22.7.3 Means Plots for Signal-to-Noise Ratios 423</p> <p>22.7.4 Prediction and Confirmation 423</p> <p>22.7.5 Process Capability 423</p> <p>22.8 Conclusion 424</p> <p>22.8.1 The Team 424</p> <p>Index 427</p>
<p><b>Subir Chowdhury</b> has been a thought leader in quality management strategy and methodology for more than 20 years. Currently Chairman and CEO of ASI Consulting Group, LLC, he leads Six Sigma and Quality Leadership implementation, and consulting and training efforts. Subir's work has earned him numerous awards and recognition. <i>The New York Times</i> cited him as a "leading quality expert"; <i>BusinessWeek</i> hailed him as the "Quality Prophet." <i>The Conference Board Review</i> described him as "an excitable, enthusiastic evangelist for quality."<br />Subir has worked with many organizations across diverse industries including manufacturing, healthcare, food, and non-profit organizations. His client list includes major global corporations and industrial leaders such as American Axle, Berger Health Systems, Bosch, Caterpillar, Daewoo, Delphi Automotive Systems, Fiat-Chrysler Automotive, Ford, General Motors, Hyundai Motor Company, ITT Industries, Johns Manville, Kaplan Professional, Kia Motors, Leader Dogs for the Blind, Loral Space Systems, Make It Right Foundation, Mark IV Automotive, Procter & Gamble, State of Michigan, Thomson Multimedia, TRW, Volkswagen, Xerox, and more. Under Subir’s leadership, ASI Consulting Group has helped hundreds of clients around the world save billions of dollars in recovered productivity and increased revenues.<br />Subir is the author of 14 books, including the international bestseller <i>The Power of Six Sigma</i> (Dearborn Trade, 2001), which has sold more than a million copies worldwide and been translated into more than 20 languages. <i>Design for Six Sigma</i> (Kaplan Professional, 2002) was the first book to popularize the "DFSS" concept. With quality pioneer Dr. Genichi Taguchi, Subir co-authored of two technical bestsellers <i>Robust Engineering</i> (McGraw Hill, 1999) and <i>Taguchi's Quality Engineering Handbook</i> (Wiley, 2005).<br />His book, the critically acclaimed <i>The Ice Cream Maker</i> (Random House Doubleday, 2005) introduced LEO (Listen, Enrich, Optimize), a flexible management strategy that brings the concept of quality to every member of an organization. The book was formally recognized and distributed to every member of the 109<sup>th </sup>Congress. The LEO process continues to be implemented in many organizations. His most recent book, <i>The Power of LEO</i> (McGraw-Hill, 2011) was an Inc. Magazine bestseller. A follow-up to <i>The Ice Cream Maker</i>, the book shows organizations how the LEO methodology can be integrated into a complete quality management system.<b> <br /></b></p> <p><b>Shin Taguchi</b> is Chief Technical Officer (CTO)for ASI Consulting Group, LLC.  He is a Master Black Belt in Six Sigma and Design for Six Sigma (DFSS) and was one of the world authorities in developing the DFSS program at ASI-CG, an internationally recognized training and consulting organization, dedicated to improving the competitive position of industries.  He is the son of Dr. Genichi Taguchi, developer of new engineering approaches for robust technology that have saved American industry billions of dollars.<br />Over the last thirty years, Shin has trained more than 60,000 engineers around the world in quality engineering, product/process optimization, and robust design techniques, Mahalanobis-Taguchi System, known as Taguchi Methods<sup>TM</sup>.  Some of the many clients he has helped to make products and processes Robust include:  Ford Motor Company, General Motors, Delphi Automotive Systems, Fiat-Chrysler Automotive, ITT, Kodak, Lexmark, Goodyear Tire & Rubber, General Electric, Miller Brewing, The Budd Company, Westinghouse, NASA, Texas Instruments, Xerox, Hyundai Motor Company, TRW and many others.  In 1996, Shin developed and started to teach a Taguchi Certification Course.  Over 360 people have graduated to date from this ongoing 16-day master certification course.<br />Shin is a Fellow of the Royal Statistical Society in London, and is a member of the Institute of Industrial Engineering (IIE) and the American Society for Quality (ASQ); Shin is a member of the Quality Control Research Group of the Japanese Standards Association (JSA) and Quality Engineering Society of Japan. He is an editor of the Quality Engineering Forum Technical Journal and was awarded the Craig Award for the best technical paper presented at the annual conference of the ASQ.  Shin has been featured in the media through a number of national and international forums, including <i>Fortune</i> Magazine and <i>Actionline</i> (a publication of AIAG). Shin co-authored "<i>Robust Engineering"</i> published by McGraw Hill in 1999.  He has given presentations and workshops at numerous conferences, including ASQ, ASME, SME, SAE, and IIE.  He is also a Master Black Belt for Design for Six Sigma (DFSS).</p>

Diese Produkte könnten Sie auch interessieren:

Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
PDF ebook
156,99 €
Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
EPUB ebook
156,99 €
Wear
Wear
von: Gwidon W. Stachowiak
PDF ebook
159,99 €