Details

Robot Modeling and Control


Robot Modeling and Control


2. Aufl.

von: Mark W. Spong, Seth Hutchinson, M. Vidyasagar

113,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 07.02.2020
ISBN/EAN: 9781119524076
Sprache: englisch
Anzahl Seiten: 608

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

A New Edition Featuring Case Studies and Examples of the Fundamentals of Robot Kinematics, Dynamics, and Control In the 2nd Edition of Robot Modeling and Control, students will cover the theoretical fundamentals and the latest technological advances in robot kinematics. With so much advancement in technology, from robotics to motion planning, society can implement more powerful and dynamic algorithms than ever before. This in-depth reference guide educates readers in four distinct parts; the first two serve as a guide to the fundamentals of robotics and motion control, while the last two dive more in-depth into control theory and nonlinear system analysis. With the new edition, readers gain access to new case studies and thoroughly researched information covering topics such as:  ?      Motion-planning, collision avoidance, trajectory optimization, and control of robots ?      Popular topics within the robotics industry and how they apply to various technologies ?      An expanded set of examples, simulations, problems, and case studies ?      Open-ended suggestions for students to apply the knowledge to real-life situations A four-part reference essential for both undergraduate and graduate students, Robot Modeling and Control serves as a foundation for a solid education in robotics and motion planning.
Preface v 1 Introduction 1 1.1 Mathematical Modeling of Robots 5 1.1.1 Symbolic Representation of Robot Manipulators 5 1.1.2 The Configuration Space 5 1.1.3 The State Space 6 1.1.4 The Workspace 7 1.2 Robots as Mechanical Devices 7 1.2.1 Classification of Robotic Manipulators 8 1.2.2 Robotic Systems 10 1.2.3 Accuracy and Repeatability 10 1.2.4 Wrists and End Effectors 12 1.3 Common Kinematic Arrangements 13 1.3.1 Articulated Manipulator (RRR) 13 1.3.2 Spherical Manipulator (RRP) 14 1.3.3 SCARA Manipulator (RRP) 14 1.3.4 Cylindrical Manipulator (RPP) 15 1.3.5 Cartesian Manipulator (PPP) 15 1.3.6 Parallel Manipulator 18 1.4 Outline of the Text 18 1.4.1 Manipulator Arms 18 1.4.2 Underactuated and Mobile Robots 27 Problems 27 Notes and References 29 I The Geometry of Robots 33 2 Rigid Motions 35 2.1 Representing Positions 36 2.2 Representing Rotations 38 2.2.1 Rotation in the Plane 38 2.2.2 Rotations in Three Dimensions 41 2.3 Rotational Transformations 44 2.4 Composition of Rotations 48 2.4.1 Rotation with Respect to the Current Frame 48 2.4.2 Rotation with Respect to the Fixed Frame 50 2.4.3 Rules for Composition of Rotations 51 2.5 Parameterizations of Rotations 52 2.5.1 Euler Angles 53 2.5.2 Roll, Pitch, Yaw Angles 55 2.5.3 Axis-Angle Representation 57 2.5.4 Exponential Coordinates 59 2.6 Rigid Motions 61 2.6.1 Homogeneous Transformations 62 2.6.2 Exponential Coordinates for General Rigid Motions 65 2.7 Chapter Summary 65 Problems 67 Notes and References 73 3 Forward Kinematics 75 3.1 Kinematic Chains 75 3.2 The Denavit-Hartenberg Convention 78 3.2.1 Existence and Uniqueness 80 3.2.2 Assigning the Coordinate Frames 83 3.3 Examples 87 3.3.1 Planar Elbow Manipulator 87 3.3.2 Three-Link Cylindrical Robot 89 3.3.3 The Spherical Wrist 90 3.3.4 Cylindrical Manipulator with Spherical Wrist 91 3.3.5 Stanford Manipulator 93 3.3.6 SCARA Manipulator 95 3.4 Chapter Summary 96 Problems 96 Notes and References 99 4 Velocity Kinematics 101 4.1 Angular Velocity: The Fixed Axis Case 102 4.2 Skew-Symmetric Matrices 103 4.2.1 Properties of Skew-Symmetric Matrices 104 4.2.2 The Derivative of a Rotation Matrix 105 4.3 Angular Velocity: The General Case 107 4.4 Addition of Angular Velocities 108 4.5 Linear Velocity of a Point Attached to a Moving Frame 110 4.6 Derivation of the Jacobian 111 4.6.1 Angular Velocity 112 4.6.2 Linear Velocity 113 4.6.3 Combining the Linear and Angular Velocity Jacobians 115 4.7 The Tool Velocity 119 4.8 The Analytical Jacobian 121 4.9 Singularities 122 4.9.1 Decoupling of Singularities 123 4.9.2 Wrist Singularities 125 4.9.3 Arm Singularities 125 4.10 Static Force/Torque Relationships 129 4.11 Inverse Velocity and Acceleration 131 4.12 Manipulability 133 4.13 Chapter Summary 136 Problems 138 Notes and References 140 5 Inverse Kinematics 141 5.1 The General Inverse Kinematics Problem 141 5.2 Kinematic Decoupling 143 5.3 Inverse Position: A Geometric Approach 145 5.3.1 Spherical Configuration 146 5.3.2 Articulated Configuration 148 5.4 Inverse Orientation 151 5.5 Numerical Inverse Kinematics 156 5.6 Chapter Summary 158 Problems 160 Notes and References 162 II Dynamics and Motion Planning 163 6 Dynamics 165 6.1 The Euler-Lagrange Equations 166 6.1.1 Motivation 166 6.1.2 Holonomic Constraints and Virtual Work 170 6.1.3 D'Alembert's Principle 174 6.2 Kinetic and Potential Energy 177 6.2.1 The Inertia Tensor 178 6.2.2 Kinetic Energy for an n-Link Robot 180 6.2.3 Potential Energy for an n-Link Robot 181 6.3 Equations of Motion 181 6.4 Some Common Configurations 184 6.5 Properties of Robot Dynamic Equations 194 6.5.1 Skew Symmetry and Passivity 194 6.5.2 Bounds on the Inertia Matrix 196 6.5.3 Linearity in the Parameters 196 6.6 Newton-Euler Formulation 198 6.6.1 Planar Elbow Manipulator Revisited 206 6.7 Chapter Summary 209 Problems 211 Notes and References 214 7 Path and Trajectory Planning 215 7.1 The Configuration Space 216 7.1.1 Representing the Configuration Space 217 7.1.2 Configuration Space Obstacles 218 7.1.3 Paths in the Configuration Space 221 7.2 Path Planning for Q = ?2 221 7.2.1 The Visibility Graph 222 7.2.2 The Generalized Voronoi Diagram 224 7.2.3 Trapezoidal Decompositions 226 7.3 Artificial Potential Fields 229 7.3.1 Artificial Potential Fields for Q = ?n 230 7.3.2 Potential Fields for Q ? ?n 235 7.4 Sampling-Based Methods 245 7.4.1 Probabilistic Roadmaps (PRM) 246 7.4.2 Rapidly-Exploring Random Trees (RRTs) 250 7.5 Trajectory Planning 252 7.5.1 Trajectories for Point-to-Point Motion 253 7.5.2 Trajectories for Paths Specified by Via Points 261 7.6 Chapter Summary 263 Problems 265 Notes and References 267 III Control of Manipulators 269 8 Independent Joint Control 271 8.1 Introduction 271 8.2 Actuator Dynamics 273 8.3 Load Dynamics 276 8.4 Independent Joint Model 278 8.5 PID Control 281 8.6 Feedforward Control 288 8.6.1 Trajectory Tracking 289 8.6.2 The Method of Computed Torque 291 8.7 Drive-Train Dynamics 292 8.8 State Space Design 297 8.8.1 State Feedback Control 299 8.8.2 Observers 301 8.9 Chapter Summary 304 Problems 307 Notes and References 309 9 Nonlinear and Multivariable Control 311 9.1 Introduction 311 9.2 PD Control Revisited 313 9.3 Inverse Dynamics 317 9.3.1 Joint Space Inverse Dynamics 317 9.3.2 Task Space Inverse Dynamics 320 9.3.3 Robust Inverse Dynamics 322 9.3.4 Adaptive Inverse Dynamics 327 9.4 Passivity-Based Control 329 9.4.1 Passivity-Based Robust Control 331 9.4.2 Passivity-Based Adaptive Control 332 9.5 Torque Optimization 333 9.6 Chapter Summary 337 Problems 341 Notes and References 343 10 Force Control 345 10.1 Coordinate Frames and Constraints 347 10.1.1 Reciprocal Bases 347 10.1.2 Natural and Artificial Constraints 349 10.2 Network Models and Impedance 351 10.2.1 Impedance Operators 353 10.2.2 Classification of Impedance Operators 354 10.2.3 Thévenin and Norton Equivalents 355 10.3 Task Space Dynamics and Control 355 10.3.1 Impedance Control 356 10.3.2 Hybrid Impedance Control 358 10.4 Chapter Summary 361 Problems 362 Notes and References 364 11 Vision-Based Control 365 11.1 Design Considerations 366 11.1.1 Camera Configuration 366 11.1.2 Image-Based vs. Position-Based Approaches 367 11.2 Computer Vision for Vision-Based Control 368 11.2.1 The Geometry of Image Formation 369 11.2.2 Image Features 373 11.3 Camera Motion and the Interaction Matrix 378 11.4 The Interaction Matrix for Point Features 379 11.4.1 Velocity Relative to a Moving Frame 380 11.4.2 Constructing the Interaction Matrix 381 11.4.3 Properties of the Interaction Matrix for Points 384 11.4.4 The Interaction Matrix for Multiple Points 385 11.5 Image-Based Control Laws 386 11.5.1 Computing Camera Motion 387 11.5.2 Proportional Control Schemes 389 11.5.3 Performance of Image-Based Control Systems 390 11.6 End Effector and Camera Motions 393 11.7 Partitioned Approaches 394 11.8 Motion Perceptibility 397 11.9 Summary 399 Problems 401 Notes and References 405 12 Feedback Linearization 409 12.1 Background 410 12.1.1 Manifolds, Vector Fields, and Distributions 410 12.1.2 The Frobenius Theorem 414 12.2 Feedback Linearization 417 12.3 Single-Input Systems 419 12.4 Multi-Input Systems 429 12.5 Chapter Summary 433 Problems 433 Notes and References 435 IV Control of Underactuated Systems 437 13 Underactuated Robots 439 13.1 Introduction 439 13.2 Modeling 440 13.3 Examples of Underactuated Robots 443 13.3.1 The Cart-Pole System 443 13.3.2 The Acrobot 445 13.3.3 The Pendubot 446 13.3.4 The Reaction-Wheel Pendulum 447 13.4 Equilibria and Linear Controllability 448 13.4.1 Linear Controllability 450 13.5 Partial Feedback Linearization 456 13.5.1 Collocated Partial Feedback Linearization 457 13.5.2 Noncollocated Partial Feedback Linearization 459 13.6 Output Feedback Linearization 461 13.6.1 Computation of the Zero Dynamics 463 13.6.2 Virtual Holonomic Constraints 466 13.7 Passivity-Based Control 466 13.7.1 The Simple Pendulum 467 13.7.2 The Reaction-Wheel Pendulum 471 13.7.3 Swingup and Balance of The Acrobot 473 13.8 Chapter Summary 474 Problems 476 Notes and References 477 14 Mobile Robots 479 14.1 Nonholonomic Constraints 480 14.2 Involutivity and Holonomy 484 14.3 Examples of Nonholonomic Systems 487 14.4 Dynamic Extension 493 14.5 Controllability of Driftless Systems 495 14.6 Motion Planning 499 14.6.1 Conversion to Chained Forms 499 14.6.2 Differential Flatness 506 14.7 Feedback Control of Driftless Systems 509 14.7.1 Stabilizability 509 14.7.2 Nonsmooth Control 511 14.7.3 Trajectory Tracking 513 14.7.4 Feedback Linearization 515 14.8 Chapter Summary 519 Problems 520 Notes and References 521 A Trigonometry 523 A.1 The Two-Argument Arctangent Function 523 A.2 Useful Trigonometric Formulas 523 B Linear Algebra 525 B.1 Vectors 525 B.2 Inner Product Spaces 526 B.3 Matrices 528 B.4 Eigenvalues and Eigenvectors 530 B.5 Differentiation of Vectors 533 B.6 The Matrix Exponential 534 B.7 Lie Groups and Lie Algebras 534 B.8 Matrix Pseudoinverse 536 B.9 Schur Complement 536 B.10 Singular Value Decomposition (SVD) 537 C Lyapunov Stability 539 C.1 Continuity and Differentiability 539 C.2 Vector Fields and Equilibria 541 C.3 Lyapunov Functions 545 C.4 Stability Criteria 545 C.5 Global and Exponential Stability 546 C.6 Stability of Linear Systems 547 C.7 LaSalle's Theorem 548 C.8 Barbalat's Lemma 549 D Optimization 551 D.1 Unconstrained Optimization 551 D.2 Constrained Optimization 552 E Camera Calibration 555 E.1 The Image Plane and the Sensor Array 555 E.2 Extrinsic Camera Parameters 556 E.3 Intrinsic Camera Parameters 557 E.4 Determining the Camera Parameters 557 Bibliography 561 Index 576
MARK W. SPONG has been researching and teaching robotics for over 35 years. He currently serves as a Professor, Excellence in Education Chair, in the Department of Systems Engineering at the University of Texas at Dallas. He has been recognized for outstanding achievements including the John R. Ragazzini Award for Control Education and the IEEE RAS Pioneer in Robotics Award. He is currently a Fellow of both IEEE and IFAC. SETH HUTCHINSON received his Ph.D. from Purdue University in 1988, and is currently Professor and KUKA Chair for Robotics in the School of Interactive Computing at the Georgia Institute of Technology, where he also serves as Executive Director of the Institute for Robotics and Intelligent Machines. He was the Founding Editor-in-Chief of the IEEE Robotics and Automation Society's Conference Editorial Board, Editor-in-Chief of the IEEE Transactions on Robotics, and is a Fellow of the IEEE. His research in robotics spans the areas of planning, sensing, and control. MATHUKUMALLI VIDYASAGAR received his Ph.D. in electrical engineering in 1969 from the University of Wisconsin in Madison. During his fifty-year career, he has worked in control theory, machine learning, robotics and cancer biology. Among the many honors he has received are Fellowship in The Royal Society and the IEEE Control Systems Award. At present he is a Distinguished Professor at the Indian Institute of Technology Hyderabad.
A NEW EDITION FEATURING CASE STUDIES AND EXAMPLES OF THE FUNDAMENTALS OF ROBOT KINEMATICS, DYNAMICS, AND CONTROL In the Second Edition of Robot Modeling and Control, students will cover the theoretical fundamentals and the latest technological advances in robot kinematics. With so much advancement in technology, from robotics to motion planning, society can implement more powerful and dynamic algorithms than ever before. This in-depth reference guide educates readers in four distinct parts; the first two serve as a guide to the fundamentals of robotics and motion control, while the last two dive more in-depth into control theory and nonlinear system analysis. With the new edition, readers gain access to new case studies and thoroughly researched information covering topics such as: Motion-planning, collision avoidance, trajectory optimization, and control of robots Popular topics within the robotics industry and how they apply to various technologies An expanded set of examples, simulations, problems, and case studies Open-ended suggestions for students to apply the knowledge to real-life situations A four-part reference essential for both undergraduate and graduate students, Robot Modeling and Control serves as a foundation for a solid education in robotics and motion planning.

Diese Produkte könnten Sie auch interessieren:

Wearable Computing
Wearable Computing
von: Giancarlo Fortino, Raffaele Gravina, Stefano Galzarano
EPUB ebook
76,99 €
Switch/Router Architectures
Switch/Router Architectures
von: James Aweya
PDF ebook
96,99 €