Details

RF/Microwave Engineering and Applications in Energy Systems


RF/Microwave Engineering and Applications in Energy Systems


1. Aufl.

von: Abdullah Eroglu

89,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 07.04.2022
ISBN/EAN: 9781119268819
Sprache: englisch
Anzahl Seiten: 640

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>RF/MICROWAVE ENGINEERING AND APPLICATIONS IN ENERGY SYSTEMS</b> <p><b>An essential text with a unique focus on RF and microwave engineering theory and its applications</b> <p>In<i> RF/Microwave Engineering and Applications in Energy Systems,</i> accomplished researcher Abdullah Eroglu delivers a detailed treatment of key theoretical aspects of radio-frequency and microwave engineering concepts along with parallel presentations of their practical applications. The text includes coverage of recent advances in the subject, including energy harvesting methods, RFID antenna designs, HVAC system controls, and smart grids. <p>The distinguished author provides step-by-step solutions to common engineering problems by way of numerous examples and offers end-of-chapter problems and solutions on each topic. These practical applications of theoretical subjects aid the reader with retention and recall and demonstrate a solid connection between theory and practice. <p>The author also applies common simulation tools in several chapters, illustrating the use and implementation of time domain circuit simulators in conjunction with electromagnetic simulators, as well as Matlab for design, simulation, and implementation at the component and system levels. <p>Readers will also benefit from: <ul><li>A thorough introduction to the foundations of electromagnetics, including line, surface, and volume integrals, vector operation and theorems, and Maxwell’s equations</li> <li>Comprehensive explorations of passive and active components in RF and microwave engineering, including resistors, capacitors, inductors, and semiconductor materials and active devices</li> <li>Practical discussions of transmission lines, including transmission line analysis, Smith charts, microstrip lines, and striplines</li> <li>In-depth examinations of network parameters, including impedance parameters, ABCD parameters, h-Hybrid parameters, and network connections</li></ul> <p>Perfect for senior-level undergraduates and graduate students studying RF or Microwave engineering, <i>RF/Microwave Engineering and Applications in Energy Systems</i> is also an indispensable resource for professionals whose work touches on radio-frequency and microwave technologies.
<p>Preface xiii</p> <p>Biography xv</p> <p>Acknowledgments xvii</p> <p>About the Companion Website xix</p> <p><b>1 Fundamentals of Electromagnetics </b><b>1</b></p> <p>1.1 Introduction 1</p> <p>1.2 Line, Surface, and Volume Integrals 1</p> <p>1.2.1 Vector Analysis 1</p> <p>1.2.1.1 Unit Vector Relationship 1</p> <p>1.2.1.2 Vector Operations and Properties 2</p> <p>1.2.2 Coordinate Systems 4</p> <p>1.2.2.1 Cartesian Coordinate System 4</p> <p>1.2.2.2 Cylindrical Coordinate System 5</p> <p>1.2.2.3 Spherical Coordinate System 6</p> <p>1.2.3 Differential Length (<i>dl</i>), Differential Area (<i>ds</i>), and Differential Volume (<i>dv</i>) 8</p> <p>1.2.3.1 <i>dl</i>, <i>ds</i>, and <i>dv </i>in a Cartesian Coordinate System 8</p> <p>1.2.3.2 <i>dl</i>, <i>ds</i>, and <i>dv </i>in a Cylindrical Coordinate System 8</p> <p>1.2.3.3 <i>dl</i>, <i>ds</i>, and <i>dv </i>in a Spherical Coordinate System 9</p> <p>1.2.4 Line Integral 10</p> <p>1.2.5 Surface Integral 12</p> <p>1.2.6 Volume Integral 12</p> <p>1.3 Vector Operators and Theorems 13</p> <p>1.3.1 Del Operator 13</p> <p>1.3.2 Gradient 13</p> <p>1.3.3 Divergence 15</p> <p>1.3.4 Curl 16</p> <p>1.3.5 Divergence Theorem 16</p> <p>1.3.6 Stokes’ Theorem 19</p> <p>1.4 Maxwell’s Equations 21</p> <p>1.4.1 Differential Forms of Maxwell’s Equations 21</p> <p>1.4.2 Integral Forms of Maxwell’s Equations 22</p> <p>1.5 Time Harmonic Fields 23</p> <p>References 25</p> <p>Problems 25</p> <p><b>2 Passive and Active Components </b><b>27</b></p> <p>2.1 Introduction 27</p> <p>2.2 Resistors 27</p> <p>2.3 Capacitors 29</p> <p>2.4 Inductors 32</p> <p>2.4.1 Air Core Inductor Design 34</p> <p>2.4.2 Magnetic Core Inductor Design 36</p> <p>2.4.3 Planar Inductor Design 37</p> <p>2.4.4 Transformers 38</p> <p>2.5 Semiconductor Materials and Active Devices 39</p> <p>2.5.1 Si 40</p> <p>2.5.2 Wide-Bandgap Devices 40</p> <p>2.5.2.1 GaAs 41</p> <p>2.5.2.2 GaN 41</p> <p>2.5.3 Active Devices 41</p> <p>2.5.3.1 BJT and HBTs 41</p> <p>2.5.3.2 FETs 43</p> <p>2.5.3.3 MOSFETs 44</p> <p>2.5.3.4 LDMOS 53</p> <p>2.5.3.5 High Electron Mobility Transistor (HEMT) 54</p> <p>2.6 Engineering Application Examples 55</p> <p>References 62</p> <p>Problems 63</p> <p><b>3 Transmission Lines </b><b>71</b></p> <p>3.1 Introduction 71</p> <p>3.2 Transmission Line Analysis 71</p> <p>3.2.1 Limiting Cases for Transmission Lines 75</p> <p>3.2.2 Transmission Line Parameters 76</p> <p>3.2.2.1 Coaxial Line 76</p> <p>3.2.2.2 Two-wire Transmission Line 80</p> <p>3.2.2.3 Parallel Plate Transmission Line 80</p> <p>3.2.3 Terminated Lossless Transmission Lines 81</p> <p>3.2.4 Special Cases of Terminated Transmission Lines 85</p> <p>3.2.4.1 Short-circuited Line 85</p> <p>3.2.4.2 Open-circuited Line 85</p> <p>3.3 Smith Chart 86</p> <p>3.3.1 Input Impedance Determination with a Smith Chart 91</p> <p>3.3.2 Smith Chart as an Admittance Chart 95</p> <p>3.3.3 <i>ZY </i>Smith Chart and Its Applications 95</p> <p>3.4 Microstrip Lines 97</p> <p>3.5 Striplines 104</p> <p>3.6 Engineering Application Examples 107</p> <p>References 109</p> <p>Problems 109</p> <p><b>4 Network Parameters </b><b>113</b></p> <p>4.1 Introduction 113</p> <p>4.2 Impedance Parameters – <i>Z </i>Parameters 113</p> <p>4.3 <i>Y </i>Admittance Parameters 116</p> <p>4.4 <i>ABCD </i>Parameters 117</p> <p>4.5 <i>h </i>Hybrid Parameters 117</p> <p>4.6 Network Connections 123</p> <p>4.7 MATLAB Implementation of Network Parameters 129</p> <p>4.8 <i>S</i>-Scattering Parameters 141</p> <p>4.8.1 One-port Network 141</p> <p>4.8.2 <i>N</i>-port Network 143</p> <p>4.8.3 Normalized Scattering Parameters 146</p> <p>4.9 Measurement of <i>S </i>Parameters 154</p> <p>4.9.1 Measurement of <i>S </i>Parameters for Two-port Network 154</p> <p>4.9.2 Measurement of <i>S </i>Parameters for a Three-port Network 156</p> <p>4.10 Chain Scattering Parameters 158</p> <p>4.11 Engineering Application Examples 160</p> <p>References 176</p> <p>Problems 176</p> <p><b>5 Impedance Matching </b><b>181</b></p> <p>5.1 Introduction 181</p> <p>5.2 Impedance Matching Network with Lumped Elements 181</p> <p>5.3 Impedance Matching with a Smith Chart – Graphical Method 184</p> <p>5.4 Impedance Matching Network with Transmission Lines 187</p> <p>5.4.1 Quarter-wave Transformers 187</p> <p>5.4.2 Single Stub Tuning 188</p> <p>5.4.2.1 Shunt Single Stub Tuning 188</p> <p>5.4.2.2 Series Single Stub Tuning 189</p> <p>5.4.3 Double Stub Tuning 190</p> <p>5.5 Impedance Transformation and Matching between Source and Load Impedances 193</p> <p>5.6 Bandwidth of Matching Networks 195</p> <p>5.7 Engineering Application Examples 197</p> <p>References 219</p> <p>Problems 220</p> <p><b>6 Resonator Circuits </b><b>223</b></p> <p>6.1 Introduction 223</p> <p>6.2 Parallel and Series Resonant Networks 223</p> <p>6.2.1 Parallel Resonance 223</p> <p>6.2.2 Series Resonance 229</p> <p>6.3 Practical Resonances with Loss, Loading, and Coupling Effects 232</p> <p>6.3.1 Component Resonances 232</p> <p>6.3.2 Parallel <i>LC </i>Networks 235</p> <p>6.3.2.1 Parallel <i>LC </i>Networks with Ideal Components 235</p> <p>6.3.2.2 Parallel <i>LC </i>Networks with Nonideal Components 236</p> <p>6.3.2.3 Loading Effects on Parallel <i>LC </i>Networks 237</p> <p>6.3.2.4 <i>LC </i>Network Transformations 240</p> <p>6.3.2.5 <i>LC </i>Network with Series Loss 244</p> <p>6.4 Coupling of Resonators 245</p> <p>6.5 <i>LC </i>Resonators as Impedance Transformers 249</p> <p>6.5.1 Inductive Load 249</p> <p>6.5.2 Capacitive Load 250</p> <p>6.6 Tapped Resonators as Impedance Transformers 252</p> <p>6.6.1 Tapped-<i>C </i>Impedance Transformer 252</p> <p>6.6.2 Tapped-<i>L </i>Impedance Transformer 256</p> <p>6.7 Engineering Application Examples 256</p> <p>References 265</p> <p>Problems 265</p> <p><b>7 Couplers, Combiners, and Dividers </b><b>271</b></p> <p>7.1 Introduction 271</p> <p>7.2 Directional Couplers 271</p> <p>7.2.1 Microstrip Directional Couplers 272</p> <p>7.2.1.1 Two-line Microstrip Directional Couplers 272</p> <p>7.2.1.2 Three-line Microstrip Directional Couplers 276</p> <p>7.2.2 Multilayer and Multiline Planar Directional Couplers 279</p> <p>7.2.3 Transformer Coupled Directional Couplers 281</p> <p>7.2.3.1 Four-port Directional Coupler Design and Implementation 282</p> <p>7.2.3.2 Six-port Directional Coupler Design 284</p> <p>7.3 Multistate Reflectometers 289</p> <p>7.3.1 Multistate Reflectometer Based on Four-port Network and Variable Attenuator 289</p> <p>7.4 Combiners and Dividers 292</p> <p>7.4.1 Analysis of Combiners and Dividers 292</p> <p>7.4.2 Analysis of Dividers with Different Source Impedance 300</p> <p>7.4.3 Microstrip Implementation of Combiners/Dividers 313</p> <p>7.5 Engineering Application Examples 318</p> <p>References 347</p> <p>Problems 348</p> <p><b>8 Filters </b><b>351</b></p> <p>8.1 Introduction 351</p> <p>8.2 Filter Design Procedure 351</p> <p>8.3 Filter Design by the Insertion Loss Method 360</p> <p>8.3.1 Low Pass Filters 361</p> <p>8.3.1.1 Binomial Filter Response 362</p> <p>8.3.1.2 Chebyshev Filter Response 365</p> <p>8.3.2 High Pass Filters 376</p> <p>8.3.3 Bandpass Filters 378</p> <p>8.3.4 Bandstop Filters 382</p> <p>8.4 Stepped Impedance Low Pass Filters 383</p> <p>8.5 Stepped Impedance Resonator Bandpass Filters 386</p> <p>8.6 Edge/Parallel-coupled, Half-wavelength Resonator Bandpass Filters 388</p> <p>8.7 End-Coupled, Capacitive Gap, Half-Wavelength Resonator Bandpass Filters 394</p> <p>8.8 Tunable Tapped Combline Bandpass Filters 400</p> <p>8.8.1 Network Parameter Representation of Tunable Tapped Filter 402</p> <p>8.9 Dual Band Bandpass Filters using Composite Transmission Lines 405</p> <p>8.10 Engineering Application Examples 406</p> <p>References 422</p> <p>Problems 422</p> <p><b>9 Waveguides </b><b>425</b></p> <p>9.1 Introduction 425</p> <p>9.2 Rectangular Waveguides 425</p> <p>9.2.1 Waveguide Design with Isotropic Media 426</p> <p>9.2.1.1 <i>TE</i>mn Modes 427</p> <p>9.2.2 Waveguide Design with Gyrotropic Media 429</p> <p>9.2.2.1 <i>TE</i>m0 Modes 431</p> <p>9.2.3 Waveguide Design with Anisotropic Media 432</p> <p>9.3 Cylindrical Waveguides 442</p> <p>9.3.1 <i>TE </i>Modes 442</p> <p>9.3.2 <i>TM </i>Modes 444</p> <p>9.4 Waveguide Phase Shifter Design 444</p> <p>9.5 Engineering Application Examples 446</p> <p>References 454</p> <p>Problems 454</p> <p><b>10 Power Amplifiers </b><b>457</b></p> <p>10.1 Introduction 457</p> <p>10.2 Amplifier Parameters 457</p> <p>10.2.1 Gain 457</p> <p>10.2.2 Efficiency 459</p> <p>10.2.3 Power Output Capability 460</p> <p>10.2.4 Linearity 460</p> <p>10.2.5 1 dB Compression Point 461</p> <p>10.2.6 Harmonic Distortion 462</p> <p>10.2.7 Intermodulation 465</p> <p>10.3 Small Signal Amplifier Design 470</p> <p>10.3.1 DC Biasing Circuits 471</p> <p>10.3.2 BJT Biasing Circuits 472</p> <p>10.3.2.1 Fixed Bias 473</p> <p>10.3.2.2 Stable Bias 474</p> <p>10.3.2.3 Self-bias 475</p> <p>10.3.2.4 Emitter Bias 476</p> <p>10.3.2.5 Active Bias Circuit 477</p> <p>10.3.2.6 Bias Circuit using Linear Regulator 477</p> <p>10.3.3 FET Biasing Circuits 477</p> <p>10.3.4 Small Signal Amplifier Design Method 478</p> <p>10.3.4.1 Definitions Power Gains for Small Signal Amplifiers 478</p> <p>10.3.4.2 Design Steps for Small Signal Amplifier 482</p> <p>10.3.4.3 Small Signal Amplifier Stability 483</p> <p>10.3.4.4 Constant Gain Circles 488</p> <p>10.3.4.5 Unilateral Figure of Merit 493</p> <p>10.4 Engineering Application Examples 494</p> <p>References 508</p> <p>Problems 509</p> <p><b>11 Antennas </b><b>513</b></p> <p>11.1 Introduction 513</p> <p>11.2 Antenna Parameters 514</p> <p>11.3 Wire Antennas 521</p> <p>11.3.1 Infinitesimal (Hertzian) Dipole (<i>l </i>≤ <i>λ/</i>50) 521</p> <p>11.3.2 Short Dipole ( <i>λ/</i>50 ≤ <i>l </i>≤ <i>λ/</i>10) 524</p> <p>11.3.3 Half-wave Dipole (<i>l </i>= <i>λ/</i>2) 525</p> <p>11.4 Microstrip Antennas 531</p> <p>11.4.1 Type of Patch Antennas 533</p> <p>11.4.2 Feeding Methods 533</p> <p>11.4.2.1 Microstrip Line Feed 533</p> <p>11.4.2.2 Proximity Coupling 536</p> <p>11.4.3 Microstrip Antenna Analysis – Transmission Line Method 536</p> <p>11.4.4 Impedance Matching 537</p> <p>11.5 Engineering Application Examples 539</p> <p>References 552</p> <p>Problems 552</p> <p><b>12 RF Wireless Communication Basics for Emerging Technologies </b><b>555</b></p> <p>12.1 Introduction 555</p> <p>12.2 Wireless Technology Basics 555</p> <p>12.3 Standard Protocol vs Proprietary Protocol 556</p> <p>12.3.1 Standard Protocols 556</p> <p>12.3.2 Proprietary Protocols 556</p> <p>12.3.2.1 Physical Layer Only Approach 557</p> <p>12.4 Overview of Protocols 557</p> <p>12.4.1 ZigBee 557</p> <p>12.4.2 LowPAN 558</p> <p>12.4.3 Wi-Fi 558</p> <p>12.4.4 Bluetooth 560</p> <p>12.5 RFIDs 560</p> <p>12.5.1 Active RFID Tags 562</p> <p>12.5.2 Passive RFID Tags 562</p> <p>12.5.3 RFID Frequencies 562</p> <p>12.5.3.1 Low Frequency ~124 kHz and High Frequency ~13.56 MHz 562</p> <p>12.5.3.2 Ultrahigh Frequency (UHF) Tags ~423 MHz–2.45 GHz 563</p> <p>12.6 RF Technology for Implantable Medical Devices 563</p> <p>12.6.1 Challenges with IMDs 564</p> <p>12.6.1.1 Biocompatibility 564</p> <p>12.6.1.2 Frequency 564</p> <p>12.6.1.3 Dimension Constraints 564</p> <p>12.7 Engineering Application Examples 565</p> <p>References 576</p> <p><b>13 Energy Harvesting and HVAC Systems with RF Signals </b><b>577</b></p> <p>13.1 Introduction 577</p> <p>13.2 RF Energy Harvesting 577</p> <p>13.3 RF Energy Harvesting System Design for Dual Band Operation 578</p> <p>13.3.1 Matching Network for Energy Harvester 580</p> <p>13.3.2 RF–DC Conversion for Energy Harvester 582</p> <p>13.3.3 Clamper and Peak Detector Circuits 582</p> <p>13.3.4 Cascaded Rectifier 584</p> <p>13.3.5 Villard Voltage Multiplier 584</p> <p>13.3.6 RF–DC Rectifier Stages 584</p> <p>13.4 Diode Threshold <i>V</i><sub>th</sub> Cancellation 585</p> <p>13.4.1 Internal <i>V</i><sub>th</sub> Cancellation 585</p> <p>13.4.2 External <i>V</i><sub>th</sub> Cancellation 586</p> <p>13.4.3 Self-<i>V</i><sub>th</sub> Cancellation 586</p> <p>13.5 HVAC Systems 587</p> <p>13.6 Engineering Application Examples 588</p> <p>References 609</p> <p>Index 611</p>
<p><b>Abdullah Eroglu </b>is Chair and Professor of Electrical Engineering at North Carolina A&T State University, NC, USA and Emeritus Professor of Electrical Engineering at Purdue University Indiana, USA. His research focuses on antennas, RF/μW/THz circuit design, and wave propagation, metamaterials, RF Amplifier Topologies and Linearization Methods, and RF Control Systems. He has authored six books and edited one book and in excess of 140 journal and conference publications.</p>
<p><b>An essential text with a unique focus on RF and microwave engineering theory and its applications</b></p> <p>In<i> RF/Microwave Engineering and Applications in Energy Systems,</i> accomplished researcher Abdullah Eroglu delivers a detailed treatment of key theoretical aspects of radio-frequency and microwave engineering concepts along with parallel presentations of their practical applications. The text includes coverage of recent advances in the subject, including energy harvesting methods, RFID antenna designs, HVAC system controls, and smart grids. <p>The distinguished author provides step-by-step solutions to common engineering problems by way of numerous examples and offers end-of-chapter problems and solutions on each topic. These practical applications of theoretical subjects aid the reader with retention and recall and demonstrate a solid connection between theory and practice. <p>The author also applies common simulation tools in several chapters, illustrating the use and implementation of time domain circuit simulators in conjunction with electromagnetic simulators, as well as Matlab for design, simulation, and implementation at the component and system levels. <p>Readers will also benefit from: <ul><li>A thorough introduction to the foundations of electromagnetics, including line, surface, and volume integrals, vector operation and theorems, and Maxwell’s equations</li> <li>Comprehensive explorations of passive and active components in RF and microwave engineering, including resistors, capacitors, inductors, and semiconductor materials and active devices</li> <li>Practical discussions of transmission lines, including transmission line analysis, Smith charts, microstrip lines, and striplines</li> <li>In-depth examinations of network parameters, including impedance parameters, ABCD parameters, h-Hybrid parameters, and network connections</li></ul> <p>Perfect for senior-level undergraduates and graduate students studying RF or Microwave engineering, <i>RF/Microwave Engineering and Applications in Energy Systems</i> is also an indispensable resource for professionals whose work touches on radio-frequency and microwave technologies.

Diese Produkte könnten Sie auch interessieren:

Strategies to the Prediction, Mitigation and Management of Product Obsolescence
Strategies to the Prediction, Mitigation and Management of Product Obsolescence
von: Bjoern Bartels, Ulrich Ermel, Peter Sandborn, Michael G. Pecht
PDF ebook
116,99 €