Details

Quantitative Environmental Risk Analysis for Human Health


Quantitative Environmental Risk Analysis for Human Health


2. Aufl.

von: Robert A. Fjeld, Timothy A. DeVol, Nicole E. Martinez

123,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 29.08.2023
ISBN/EAN: 9781119675402
Sprache: englisch
Anzahl Seiten: 528

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>QUANTITATIVE ENVIRONMENTAL RISK ANALYSIS FOR HUMAN HEALTH</b> <p><b>An updated edition of the foundational guide to environmental risk analysis</b> <p>Environmental risk analysis is a systematic process essential for the evaluation, management, and communication of the human health risk posed by the release of contaminants to the environment. Performed correctly, risk analysis is an essential tool in the protection of the public from the health hazards posed by chemical and radioactive contaminants. Cultivating the quantitative skills required to perform risk analysis competently is a critical need. <p><i>Quantitative Environmental Risk Analysis for Human Health</i> meets this need with a thorough, comprehensive coverage of the fundamental knowledge necessary to assess environmental impacts on human health. It introduces readers to a robust methodology for analyzing environmental risk, as well as to the fundamental principles of uncertainty analysis and the pertinent environmental regulations. Now updated to reflect the latest research and new cutting-edge methodologies, this is an essential contribution to the practice of environmental risk analysis. <p>Readers of the second edition of <i>Quantitative Environmental Risk Analysis for Human Health</i> will also find: <p><ul><li>Detailed treatment of source and release characterization, contaminant migration, exposure assessment, and more</li> <li>New coverage of computer-based analytical methods</li> <li>A new chapter of case studies providing actual, real-world examples of environmental risk assessments</li></ul> <p><i>Quantitative Environmental Risk Analysis for Human Health</i> is must-have for graduate and advanced undergraduate students in civil engineering, environmental engineering, and environmental science, as well as for risk analysis practitioners in industry, environmental consultants, and regulators.
<p>List of Variables with Common Example Units xvii</p> <p>Preface to Second Edition xxvii</p> <p>Preface to First Edition xxix</p> <p><b>1 Introduction 1</b></p> <p>1.1 Risk Analysis 2</p> <p>1.2 Risk 4</p> <p>1.3 Contaminants in the Environment 8</p> <p>1.4 Uses of Environmental Risk Assessment 9</p> <p>1.5 Risk Assessment Process 13</p> <p>1.5.1 Problem Statement 13</p> <p>1.5.2 System Description 14</p> <p>1.5.3 Risk Calculation 14</p> <p>1.5.4 Integration and Iteration 18</p> <p>References 19</p> <p>Additional Reading 20</p> <p>Problems 21</p> <p><b>2 Fundamental Aspects of Environmental Modeling 23</b></p> <p>2.1 Introduction 23</p> <p>2.2 Modeling Process 24</p> <p>2.2.1 Model Development 24</p> <p>2.2.2 Modeling Assurance 28</p> <p>2.2.3 Environmental Modeling in Phases 30</p> <p>2.3 Physical and Mathematical Basis for Risk Assessment Models 31</p> <p>2.3.1 Mass Balances 31</p> <p>2.3.2 Simple Models 40</p> <p>2.4 Contaminant Transport Equation 47</p> <p>2.4.1 Transport Processes 48</p> <p>2.4.2 Derivation of the Contaminant Transport Equation 49</p> <p>2.4.3 Zero-dimensional Solutions of the Contaminant Transport Equation 52</p> <p>References 58</p> <p>Additional Reading 59</p> <p>Problems 59</p> <p><b>3 Release Assessment 64</b></p> <p>3.1 Introduction 64</p> <p>3.2 Conceptual Model 65</p> <p>3.3 Contaminant Identification 66</p> <p>3.4 Emission-Rate Quantification 72</p> <p>3.4.1 Release Probability 74</p> <p>3.4.2 Contaminant Emission Rate 79</p> <p>References 83</p> <p>Additional Reading 84</p> <p>Problems 84</p> <p><b>4 Environmental Transport Theory 87</b></p> <p>4.1 Introduction 87</p> <p>4.2 One-Dimensional Solutions of the Contaminant Transport Equation 89</p> <p>4.2.1 One-dimensional Advection 89</p> <p>4.2.2 One-dimensional Advection and Dispersion 95</p> <p>4.3 Three-Dimensional Contaminant Transport 99</p> <p>4.4 Advanced Solution Methods 100</p> <p>4.4.1 Numerical Techniques 100</p> <p>4.4.2 Superposition Integral 101</p> <p>References 103</p> <p>Additional Reading 104</p> <p>Problems 104</p> <p><b>5 Surface Water Transport 107</b></p> <p>5.1 Introduction 107</p> <p>5.2 Types of Surface Water Bodies 109</p> <p>5.2.1 Rivers and Streams 109</p> <p>5.2.2 Lakes 111</p> <p>5.2.3 Reservoirs on Rivers 111</p> <p>5.2.4 Estuaries 111</p> <p>5.2.5 Oceans 111</p> <p>5.3 Sorption 112</p> <p>5.3.1 Distribution Coefficient 112</p> <p>5.3.2 Fraction Sorbed 116</p> <p>5.3.3 Inclusion of Sorption in Transport Models 117</p> <p>5.4 Transport Modeling 119</p> <p>5.4.1 Lakes 119</p> <p>5.4.2 Rivers and Streams 123</p> <p>References 128</p> <p>Additional Reading 129</p> <p>Problems 129</p> <p><b>6 Groundwater Transport 132</b></p> <p>6.1 Introduction 132</p> <p>6.2 Subsurface Characterization 134</p> <p>6.3 Saturated Flow in Porous Media 135</p> <p>6.3.1 Groundwater Speed and Direction 135</p> <p>6.3.2 Porosity and Hydraulic Conductivity 138</p> <p>6.3.3 Dispersion 138</p> <p>6.4 Sorption 143</p> <p>6.5 Subsurface Contaminant Transport Modeling 144</p> <p>6.5.1 Linear Equilibrium Model of Subsurface Contaminant Transport 144</p> <p>6.5.2 Saturated-Zone Transport Solutions 148</p> <p>6.6 Other Considerations in Groundwater Transport 153</p> <p>6.6.1 Vadose Zone Transport 153</p> <p>6.6.2 Colloidal Transport 155</p> <p>6.6.3 Transformations 155</p> <p>6.6.4 NonAqueous-Phase Liquids 156</p> <p>References 158</p> <p>Additional Reading 159</p> <p>Problems 159</p> <p><b>7 Atmospheric Transport 163</b></p> <p>7.1 Introduction 163</p> <p>7.2 Atmospheric Dispersion 164</p> <p>7.3 Atmospheric Transport Models 168</p> <p>7.3.1 Constant Emission Rate: Gaussian Plume Model 168</p> <p>7.3.2 Long-Term Averages 175</p> <p>7.3.3 Infinite Line Source 179</p> <p>7.3.4 Instantaneous Emission: Gaussian Puff Model 179</p> <p>7.4 Other Considerations 180</p> <p>7.4.1 Effective Release Height and Plume Rise 180</p> <p>7.4.2 Building Wake 181</p> <p>7.4.3 Release with Inversion Aloft 182</p> <p>7.4.4 Nonconservative Processes 184</p> <p>References 186</p> <p>Additional Reading 187</p> <p>Problems 187</p> <p><b>8 Food Chain Transport 191</b></p> <p>8.1 Introduction 191</p> <p>8.2 Concentration in Soil 195</p> <p>8.2.1 Conceptual Model 195</p> <p>8.2.2 Atmospheric Deposition 197</p> <p>8.2.3 Irrigation Deposition 197</p> <p>8.2.4 Atmospheric Resuspension 198</p> <p>8.3 Concentration in Vegetation 199</p> <p>8.4 Concentration in Animals 204</p> <p>References 206</p> <p>Additional Reading 207</p> <p>Problems 207</p> <p><b>9 Exposure Assessment 210</b></p> <p>9.1 Introduction 210</p> <p>9.2 Dose 212</p> <p>9.2.1 Chemical Dose 212</p> <p>9.2.2 Radiological Dose 214</p> <p>9.3 Contaminant Intake 215</p> <p>9.3.1 Inhalation 216</p> <p>9.3.2 Ingestion 216</p> <p>9.3.3 Dermal Absorption 218</p> <p>9.4 Dose Calculations 220</p> <p>9.4.1 Chemical Dose Calculations 220</p> <p>9.4.2 Radiological Dose Calculations 222</p> <p>References 227</p> <p>Additional Reading 228</p> <p>Problems 228</p> <p><b>10 Basic Human Toxicology 230</b></p> <p>10.1 Introduction 230</p> <p>10.2 Fundamentals of Anatomy and Physiology 231</p> <p>10.2.1 Cellular Anatomy and Physiology 232</p> <p>10.2.2 Cellular Mechanisms of Toxicity 237</p> <p>10.2.3 Major Organ Systems 239</p> <p>10.3 Mechanisms and Effects of Toxicity 250</p> <p>10.3.1 Systemic Effects 250</p> <p>10.3.2 Carcinogenic Effects 252</p> <p>10.3.3 Teratogenic Effects 256</p> <p>10.3.4 Hereditary Effects 258</p> <p>References 259</p> <p>Problems 261</p> <p><b>11 Dose–Response and Risk Characterization 263</b></p> <p>11.1 Introduction 263</p> <p>11.2 Biological Basis of Dose–Response Modeling 264</p> <p>11.3 Elements of Quantitative Dose–Response Analysis 266</p> <p>11.3.1 Factors Affecting Toxicity 266</p> <p>11.3.2 Quantification of Responses 272</p> <p>11.3.3 Sources of Dose–Response Data 274</p> <p>11.4 Dose–Response Modeling 279</p> <p>11.4.1 Animal-to-Human Extrapolation 280</p> <p>11.4.2 Dose–response models and high- to low-dose extrapolation 283</p> <p>11.5 Risk Characterization 287</p> <p>11.5.1 Margin of Exposure 287</p> <p>11.5.2 Cancer Slope Factors and Unit Risk 289</p> <p>11.6 Regulatory Implementation 290</p> <p>11.6.1 The Benchmark Dose (BMD) Approach 291</p> <p>11.6.2 Deterministic (Noncancer) Endpoints 293</p> <p>11.6.3 Stochastic (Non-threshold) Endpoints 299</p> <p>References 305</p> <p>Additional Reading 308</p> <p>Problems 308</p> <p><b>12 Uncertainty and Sensitivity Analyses 311</b></p> <p>12.1 Introduction 311</p> <p>12.2 Types and Sources of Uncertainty 312</p> <p>12.2.1 Qualitative and Quantitative Considerations 312</p> <p>12.2.2 Sources of Uncertainty 313</p> <p>12.2.3 Types of Uncertainty 314</p> <p>12.3 Statistics Fundamentals 317</p> <p>12.3.1 Random Variables and Distribution Functions 317</p> <p>12.3.2 Characterization of PDFs 319</p> <p>12.3.3 Determination of Distributions 320</p> <p>12.4 Uncertainty Propagation 324</p> <p>12.4.1 Sensitivity Analysis 325</p> <p>12.4.2 Methods for Uncertainty Propagation 327</p> <p>References 340</p> <p>Problems 343</p> <p><b>13 Screening and Computational Resources 348</b></p> <p>13.1 Introduction 348</p> <p>13.2 Screening Tools 349</p> <p>13.2.1 COMPLY/COMPLY-R 349</p> <p>13.2.2 DandD 350</p> <p>13.2.3 Groundwater Transport Calculator 350</p> <p>13.2.4 RSL and RML 350</p> <p>13.2.5 RAIS PRG Calculators 351</p> <p>13.2.6 RAIS Risk Calculators 351</p> <p>13.2.7 SERAFM 351</p> <p>13.3 Surface Water Transport 352</p> <p>13.3.1 BASINS 352</p> <p>13.3.2 EFDC 352</p> <p>13.3.3 LADTAP II 353</p> <p>13.3.4 QUAL2K 353</p> <p>13.3.5 WASP 354</p> <p>13.3.6 SMS 13 354</p> <p>13.4 Groundwater Transport 354</p> <p>13.4.1 3DFEMWATER/3DLEWASTE 354</p> <p>13.4.2 EPACMTP 355</p> <p>13.4.3 GMS 355</p> <p>13.4.4 HELP 355</p> <p>13.4.5 MODFLOW 6 356</p> <p>13.4.6 PORFLOW 356</p> <p>13.4.7 STOMP 357</p> <p>13.4.8 TOUGHREACT 357</p> <p>13.5 Atmospheric Transport 357</p> <p>13.5.1 AERMOD 358</p> <p>13.5.2 ALOHA 358</p> <p>13.5.3 CTDMPLUS 359</p> <p>13.5.4 HOTSPOT 359</p> <p>13.5.5 HYSPLIT 359</p> <p>13.5.6 PAVAN 360</p> <p>13.5.7 RASCAL 360</p> <p>13.5.8 XOQDOQ 360</p> <p>13.6 Food Chain Transport 361</p> <p>13.6.1 BASS 361</p> <p>13.6.2 CAP-88 PC 361</p> <p>13.6.3 GASPAR II 362</p> <p>13.6.4 MILDOS 4 362</p> <p>13.7 Transport, Exposure, and Consequence Assessment Tools 363</p> <p>13.7.1 CalTOX 363</p> <p>13.7.2 FRAMES-2.0 363</p> <p>13.7.3 GENII 364</p> <p>13.7.4 GOLDSIM 364</p> <p>13.7.5 MEPAS 364</p> <p>13.7.6 RESRAD 365</p> <p>13.7.7 Risk Analyst 366</p> <p>13.8 Geochemical Speciation Modeling 367</p> <p>13.8.1 GWB 367</p> <p>13.8.2 MINEQL+ 368</p> <p>13.8.3 MINTEQA2/VISUAL MINTEQ 368</p> <p>13.8.4 PHREEQC 368</p> <p>13.9 Uncertainty 369</p> <p>13.10 Other Useful Computational Resources 370</p> <p>13.10.1 RESRAD-BUILD 370</p> <p>13.10.2 SADA 370</p> <p>13.10.3 VSP 370</p> <p>13.10.4 BMDS 370</p> <p>References 370</p> <p><b>14 Case Studies 376</b></p> <p>14.1 Introduction 376</p> <p>14.2 PFAS 376</p> <p>14.2.1 Background 377</p> <p>14.2.2 Wilbur Earl Tenant’s Farm (EPA 2001, Bilott 2019) 377</p> <p>14.2.3 Parkersburg and EPA (EPA 2001, Bilott 2019) 378</p> <p>14.2.4 Epilogue 379</p> <p>14.3 Arsenic in Drinking Water 380</p> <p>14.3.1 Introduction 380</p> <p>14.3.2 Risk Calculation 381</p> <p>14.3.3 Risk Assessment 381</p> <p>14.4 MCHM 382</p> <p>14.4.1 Background 382</p> <p>14.4.2 Calculation of MCHM Concentration 383</p> <p>14.4.3 Epilogue 386</p> <p>14.5 Releases from Rocky Flats 387</p> <p>14.5.1 Introduction 388</p> <p>14.5.2 1957 Plutonium Fire Basic Risk Assessment 388</p> <p>14.5.3 Rocky Flats Comprehensive Risk Assessment 390</p> <p>14.5.4 Comparisons for 1957 Plutonium Fire 391</p> <p>14.5.5 Epilogue 393</p> <p>References 393</p> <p>Problems 395</p> <p><b>15 Ethics, Stakeholder Involvement, and Risk Communication 396</b></p> <p>15.1 Introduction 396</p> <p>15.2 Ethics 397</p> <p>15.2.1 Overview 397</p> <p>15.2.2 Ethical Theories 397</p> <p>15.2.3 Environmental Ethics 398</p> <p>15.3 Stakeholder Involvement 400</p> <p>15.3.1 Motivation 400</p> <p>15.3.2 Potential Benefits and Detriments 401</p> <p>15.3.3 Scope of Stakeholder Involvement 403</p> <p>15.3.4 Legal Basis and Requirements 405</p> <p>15.3.5 Methods and Approaches 405</p> <p>15.4 Risk Communication 410</p> <p>15.4.1 Scientific Basis 411</p> <p>15.4.2 Practical Considerations 416</p> <p>15.4.3 Unresolved Issues 417</p> <p>References 418</p> <p>Problems 422</p> <p><b>16 Environmental Risk Management 423</b></p> <p>16.1 Introduction 423</p> <p>16.2 Risk Management Process 423</p> <p>16.3 Risk Management Methods 424</p> <p>16.3.1 Approaches to Risk Management 424</p> <p>16.3.2 Fundamentals of Decision Analysis 426</p> <p>16.3.3 Methods for Decision Analysis Under Certainty 433</p> <p>16.3.4 Methods for Decision Analysis Under Risk 438</p> <p>References 441</p> <p>Problems 442</p> <p><b>17 Environmental Laws and Regulations 444</b></p> <p>17.1 Introduction 444</p> <p>17.2 General Legal and Regulatory Structure for Environmental Protection 444</p> <p>17.2.1 U.S. Governmental Structure 444</p> <p>17.2.2 Regulatory Hierarchy 445</p> <p>17.3 Major Federal Environmental Laws and Regulations 446</p> <p>17.3.1 National Environmental Policy Act 447</p> <p>17.3.2 CERCLA and SARA 449</p> <p>17.3.3 Resource Conservation and Recovery Act 452</p> <p>17.3.4 Toxic Substances Control Act 453</p> <p>17.3.5 Clean Air Act 454</p> <p>17.3.6 Clean Water Act 456</p> <p>17.4 CERCLA Process 457</p> <p>17.4.1 Remedial Actions Under CERCLA 457</p> <p>17.4.2 Risk Assessment in the RI/FS Process 458</p> <p>17.5 Additional Regulations 459</p> <p>References 460</p> <p>Problems 461</p> <p>Appendix A Mathematical Tools 462</p> <p>A. 1 Special Functions 462</p> <p>A.1. 1 Dirac Delta Function 462</p> <p>A.1. 2 Heaviside Unit Step Function 463</p> <p>A.1. 3 Error Function and Complementary Error Function 463</p> <p>A.1. 4 Gamma Function 464</p> <p>A. 2 Laplace Transforms 465</p> <p>A.2. 1 Definitions and Notation 465</p> <p>A.2. 2 Basic Transforms and Properties 466</p> <p>A.2. 3 Solution of Differential Equations with Laplace Transforms 467</p> <p>A. 3 Exact Solutions to the One-Dimensional Contaminant Transport Equation 470</p> <p>References 473</p> <p>Additional Reading 474</p> <p>Appendix B Degradation and Decay Parameters 475</p> <p>Index 477 </p>
<p><b>Robert A. Fjeld, PhD, </b> is an Emeritus Professor and Dempsey Chair of Environmental Engineering, Department of Environmental Engineering and Earth Sciences, Clemson University, USA. He is a pioneering researcher of quantitative human health risk assessment and the author of numerous related publications. <p><b>Timothy A. DeVol, PhD, CHP, </b> is Toshiba Professor of Nuclear Engineering and Director of the Nuclear Environmental Engineering Sciences and Radioactive Waste Management Center at Clemson University. His research interests are on radioactive material detection and environmental health physics. <p><b>Nicole E. Martinez, PhD, CHP, </b> is an Associate Professor of Environmental Engineering and Earth Sciences, Clemson University with a Joint Faculty Appointment at Oak Ridge National Laboratory. Her research focuses on dosimetric modeling and the transport and effects of environmental contaminants.
<p><b>An updated edition of the foundational guide to environmental risk analysis</b> <p>Environmental risk analysis is a systematic process essential for the evaluation, management, and communication of the human health risk posed by the release of contaminants to the environment. Performed correctly, risk analysis is an essential tool in the protection of the public from the health hazards posed by chemical and radioactive contaminants. Cultivating the quantitative skills required to perform risk analysis competently is a critical need. <p><i>Quantitative Environmental Risk Analysis for Human Health</i> meets this need with a thorough, comprehensive coverage of the fundamental knowledge necessary to assess environmental impacts on human health. It introduces readers to a robust methodology for analyzing environmental risk, as well as to the fundamental principles of uncertainty analysis and the pertinent environmental regulations. Now updated to reflect the latest research and new cutting-edge methodologies, this is an essential contribution to the practice of environmental risk analysis. <p>Readers of the second edition of <i>Quantitative Environmental Risk Analysis for Human Health</i> will also find: <p><ul><li>Detailed treatment of source and release characterization, contaminant migration, exposure assessment, and more</li> <li>New coverage of computer-based analytical methods</li> <li>A new chapter of case studies providing actual, real-world examples of environmental risk assessments</li></ul> <p><i>Quantitative Environmental Risk Analysis for Human Health</i> is must-have for graduate and advanced undergraduate students in civil engineering, environmental engineering, and environmental science, as well as for risk analysis practitioners in industry, environmental consultants, and regulators.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €