Details

Protective Chemical Agents in the Amelioration of Plant Abiotic Stress


Protective Chemical Agents in the Amelioration of Plant Abiotic Stress

Biochemical and Molecular Perspectives
1. Aufl.

von: Aryadeep Roychoudhury, Durgesh K. Tripathi

204,99 €

Verlag: Wiley-Blackwell
Format: EPUB
Veröffentl.: 20.05.2020
ISBN/EAN: 9781119551652
Sprache: englisch
Anzahl Seiten: 704

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A guide to the chemical agents that protect plants from various environmental stressors</b></p> <p><i>Protective Chemical Agents in the Amelioration of Plant Abiotic Stress </i>offers a guide to the diverse chemical agents that have the potential to mitigate different forms of abiotic stresses in plants. Edited by two experts on the topic, the book explores the role of novel chemicals and shows how using such unique chemical agents can tackle the oxidative damages caused by environmental stresses.</p> <p>Exogenous application of different chemical agents or chemical priming of seeds presents opportunities for crop stress management. The use of chemical compounds as protective agents has been found to improve plant tolerance significantly in various crop and non-crop species against a range of different individually applied abiotic stresses by regulating the endogenous levels of the protective agents within plants. This important book:</p> <ul> <li>Explores the efficacy of various chemical agents to eliminate abiotic stress</li> <li>Offers a groundbreaking look at the topic and reviews the most recent advances in the field</li> <li>Includes information from noted authorities on the subject</li> <li>Promises to benefit agriculture under stress conditions at the ground level</li> </ul> <p>Written for researchers, academicians, and scientists, <i>Protective Chemical Agents in the Amelioration of Plant Abiotic Stress </i>details the wide range of protective chemical agents, their applications, and their intricate biochemical and molecular mechanism of action within the plant systems during adverse situations.</p>
<p>List of Contributors xix</p> <p><b>1 Role of Proline and Glycine Betaine in Overcoming Abiotic Stresses </b><b>1<br /></b><i>Murat Dikilitas, Eray Simsek, and Aryadeep Roychoudhury</i></p> <p>1.1 Introduction 1</p> <p>1.2 Responses of Crop Plants Under Abiotic Stresses 2</p> <p>1.3 Mechanisms of Osmoprotectant Functions in Overcoming Stress 3</p> <p>1.4 Application of Osmoprotectants in Stress Conditions 7</p> <p>1.5 Conclusion and Future Perspectives 14</p> <p>Acknowledgment 14</p> <p>References 15</p> <p><b>2 Glycine Betaine and Crop Abiotic Stress Tolerance: An Update </b><b>24<br /></b><i>Giridara-Kumar Surabhi and Arpita Rout</i></p> <p>2.1 Introduction 24</p> <p>2.2 Biosynthesis of GB 25</p> <p>2.3 Accumulation of GB Under Abiotic Stress in Crop Plants 26</p> <p>2.4 Exogenous Application of GB in Crop Plants Under Abiotic Stress 27</p> <p>2.5 Transgenic Approach to Enhance GB Accumulation in Crop Plants Under Abiotic Stress 33</p> <p>2.6 Effect of GB on Reproductive Stage in Different Crops 35</p> <p>2.7 Pyramiding GB Synthesizing Genes for Enhancing Abiotic Stress Tolerance in Plants 41</p> <p>2.8 Conclusion and Future Prospective 43</p> <p>Acknowledgment 43</p> <p>Reference 44</p> <p><b>3 Osmoprotective Role of Sugar in Mitigating Abiotic Stress in Plants </b><b>53<br /></b><i>Farhan Ahmad, Ananya Singh, and Aisha Kamal</i></p> <p>3.1 Introduction 53</p> <p>3.2 Involvement of Sugar in Plant Developmental Process 54</p> <p>3.3 Multidimensional Role of Sugar Under Optimal and Stressed Conditions 55</p> <p>References 62</p> <p><b>4 Sugars and Sugar Polyols in Overcoming Environmental Stresses </b><b>71<br /></b><i>Saswati Bhattacharya and Anirban Kundu</i></p> <p>4.1 Introduction 71</p> <p>4.2 Types of Sugars and Sugar Alcohols 72</p> <p>4.3 Mechanism of Action of Sugars and Polyols 77</p> <p>4.4 Involvement of Sugars and Polyols in Abiotic Stress Tolerance 82</p> <p>4.5 Engineering Abiotic Stress Tolerance Using Sugars and Sugar Alcohols 87</p> <p>4.6 Conclusions and Future Perspectives 91</p> <p>References 92</p> <p><b>5 Ascorbate and Tocopherols in Mitigating Oxidative Stress </b><b>102<br /></b><i>Kingsuk Das</i></p> <p>5.1 Introduction 102</p> <p>5.2 Role of Ascorbic Acid in Plant Physiological Processes 103</p> <p>5.3 Transgenic Approaches for Overproduction of Ascorbate Content for Fight Against Abiotic Stress 104</p> <p>5.4 Conclusion 113</p> <p>References 114</p> <p><b>6 Role of Glutathione Application in Overcoming Environmental Stress </b><b>122<br /></b><i>Nimisha Amist and N. B. Singh</i></p> <p>6.1 Introduction 122</p> <p>6.2 Glutathione Molecular Structure 123</p> <p>6.3 Glutathione Biosynthesis and Distribution 124</p> <p>6.4 Glutathione-induced Oxidative Stress Tolerance 127</p> <p>6.5 Impact of Abiotic Stress on Glutathione Content in Various Plants 129</p> <p>6.6 Exogenous Application of GSH in Plants 131</p> <p>6.7 Cross Talk on Glutathione Signaling Under Abiotic Stress 131</p> <p>6.8 Conclusion 137</p> <p>References 137</p> <p><b>7 Modulation of Abiotic Stress Tolerance Through Hydrogen Peroxide </b><b>147<br /></b><i>Murat Dikilitas, Eray Simsek, and Aryadeep Roychoudhury</i></p> <p>7.1 Introduction 147</p> <p>7.2 Abiotic Stress in Crop Plants 149</p> <p>7.3 Mechanisms of Hydrogen Peroxide in Cells 149</p> <p>7.4 Role of Hydrogen Peroxide in Overcoming Stress 154</p> <p>7.5 Conclusion and Future Perspectives 163</p> <p>Acknowledgment 163</p> <p>References 163</p> <p><b>8 Exogenous Nitric Oxide- and Hydrogen Sulfide-induced Abiotic Stress Tolerance in Plants </b><b>174<br /></b><i>Mirza Hasanuzzaman, M. H. M. Borhannuddin Bhuyan, Kamrun Nahar, Sayed Mohammad Mohsin, Jubayer Al Mahmud, Khursheda Parvin, and Masayuki Fujita</i></p> <p>8.1 Introduction 174</p> <p>8.2 Nitric Oxide Biosynthesis in Plants 175</p> <p>8.3 Hydrogen Sulfide Biosynthesis in Plants 177</p> <p>8.4 Application Methods of NO and H<sub>2</sub>S Donors in Plants 178</p> <p>8.5 Exogenous NO-induced Abiotic Stress Tolerance 178</p> <p>8.6 Conclusions and Outlook 202</p> <p>References 203</p> <p><b>9 Role of Nitric Oxide in Overcoming Heavy Metal Stress </b><b>214<br /></b><i>Pradyumna Kumar Singh, Madhu Tiwari, Maria Kidwai, Dipali Srivastava, Rudra Deo Tripathi, and Debasis Chakrabarty</i></p> <p>9.1 Introduction 214</p> <p>9.2 Nitric Oxide and Osmolyte Synthesis During Heavy Metal Stress 216</p> <p>9.3 Relation of Nitric Oxide and Secondary Metabolite Modulation in Heavy Metal Stress 217</p> <p>9.4 Regulation of Redox Regulatory Mechanism by Nitric Oxide 218</p> <p>9.5 Nitric Oxide and Hormonal Cross Talk During Heavy Metal Stress 222</p> <p>9.6 Conclusion 227</p> <p>References 227</p> <p><b>10 Protective Role of Sodium Nitroprusside in Overcoming Diverse Environmental Stresses in Plants </b><b>238<br /></b><i>Satabdi Ghosh</i></p> <p>10.1 Introduction 238</p> <p>10.2 Role of SNP in Alleviating Abiotic Stress 239</p> <p>10.3 Conclusion and Future Prospect 245</p> <p>Acknowledgments 245</p> <p>References 245</p> <p><b>11 Role of Growth Regulators and Phytohormones in Overcoming Environmental Stress </b><b>254<br /></b><i>Deepesh Bhatt, Manoj Nath, Mayank Sharma, Megha D. Bhatt, Deepak Singh Bisht, and Naresh V. Butani</i></p> <p>11.1 Introduction 254</p> <p>11.2 Function of Classical Plant Hormones in Stress Mitigation 256</p> <p>11.3 Role of Specialized Stress-responsive Hormones 260</p> <p>11.4 Hormone Cross Talk and Stress Alleviation 265</p> <p>11.5 Conclusions and Future Perspective 268</p> <p>References 268</p> <p><b>12 Abscisic Acid Application and Abiotic Stress Amelioration </b><b>280<br /></b><i>Nasreena Sajjad , Eijaz Ahmed Bhat, Durdana Shah, Abubakar Wani, Nazish Nazir, Rohaya Ali, and Sumaya Hassan</i></p> <p>12.1 Introduction 280</p> <p>12.2 Abscisic Acid Biosynthesis 281</p> <p>12.3 Role of Abscisic Acid in Plant Stress Tolerance 282</p> <p>12.4 Regulation of ABA Biosynthesis Through Abiotic Stress 282</p> <p>12.5 ABA and Abiotic Stress Signaling 283</p> <p>12.6 Drought Stress 284</p> <p>12.7 UV-B Stress 284</p> <p>12.8 Water Stress 285</p> <p>12.9 ABA and Transcription Factors in Stress Tolerance 285</p> <p>12.10 Conclusion 286</p> <p>References 286</p> <p><b>13 Role of Polyamines in Mitigating Abiotic Stress </b><b>291<br /></b><i>Rohaya Ali, Sumaya Hassan, Durdana Shah, Nasreena Sajjad, and Eijaz Ahmed Bhat</i></p> <p>13.1 Introduction 291</p> <p>13.2 Distribution and Function of Polyamines 293</p> <p>13.3 Synthesis, Catabolism, and Role of Polyamines 293</p> <p>13.4 Polyamines and Abiotic Stress 295</p> <p>13.5 Conclusion 299</p> <p>References 300</p> <p><b>14 Role of Melatonin in Amelioration of Abiotic Stress-induced Damages </b><b>306<br /></b><i>Nasreena Sajjad, Eijaz Ahmed Bhat, Sumaya Hassan, Rohaya Ali , and Durdana Shah</i></p> <p>14.1 Introduction 306</p> <p>14.2 Melatonin Biosynthesis in Plants 306</p> <p>14.3 Modulation of Melatonin Levels in Plants Under Stress Conditions 307</p> <p>14.4 Role of Melatonin in Amelioration of Stress-induced Damages 309</p> <p>14.5 Mechanisms of Melatonin-mediated Stress Tolerance 311</p> <p>14.6 Conclusion 313</p> <p>References 313</p> <p><b>15 Brassinosteroids in Lowering Abiotic Stress-mediated Damages </b><b>318<br /></b><i>Gunjan Sirohi and Meenu Kapoor</i></p> <p>15.1 Introduction 318</p> <p>15.2 BR-induced Stress Tolerance in Plants 319</p> <p>15.3 Conclusions and Future Perspectives 323</p> <p>References 323</p> <p><b>16 Strigolactones in Overcoming Environmental Stresses </b><b>327<br /></b><i>Megha D. Bhatt, and Deepesh Bhatt</i></p> <p>16.1 Introduction 327</p> <p>16.2 Various Roles of SLs in Plants 331</p> <p>16.3 Cross Talk Between Other Phytohormones and SLs 335</p> <p>16.4 Conclusion 336</p> <p>References 336</p> <p><b>17 Emerging Roles of Salicylic Acid and Jasmonates in Plant Abiotic Stress Responses </b><b>342<br /></b><i>Parankusam Santisree, Lakshmi Chandra Lekha Jalli, Pooja Bhatnagar-Mathur, and Kiran K. Sharma</i></p> <p>17.1 Introduction 342</p> <p>17.2 Salicylic Acid 343</p> <p>17.3 Biosynthesis and Metabolism of SA 343</p> <p>17.4 SA in Abiotic Stress Tolerance 346</p> <p>17.5 Signaling of SA Under Abiotic Stress 351</p> <p>17.6 Jasmonic Acid 352</p> <p>17.7 Physiological Function of Jasmonates 353</p> <p>17.8 Biosynthesis of Jasmonic Acid 354</p> <p>17.9 JA Signaling in Plants 355</p> <p>17.10 JA and Abiotic Stress 356</p> <p>17.11 Role of Jasmonates in Temperature Stress 357</p> <p>17.12 Metal Stress and Role of Jasmonates 358</p> <p>17.13 Jasmonates and Salt Stress 359</p> <p>17.14 Jasmonates and Water Stress 360</p> <p>17.15 Cross Talk Between JA and SA Under Abiotic Stress 361</p> <p>17.16 Concluding Remarks 362</p> <p>Acknowledgments 363</p> <p>References 363</p> <p><b>18 Multifaceted Roles of Salicylic Acid and Jasmonic Acid in Plants Against Abiotic Stresses </b><b>374<br /></b><i>Nilanjan Chakraborty , Anik Sarkar, and Krishnendu Acharya</i></p> <p>18.1 Introduction 374</p> <p>18.2 Biosynthesis of SA and JA 374</p> <p>18.3 Exogenous Application of SA and JA in Abiotic Stress Responses 377</p> <p>18.4 Future Goal and Concluding Remarks 378</p> <p>References 383</p> <p><b>19 Brassinosteroids and Salicylic Acid as Chemical Agents to Ameliorate Diverse Environmental Stresses in Plants </b><b>389<br /></b><i>B. Vidya Vardhini</i></p> <p>19.1 Introduction 389</p> <p>19.2 Overview of PGRs 389</p> <p>19.3 BRs and SA in Ameliorating Abiotic Stresses 390</p> <p>19.4 Conclusion 400</p> <p>References 400</p> <p><b>20 Role of </b><b>γ-Aminobutyric Acid in the Mitigation of Abiotic Stress in Plants 413<br /></b><i>Ankur Singh and Aryadeep Roychoudhury</i></p> <p>20.1 Introduction 413</p> <p>20.2 GABA Metabolism 414</p> <p>20.3 Protective Role of GABA Under Different Stresses 415</p> <p>20.4 Conclusion and Future Perspective 419</p> <p>Acknowledgments 419</p> <p>Reference 420</p> <p><b>21 Isoprenoids in Plant Protection Against Abiotic Stress </b><b>424<br /></b><i>Syed Uzma Jalil and Mohammad Israil Ansari</i></p> <p>21.1 Introduction 424</p> <p>21.2 Synthesis of Free Radicals During Abiotic Stress Conditions 426</p> <p>21.3 Biosynthesis of Isoprenoids in Plants 427</p> <p>21.4 Functions and Mechanisms of Isoprenoids During Abiotic Stresses 428</p> <p>21.5 Conclusion 430</p> <p>Acknowledgments 431</p> <p>References 431</p> <p><b>22 Involvement of Sulfur in the Regulation of Abiotic Stress Tolerance in Plants </b><b>437<br /></b><i>Santanu Samanta, Ankur Singh, and Aryadeep Roychoudhury</i></p> <p>22.1 Introduction 437</p> <p>22.2 Sulfur Metabolism 438</p> <p>22.3 Sulfur Compounds Having Potential to Ameliorate Abiotic Stress 438</p> <p>22.4 Role of Sulfur Compounds During Salinity Stress 441</p> <p>22.5 Role of Sulfur Compounds During Drought Stress 443</p> <p>22.6 Role of Sulfur Compounds During Temperature Stress 444</p> <p>22.7 Role of Sulfur Compounds During Light Stress 446</p> <p>22.8 Role of Sulfur Compounds in Heavy Metal Stress 447</p> <p>22.9 Conclusion and Future Perspectives 452</p> <p>Acknowledgments 452</p> <p>References 453</p> <p><b>23 Role of Thiourea in Mitigating Different Environmental Stresses in Plants </b><b>467<br /></b><i>Vikas Yadav Patade, Ganesh C. Nikalje, and Sudhakar Srivastava</i></p> <p>23.1 Introduction 467</p> <p>23.2 Modes of TU Application 468</p> <p>23.3 Biological Roles of TU Under Normal Conditions 469</p> <p>23.4 Role of Exogenous Application of TU in Mitigation of Environmental Stresses 470</p> <p>23.5 Mechanisms of TU-mediated Enhanced Stress Tolerance 474</p> <p>23.6 Success Stories of TU Application at Field Level 476</p> <p>23.7 Conclusion 477</p> <p>References 478</p> <p><b>24 Oxylipins and Strobilurins as Protective Chemical Agents to Generate Abiotic Stress Tolerance in Plants </b><b>483<br /></b><i>Aditya Banerjee and Aryadeep Roychoudhury</i></p> <p>24.1 Introduction 483</p> <p>24.2 Signaling Mediated by Oxylipins 484</p> <p>24.3 Roles of Oxylipins in Abiotic Stress Tolerance 484</p> <p>24.4 Role of Strobilurins in Abiotic Stress Tolerance 486</p> <p>24.5 Conclusion 487</p> <p>24.6 Future Perspectives 487</p> <p>Acknowledgments 487</p> <p>References 487</p> <p><b>25 Role of Triacontanol in Overcoming Environmental Stresses </b><b>491<br /></b><i>Abbu Zaid, Mohd. Asgher, Ishfaq Ahmad Wani, and Shabir H. Wani</i></p> <p>25.1 Introduction 491</p> <p>25.2 Environmental Stresses and Tria as a Principal Stress-Alleviating Component in Diverse Crop Plants 493</p> <p>25.3 Assessment of Foliar and Seed Priming Tria Application in Regulating Diverse Physio-biochemical Traits in Plants 497</p> <p>25.4 Conclusion and Future Prospects 499</p> <p>Acknowledgments 502</p> <p>References 502</p> <p><b>26 Penconazole, Paclobutrazol, and Triacontanol in Overcoming Environmental Stress in Plants </b><b>510<br /></b><i>Saket Chandra and Aryadeep Roychoudhury</i></p> <p>26.1 Introduction 510</p> <p>26.2 Nature of Damages by Different Abiotic Stresses 512</p> <p>26.3 Synthesis of Chemicals 515</p> <p>26.4 Role of Exogenously Added Penconazole, Paclobutrazol, and Triacontanol During Stress 516</p> <p>26.5 Conclusion 523</p> <p>Acknowledgment 524</p> <p>References 524</p> <p><b>27 Role of Calcium and Potassium in Amelioration of Environmental Stress in Plants </b><b>535<br /></b><i>Jainendra Pathak, Haseen Ahmed, Neha Kumari, Abha Pandey, Rajneesh, and Rajeshwar P. Sinha</i></p> <p>27.1 Introduction 535</p> <p>27.2 Biological Functions of Calcium and Potassium in Plants 537</p> <p>27.3 Calcium and Potassium Uptake, Transport, and Assimilation in Plants 538</p> <p>27.4 Calcium- and Potassium-induced Abiotic Stress Signaling 540</p> <p>27.5 Role of Calcium and Potassium in Abiotic Stress Tolerance 542</p> <p>27.6 Waterlogging Conditions 550</p> <p>27.7 High Light Intensity 550</p> <p>27.8 Conclusion 551</p> <p>Acknowledgments 551</p> <p>References 552</p> <p><b>28 Role of Nitric Oxide and Calcium Signaling in Abiotic Stress Tolerance in Plants </b><b>563<br /></b><i>Zaffar Malik, Sobia Afzal, Muhammad Danish, Ghulam Hassan Abbasi, Syed Asad Hussain Bukhari, Muhammad Imran Khan, Muhammad Dawood, Muhammad Kamran, Mona H. Soliman, Muhammad Rizwan, Haifa Abdulaziz S. Alhaithloulf, and Shafaqat Ali</i></p> <p>28.1 Introduction 563</p> <p>28.2 Sources of Nitric Oxide Biosynthesis in Plants 565</p> <p>28.3 Effects of Nitric Oxide on Plants Under Abiotic Stresses 566</p> <p>28.4 Role of Calcium Signaling During Abiotic Stresses 571</p> <p>References 575</p> <p><b>29 Iron, Zinc, and Copper Application in Overcoming Environmental Stress </b><b>582<br /></b><i>Titash Dutta, Nageswara Rao Reddy Neelapu, and Challa Surekha</i></p> <p>29.1 Introduction 582</p> <p>29.2 Iron 586</p> <p>29.3 Zinc 587</p> <p>29.4 Copper 588</p> <p>29.5 Conclusion 590</p> <p>References 590</p> <p><b>30 Role of Selenium and Manganese in Mitigating Oxidative Damages </b><b>597<br /></b><i>Saket Chandra and Aryadeep Roychoudhury</i></p> <p>30.1 Introduction 597</p> <p>30.2 Factors Augmenting Oxidative Stress 599</p> <p>30.3 Effects of Heavy Metals on Plants 601</p> <p>30.4 Role of Manganese (Mn) in Controlling Oxidative Stress 604</p> <p>30.5 Role of Selenium (Se) in Controlling Oxidative Stress 607</p> <p>30.6 Role of Antioxidants in Counteracting ROS 608</p> <p>30.7 Role of Se in Re-establishing Cellular Structure and Function 609</p> <p>30.8 Conclusion 610</p> <p>Acknowledgment 611</p> <p>References 611</p> <p><b>31 Role of Silicon Transportation Through Aquaporin Genes for Abiotic Stress Tolerance in Plants </b><b>622<br /></b><i>Ashwini Talakayala, Srinivas Ankanagari, and Mallikarjuna Garladinne</i></p> <p>31.1 Introduction 622</p> <p>31.2 Aquaporins 623</p> <p>31.3 Molecular Mechanism of Water and Si Transportation Through Aquaporins 624</p> <p>31.4 AQP Gating Influx/Outflux 624</p> <p>31.5 Si-induced AQP Trafficking 627</p> <p>31.6 Roles of Aquaporins in Plant–Water Relations Under Abiotic Stress 627</p> <p>31.7 Role of Silicon in Abiotic Stress Tolerance 627</p> <p>31.8 Si-mediated Drought Tolerance Through Aquaporins 627</p> <p>31.9 Si-mediated Salinity Tolerance Through Aquaporins 628</p> <p>31.10 Si-mediated Oxidative Tolerance Through Aquaporins 629</p> <p>31.11 Si Mediated Signal Transduction Pathway Under Biotic Stress 630</p> <p>31.12 Conclusion 630</p> <p>References 630</p> <p><b>32 Application of Nanoparticles in Overcoming Different Environmental Stresses </b><b>635<br /></b><i>Deepesh Bhatt, Megha D. Bhatt, Manoj Nath, Rachana Dudhat, Mayank Sharma, and Deepak Singh Bisht</i></p> <p>32.1 Introduction 635</p> <p>32.2 Physicochemical Properties of Nanoparticles 637</p> <p>32.3 Mode of Synthesis of Nanoparticles 638</p> <p>32.4 Types of Nanoparticles and Their Role in Stress Acclimation 639</p> <p>32.5 Types of Environmental Stresses 646</p> <p>32.6 Possible Protective Mechanism of Nanoparticles 649</p> <p>32.7 Conclusion and Future Perspectives 650</p> <p>References 650</p> <p>Index 655</p>
<p><b>ABOUT THE EDITORS</b> <p><b>ARYADEEP ROYCHOUDHURY</b> is Assistant Professor, Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, India. <p><b>DURGESH KUMAR TRIPATHI</b> is Assistant Professor, Amity Institute of Organic Agriculture, Amity University, Uttar Pradesh, Noida, India.
<p><b>A GUIDE TO THE CHEMICAL AGENTS THAT PROTECT PLANTS FROM VARIOUS ENVIRONMENTAL STRESSORS</b> <p><i>Protective Chemical Agents in the Amelioration of Plant Abiotic Stress</i> offers a guide to the diverse chemical agents that have the potential to mitigate different forms of abiotic stresses in plants. Edited by two experts on the topic, the book explores the role of novel chemicals and shows how using such unique chemical agents can tackle the oxidative damages caused by environmental stresses. <p>Exogenous application of different chemical agents or chemical priming of seeds presents opportunities for crop stress management. The use of chemical compounds as protective agents has been found to improve plant tolerance significantly in various crop and non-crop species against a range of different individually applied abiotic stresses by regulating the endogenous levels of the protective agents within plants. This important book: <ul> <li>Explores the efficacy of various chemical agents to eliminate abiotic stress</li> <li>Offers a groundbreaking look at the topic and reviews the most recent advances in the field</li> <li>Includes information from noted authorities on the subject</li> <li>Promises to benefit agriculture under stress conditions at the ground level</li> </ul> <p>Written for researchers, academics, and scientists, <i>Protective Chemical Agents in the Amelioration of Plant Abiotic Stress</i> details the wide range of protective chemical agents, their applications, and their intricate biochemical and molecular mechanism of action within the plant systems during adverse situations.

Diese Produkte könnten Sie auch interessieren:

Esau's Plant Anatomy
Esau's Plant Anatomy
von: Ray F. Evert, Susan E. Eichhorn
PDF ebook
187,99 €
The Fusarium Laboratory Manual
The Fusarium Laboratory Manual
von: John F. Leslie, Brett A. Summerell, Suzanne Bullock
PDF ebook
161,99 €
Plant Desiccation Tolerance
Plant Desiccation Tolerance
von: Matthew A. Jenks, Andrew J. Wood
PDF ebook
242,99 €