Details

Progress in Thermal Barrier Coatings


Progress in Thermal Barrier Coatings


Progress in Ceramic Technology, Band 2 1. Aufl.

von: ACerS (American Ceramics Society, The)

206,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 15.07.2009
ISBN/EAN: 9780470526248
Sprache: englisch
Anzahl Seiten: 628

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This edition of the Progress in Ceramic Technology series compiles articles published on thermal barrier coatings (TBCs) by The American Ceramic Society (ACerS). It collects in one resource the current research papers on materials-related aspects of thermal barrier coatings and associated technologies. <p>Logically organized and carefully selected, the papers in this edition divide into six categories:</p> <ul> <li>Applications</li> <li>Material Improvements and Novel Compositions</li> <li>Developments in Processing</li> <li>Mechanical Properties</li> <li>Thermal Properties</li> </ul> Citations follow each title in the table of contents, making this a key resource for professionals and academia.
<p>Introduction xi</p> <p><b>Applications</b></p> <p><b>Corrosion Resistant Thermal Barrier Coating Materials for Industrial Gas Turbine Applications 3</b><br /> <i>Michael D. Hill, Davin P. Phelps, and Douglas E. Wolfe</i><br /> CESR Vol. 29, IS. 4, 123-132, 2008</p> <p><b>Industrial Sensor TBCs: Studies on Temperature Detection and Durability 13</b><br /> <i>X. Chen, Z. Mutasim, and J. Price, J. P. Feist, A. L. Heyes and S. Seefeldt</i><br /> Int. J. of Appl. Ceram. Technol., Vol. 2, No. 5, p. 41 4-421, 2005</p> <p><b>Industrial TBCs 21</b><br /> <i>A. Kulkarni and H. Herman</i><br /> Am. Ceram. SOC. Bull., Vol. 83, No. 6, p. 9801-9804, 2004</p> <p><b>Low Thermal Conductivity Ceramics for Turbine Blade Thermal Barrier Coating Application 25</b><br /> <i>U. Schulz, B. Saint-Ramond, 0. Lavigne, P. Moretto, A. vanlieshout, and A. Borger</i><br /> CESe VOI. 25, NO. 4, p. 375-380, 2004</p> <p><b>Thermal and Environmental Barrier Coatings for SiC/SiC CMCs in Aircraft Engine Applications 31</b><br /> <i>I. Spitsberg and J. Steivel</i><br /> Int. J. Appl. Ceram. Technol., Vol. 1, No. 4, P. 291-301, 2004</p> <p><b>Review on Advanced EB-PVD Ceramic Topcoats for TBC Applications 43</b><br /> <i>U. Schulz, B. Saruhan, K. Fritscher, and C. Leyens</i><br /> Int. J. Appl. Ceram. Techno/., Vol. 1, N0.4, p. 302-314, 2004</p> <p><b>Material Improvements and Novel Compositions</b></p> <p><b>Corrosion Behavior of New Thermal Barrier Coatings 59</b><br /> <i>R. Vaßen, D. Sebold, and D. Stöver</i><br /> CESF: Vol. 28, NO. 3, p. 27-38, 2007</p> <p><b>Thermal Conductivity of Plasma-Sprayed Aluminum Oxide-Multiwalled Carbon Nanotube Composites 71</b><br /> <i>Srinivas R. Bakshi, Kantesh Balani, Arvind Agarwal</i><br /> J. Am. Ceram. SOC. Vol. 91, No. 3, 942-947, 2008</p> <p><b>Infiltration-Inhibiting Reaction of Gadolinium Zirconate Thermal Barrier Coatings with CMAS Melts 77</b><br /> <i>S. Krämer, J. Yang, and C. Levi</i><br /> J. Am. Ceram. SOC., Vol. 91, No. 2, p. 576-583, 2008</p> <p><b>Segmentation Cracks in Plasma Sprayed Thin Thermal Barrier Coatings 85</b><br /> <i>H. Guo, H. Murakami, and S. Kuroda</i><br /> CESF: Vol. 27, NO. 3, p. 17-27, 2007</p> <p><b>Design of Alternative Multilayer Thick Thermal Barrier Coatings 97</b><br /> <i>H. Samadi and T. Coyl</i><br /> CESP, VOl. 27, No. 3, p. 29-35, 2007</p> <p><b>Lanthanum-Lithium Hexaaluminate-A New Material for Thermal Barrier Coatings in Magnetoplumbite</b> <b>Structure-Material and Process Development 105</b><br /> <i>G. Pracht, R. Vaßen and D. Stöver</i><br /> CESR VOl. 27, NO. 3, p. 87-99, 2007</p> <p><b>Thermal Barrier Coatings Design with Increased Reflectivity and Lower Thermal Conductivity for High-Temperature Turbine Applications 119</b><br /> <i>M. Kelly, D. Wolfe, J. Singh, J. Eldridge, D-M Zhu, and R. Miller</i><br /> Int. J. Appl. Ceram. Technol., Vol. 3, No. 2, p. 81-93, 2006</p> <p><b>Delamination-Indicating Thermal Barrier Coatings Using YSZ:Eu Sublayers 133</b><br /> <i>J. Eldridge, T. Bencic, C. Spuckler, J. Singh, and D. Wolfe</i><br /> J. Am. Ceram. SOC., Vol. 89, No. 10, p. 3246-3251, 2006</p> <p><b>Erosion-Indicating Thermal Barrier Coatings Using Luminescent Sublayers 139</b><br /> <i>J. Eldridge, J. Singh, and D. Wolfe</i><br /> J. Am. Ceram. SOC., Vol. 89, No. 10, p. 3252-3254, 2006</p> <p><b>Rare-Earth Zirconate Ceramics with Fluorite Structure for Thermal Barrier Coatings 143</b><br /> <i>Q. Xu, W. Pan, J. Wang, C. Wan, L. Qi, H. Miao, K. Mori, and T. Torigoe</i><br /> J. Am. Ceram. SOC., Vol. 89, No. 1, p. 340-342, 2006.</p> <p><b>Co-Doping of Air Plasma-Sprayed Yttria- and Ceria-Stabilized Zirconia for Thermal Barrier Applications 147</b><br /> <i>Z. Chen, R. Trice, H. Wang, W. Porter, J. Howe, M. Besser and D. Sordelet</i><br /> J. Am. Ceram. SOC., Vol. 88, No. 6, p. 1584-1590, 2005</p> <p><b>Ta<sub>2</sub>O<sub>5</sub>/Nb<sub>2</sub>O<sub>5</sub> and Y2O<sub>3</sub> Co-doped Zirconias for Thermal Barrier Coatings 155</b><br /> <i>S. Raghavan, H. Wang, R. Dinwiddie, W. Porter, R. Vassen, D. Stover, and M. Mayo</i><br /> J. An Ceram. SOC., Vol. 87, No. 3, p. 431-37, 2004</p> <p><b>New Thermal Barrier Coatings Based on Pyrochlore/YSZ Double-Layer Systems 163</b><br /> <i>R. Vaßen, F. Traeger, and D. Stöver</i><br /> Int. J. Appl. Ceram. Techno/., Vol. 1, No. 4, p. 351-361, 2004</p> <p><b>Development of Advanced Low Conductivity Thermal Barrier Coatings 175</b><br /> <i>D. Zhu and R. Miller</i><br /> Int. J. Appl. Ceram. Techno/., Vol. 1, No. 1, p. 86-94, 2004</p> <p><b>Developments in Processing</b></p> <p><b>Process and Equipment for Advanced Thermal Barrier Coatings 187</b><br /> <i>Albert Feuerstein, Neil Hitchman, Thomas A. Taylor, and Don Lemen</i><br /> CESR VOl. 29, IS. 4, 107-122, 2008</p> <p><b>Influence of Porosity on Thermal Conductivity and Sintering in Suspension Plasma Sprayed Thermal</b> <b>Barrier Coatings 203</b><br /> <i><b>H</b></i><i>. Kaßner, A. Stuke, M. Rödig, R. Vaßen, and D. Stöver</i><br /> CESP, VOl. 29, IS. 4, 147-1 58, 2008</p> <p><b>Thermal and Mechanical Properties of Zirconia/Monazite-Type LaPO<sub>4</sub> Nanocomposites Fabricated</b><br /> <b>by PECS 215</b><br /> <i>S-H Kim, T. Sekino, T. Kusunose, and A. Hirvonen</i><br /> CESP, VOl. 28, IS. 3, p. 19-26, 2007</p> <p><b>Dense Alumina-Zirconia Coatings Using the Solution Precursor Plasma Spray Process 223</b><br /> <i>D. Chen, E. Jordan, M. Gell, and X. Ma</i><br /> J. Am. Ceram. SOC., Vol. 91, No. 2, p. 359-365, 2008</p> <p><b>Thermal Stability of Air Plasma Spray and Solution Precursor Plasma Spray Thermal Barrier Coatings 231</b><br /> <i>D. Chen, M. Gell, E. Jordan, E. Cao, and X. Ma</i><br /> J. Am. Ceram. SOC., Vol. 90, No. 10, p. 31 60-31 66, 2007</p> <p><b>Mechanical Design for Accommodating Thermal Expansion Mismatch in Multilayer Coatings for</b><br /> <b>Environmental Protection at Ultrahigh Temperatures 239</b><br /> <i>Jie Bai, Kurt Maute, Sandeep R. Shah and Rishi Raj</i><br /> J. Am. Ceram. SOC.,V ol. 90, No. 1, p. 170-17 6, 2007<br /> <b><br /> <b>Grain-Boundary Grooving of Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings 247</b></b></p> <p><i>K. Erk, C. Deschaseaux, and R. Trice</i><br /> J. Am. Ceram. SOC., Vol. 89, No. 5, p. 1673-1678, 2006</p> <p><b>Novel Deposition of Columnar Y<sub>3</sub>AI<sub>5</sub>O<sub>12</sub> Coatings by Electrostatic Spray-Assisted Vapor Deposition 253</b><br /> <i>Y. Wu, J. Du and K-L Choy</i><br /> J. Am. Ceram. SOC., Vol. 89, No. 1, p. 385-387, 2006</p> <p><b>Testing and Characterization</b></p> <p><b>Monitoring the Phase Evolution of Yttria Stabilized Zirconia in Thermal Barrier Coatings Using the</b><br /> <b>Rietveld Method 259</b><br /> <i>G. Witz, V. Shklover, W. Steure, S. Bachegowda, and H.-P. Bossmann</i><br /> CESe Vol. 28, No. 3, p. 41-51, 2007</p> <p><b>Thermal Imaging Characterization of Thermal Barrier Coatings 271</b><br /> <i>J. Sun</i><br /> CESR Vol. 28, NO. 3, p. 53-60, 2008</p> <p><b>Examination on Microstructural Change of a Bond Coat in a Thermal Barrier Coating for Temperature Estimation and Aluminum-Content Prediction 279</b><br /> <i>M. Okada, T. Hisamatsu, and T. Kitamura</i><br /> CESF: VOl. 28, NO. 3, p. 61-69, 2008</p> <p><b>Quantitative Microstructural Analysis of Thermal Barrier Coatings Produced by Electron Beam Physical Vapor Deposition 289</b><br /> <i>M. Kelly, J. Singh, J. Todd, S. Copley, and D. Wolfe</i><br /> CESP, VOl. 28, NO. 3, p. 71 -80, 2008</p> <p><b>Investigation of Damage Prediction of Thermal Barrier Coating 299</b><br /> <i>Y. Ohtake</i><br /> CESR Vol. 28, NO. 3, p. 81-84, 2008</p> <p><b>Corrosion Rig Testing of Thermal Barrier Coating Systems 303</b><br /> <i>R. Vaßen, D. Sebold, G. Pracht, and D. Stöver</i><br /> CESF: VOl. 27, NO. 3, p. 47-59, 2007<br /> <br /> <b>Oxidation Behavior and Main Causes for Accelerated Oxidation in Plasma Sprayed Thermal Barrier</b><br /> <b>Coatings 317</b><br /> <i>H. Arikawa, Y. Kojima, M. Okada, T. Hoshioka, and T. Hisarnatsu</i><br /> CESF: VOl. 27, NO. 3, p. 69-80, 2007</p> <p><b>Crack Growth and Delamination of Air Plasma-Sprayed Y<sub>2</sub>O<sub>3</sub>-ZrO<sub>2</sub> TBC After Formation of TGO Layer 329</b><br /> <i>M. Hasegawa, Y-F Liu, and Y. Kagawa</i><br /> CESF: Vol. 27, No. 3, p. 81 -85, 2007</p> <p><b>Characterization of Cracks in Thermal Barrier Coatings Using Impedance Spectroscopy 335</b><br /> <i>L. Deng, X. Zhao, and P. Xiao</i><br /> CESF: VOl. 27, NO. 3, p. 191-206, 2007<br /> <br /> <b>Nondestructive Evaluation Methods for High Temperature Ceramic Coatings 351</b><br /> <i>W. Ellingson, R. Lipanovich, S. Hopson, and R. Visher</i><br /> CESF: Vol. 27, No. 3, p. 207-214, 2007</p> <p><b>Phase Evolution in Yttria-Stabilized Zirconia Thermal Barrier Coatings Studied by Rietveld Refinement of X-Ray Powder Diffraction Patterns 359</b><br /> <i>G. Witz, V. Shklover, W. Steurer, S. Bachegowda, H-P Bossmann</i><br /> J. Am. Ceram. SOC., Vol. 90, No. 9, p. 2935-2940, 2007</p> <p><b>Characterization of Chemical Vapor-Deposited (CVD) Mullite+CVD Alumina+Plasma-Sprayed Tantalum Oxide Coatings on Silicon Nitride Vanes After an Industrial Gas Turbine Engine Field Test 365</b><br /> <i>J. A. Haynes, S. M. Zemskova, H. T. Lin, M. K. Ferber and W. Westphal</i><br /> J. Am. Ceram. SOC., Vol. 89, No. 11, p. 3560-3563, 2006</p> <p><b>Monitoring Delamination Progression in Thermal Barrier Coatings by Mid-Infrared Reflectance Imaging 369</b><br /> <i>J. Eldridge, C. Spuckler, and R. Martin</i><br /> Int. J. Appl. Ceram. Technol., Vol. 3, No. 2, p. 94-104, 2006</p> <p><b>Noncontact Methods for Measuring Thermal Barrier Coating Temperatures 381</b><br /> <i>M. Gentleman, V. Lughi, J. Nychka, and D. Clarke</i><br /> Int. J. of Appl. Ceram. Technol., Vol. 3, No. 2, p. 105-112, 2006</p> <p><b>Modeling the Influence of Reactive Elements on the Work of Adhesion between Oxides and Metal Alloys 389</b><br /> <i>J. Bennett, J. M. Kranenburg and W. G. Sloof</i><br /> J. Am. Ceram. SOC., Vol. 88, No. 8, p. 2209-2216, 2005</p> <p><b>Hot Corrosion Mechanism of Composite Alumina/Yttria-Stabilized Zirconia Coating in Molten Sulfate-</b><br /> <b>Vanadate Salt 397</b><br /> <i>N. Wu, Z. Chen, and S. Mao</i><br /> J. Am. Ceram. SOC., Vol. 88, No. 3, p. 675-682, 2005</p> <p><b>Microstructure-Property Correlations in Industrial Thermal Barrier Coatings 405</b><br /> <i>A. Kulkarni, A. Goland, Herbert Herman, A. Allen, J. Ilavsky, G. Long, C. Johnson, and J. Ruud</i><br /> J. Am. Ceram. SOC., Vol. 87, No. 7, p. 1294-1300, 2004</p> <p><b>TBC Integrity 413</b><br /> <i>J. Eldridge, C. Spuckler, J. Nesbiit, and K. Street</i><br /> Am. Ceram. SOC. Bull. Online, Vol. 83, No. 6, p. 9801-9804, 2004</p> <p><b>Photoluminescence Piezospectroscopy: A Multi-Purpose Quality Control and NDI Technique for Thermal Barrier Coatings 417</b><br /> <i>M. Gell, S. Sridharan, M. Wen, and E. Jordan</i><br /> Int. J. Appl. Ceram. Technol., Vol. 1, No. 4, p. 316-319, 2004</p> <p><b>Mechanical Properties</b></p> <p><b>Elastic and Inelastic Deformation Properties of Free Standing Ceramic EB-PVD Coatings 433</b><br /> <i>M. Bartsch, U. Fuchs, and J. Xu</i><br /> CESR VO. 28, NO. 3, p . 11-18, 2007</p> <p><b>Creep Behavior of Plasma Sprayed Thermal Barrier Coatings 441</b><br /> <i>R. Soltani, T. Coyle, and J. Mostaghimi</i><br /> CESe Vol. 27, No. 3, p. 37-46, 2007</p> <p><b>Simulation of Stress Development and Crack Formation in APS-TBCS for Cyclic Oxidation Loading and Comparison with Experimental Observations 451</b><br /> <i>R. Herzog, P. Bednarz, E. Trunova, V. Shemet, R. Steinbrech, F. Schubert, and L. Singheiser</i><br /> CESP, VOl. 27, NO. 3, p.103-114, 2007</p> <p><b>Numerical Simulation of Crack Growth Mechanisms Occurring Near the Bondcoat Surface in Air Plasma Sprayed Thermal Barrier Coatings 463</b><br /> <i>Casu, J.-L. Marques, R. Vassen, and D. Stover</i><br /> CESP, VOl. 27, NO. 3, p. 11 5-126, 2007</p> <p><b>Damage Prediction of Thermal Barrier Coating 475</b><br /> <i>Y. Ohtake</i><br /> CESe VOl. 27, NO. 3, p. 139-146, 2007</p> <p><b>Creep Behavior of Plasma-Sprayed Zirconia Thermal Barrier Coatings 483</b><br /> <i>R. Soltani, T. Coyle, and J. Mostaghimi</i><br /> J. Am. Ceram. SOC., Vol. 90, No. 9, p. 2873-2878, 2007<br /> <br /> <b>Application of Hertzian Tests to Measure Stress-Strain Characteristics of Ceramics at Elevated</b><br /> <b>Temperatures 489</b><br /> <i>E. Sánchez-González, J. Meléndez-Martinez, A. Pajares, P. Miranda, F. Guiberteau and B. Lawn</i><br /> J. Am. Ceram. SOC., Vol. 90, No. 1, p. 149-153, 2007</p> <p><b>Effect of Sintering on Mechanical Properties of Plasma-Sprayed Zirconia-Based Thermal Barrier Coatings 495</b><br /> <i>S. Choi, D. Zhu and R. Miller</i><br /> J. Am. Ceram. SOC., Vol. 88, No. 10, p. 2859-2867, 2005</p> <p><b>The Measurement of Residual Strains within Thermal Barrier Coatings Using High-Energy X-Ray Diffraction 505</b><br /> <i>J. Thornton, S. Slater, and J. Almer</i><br /> J. Am. Ceram. Soc., Vol. 88, No. 10, p. 2817-2825, 2005</p> <p><b>Stress Relaxation of Compression Loaded Plasma-Sprayed 7 Wt% Y<sub>2</sub>O<sub>3</sub>-ZrO<sub>2</sub> Stand-Alone Coatings 515</b><br /> <i>G. Dickinson, C. Petorak, K. Bowman, and R. Trice</i><br /> J. Am. Ceram. SOC., Vol. 88, No. 8, p. 2202-2208, 2005</p> <p><b>Mechanical Properties/Database of Plasma-Sprayed Zr0<sub>2</sub>-8wt% Y<sub>2</sub>O<sub>3</sub> Thermal Barrier Coatings 523</b><br /> <i>S. Choi, D. Zhu, and R. Miller</i><br /> Int. J. Appl. Ceram. Techno/., Vol. 1, No. 4, p. 330-342, 2004</p> <p><b>Thermal Properties</b></p> <p><b>Thermal and Mechanical Properties of Zirconia Coatings Produced by Electrophoretic Deposition 539</b><br /> <i>Baufeld, 0. van der Beist, and H-J Ratzer-Scheibe</i><br /> CESR Vol. 28, No. 3, p. 3-10, 2008</p> <p><b>Effect of an Opaque Reflecting Layer on the Thermal Behavior of a Thermal Barrier Coating 547</b><br /> <i>C. Spuckler</i><br /> CESR VOI. 28, No. 3, p. 87-98, 2008</p> <p><b>Optimizing of the Reflectivity of Air Plasma Sprayed Ceramic Thermal Barrier Coatings 559</b><br /> <i>A. Stuke, R. Carius, J.-L. Marqués, G. Mauer, M. Schulte, D. Sebold, R. Vaßen, and D. Stöver</i><br /> CESR Vol. 28, No. 3, p. 99-1 13, 2008</p> <p><b>Thermal Conductivity of Nanoporous YSZ Thermal Barrier Coatings Fabricated by EB-PVD 575</b><br /> <i>B-K Jang and H. Matsubara</i><br /> CESR Vol. 28, NO. 3, p. 115-123, 2008<br /> <br /> <b>Comparison of the Radiative Two-Flux and Diffusion Approximations 585</b><br /> <i>C. Spuckler</i><br /> CESe Vol. 27, NO. 3, p.127-137, 2007<br /> <br /> <b>Relation of Thermal Conductivity with Process Induced Anisotropic Void Systems in EB-PVD PYSZ</b><br /> <b>Thermal Barrier Coatings 597</b><br /> <i>A. Flores Renteria, B. Saruhan, and J. llavsky</i><br /> CESR Vol. 27, NO. 3, p. 3-15, 2007<br /> <br /> <b>Thermal Properties of Nanoporous YSZ Coatings Fabricated by EB-PVD 611</b><br /> <i>B-K Jang, N. Yamaguchi, and H. Matsubara</i><br /> CESR Vol. 27, NO. 3, p. 61-67, 2007</p> <p><b>Thermochemical Interaction of Thermal Barrier Coatings with Molten CaO-MgO-AI<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> (CMAS)</b><br /> <b>Deposits 619</b><br /> <i>S. Krämer, J. Yang, C. Levi, and C. Johnson</i><br /> J. Am. Ceram. SOC., Vol. 89, No. 10, p. 3167-3175, 2006</p>
<b>The American Ceramic Society (ACerS)</b> is a 100-year old non-profit organization that serves the informational, educational, and professional needs of the international ceramics community.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €